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1. INTRODUCTION 

 Chiral solitons appear in the study of Quantum Hall 
effect in Quantum Mechanics [1-12]. These are modeled by 
the chiral nonlinear Schrödinger's equation (cNLSE) [1-4, 
12]. In fact a lot of studies have been going on in this area 
since the appearance of the Jackiw-Pie model [7, 8]. The 
dynamics of chiral solitons with Bohm potential has also 
been studied by the aid of He's semi-inverse variational 
principle [4]. The soliton perturbation theory was also 
studied with weak Bohm potential [1]. 

 There are several mathematical techniques that have been 

developed in the past couple of decades to integrate the 

cNLSE and equations of those type which mathematically 

fall into the category of nonlinear evolution equtions. Some 

of these well known methods are Adomian decomposition 

method, exponential function method, Fan's F -expansion 

method, variational iteration method, semi-inverse 

variational principle and many more. These mathematical 

methods have truly been a blessing in this area of research. 

This paper will obtain the 1-soliton solution of the 

generalized version of the cNLSE by the ansatz method. 

Both topological soliton and non-topological soliton 

solutions will be obtained. Finally, the conservation laws 

will be derived for the generalized cNLSE. 

2. MATHEMATICAL ANALYSIS 

 The generalized form of cNLSE that will be studied in 
this paper is given by 

i qm( )
t
+ a qm( )

xx
+ ib qqx q qx( )qm = 0          (1) 

 Here in (1) the dependent variable is q  while the 

independent variables are x  and t  which are the spatial and 

temporal variables respectively. Also, the parameter m   
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makes the cNLSE general. Here m  is a positive real number 

and the special case when m =1 , equation (1) collapses back 

to the reagular cNLSE that was first proposed by Jackiw and 

Pie [7, 8]. The focus of this paper is to solve (1) by the 

ansatz method. 

 To start off, the following ansatz is proposed based on 

the traveling wave solution obtained by Wadati et al. for 

m =1  [11, 12]. 

q(x, t) = P(x, t)ei (x,t )  (2) 

where P(x, t)  represents the profile of the soliton while 

(x, t)  is the phase component of the soliton that is defined 

as 

(x, t) = x + t +  (3) 

 Here in (3),  represents the frequency of the soliton, 

while  is the wave number of the soliton and finally  is 

the phase constant. Thus, from (2), 

qm( )
t
= mPm 1 P

t
+ im Pm eim  (4) 

qm( )
xx
= mPm 1

2P

x2
2im2 Pm 1 P

x
 

+m(m 1)Pm 2 P

x

2

m2 2Pm eim  (5) 

and 

qqx q qx = 2i P
2
 (6) 

 Substituting (2)-(6) into (1) and then decomposing into 
real and imaginary parts respectively yields 

m + am2 2( )Pm
+ 2b Pm+2
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am(m 1)Pm 2 P

x

2

amPm 1
2P

x2
= 0  (7) 

and 

P

t
= 2am

P

x
 (8) 

 These equations (7) and (8) will be further analyzed in 
the following two subsections. 

2.1. Bright (Non-Topological) Solitons 

 In this case, the hypothesis is [1-4] 

P(x, t) = A sech p
 (9) 

where 

= B(x vt)  (10) 

 Here, in (9), A  is the amplidude of the soliton while B  

is the inverse width of the soliton and v  is the velocity of the 

soliton. Therefore 

P

t
= pvAB sech p tanh  (11) 

P

x
= pAB sech p tanh  (12) 

2P

x2
= p2AB2 sech p p(p +1)AB2 sech p+2  (13) 

 Thus, from (8), (11) and (12) it is possible to obtain 

v = 2am  (14) 

 Also, equation (7), from (12) and (13), reduces to 

m + am2 2( )Am sech mp
+ 2b Am+2 sech (m+2) p

 

am(m 1)p2AmB2 sech mp sech mp+2( )  

amAmB2 p2 sech mp p(p +1) sech mp+2{ } = 0  (15) 

 Now, from (15), equating the exponents (m + 2)p  and 

mp + 2  gives 

(m + 2)p = mp + 2  (16) 

so that 

p =1  (17) 

 Again, from (15), setting the coefficients of the linearly 

independent functions sech mp+ j
, for j = 0, 2  to zero gives 

= am B2 2( )  (18) 

and 

B = A
2b

am(m +1)
 (19) 

which is the wave number and the soliton amplitude-width 
relation. From (19), it is possible to conclude that the non-
topological solitons to (1) will exist provided 

ab < 0  (20) 

 Thus the bright (non-topological) 1-soliton solution to (1) 
is given by 

q(x, t) = A sech[B(x vt)]ei( x+ t+ )
 (21) 

where the amplitude-width relation is given by (19) and the 
soliton wave number is given by (18) while the soliton 
velocity is related to its frequency as in (14). These relations 
poses a constraint that is given by (20). 

2.2. Dark (Topological) Solitons 

 For topological solitons the hypothesis is given by [2, 3, 
11] 

P(x, t) = A ptanh  (22) 

where  is the same as deined in (10). However, in this case 

the parameters A  and B  are free parameters and v  is still 

the soliton velocity. Theefore, in this case 

P

t
= pvAB p+1tanh p 1tanh( )  (23) 

P

x
= pAB p 1tanh p+1tanh( )  (24) 

2P

x2
= p(p 1)AB2 p 2tanh 2p2AB2 ptanh

+ p(p +1)AB2 p+2tanh

 (25) 

 Therefore (7) reduces to 

m + am2 2( )Am mptanh + 2b Am+2 (m+2) ptanh  

am(m 1)p2AmB2 mp 2tanh 2 mptanh + mp+2tanh( )  

amAmB2
p(p 1) mp 2tanh 2p2 mptanh

+ p(p +1) mp+2tanh
= 0  

 Similarly from (26) as in the previous subsection, the 

same value of p  as in (17) is obtained. Therefore, from (26), 

mp 2tanh  must have its coefficient to be zero. This forces 

m =1  (26) 

 This shows that for the generalized cNLSE, the 

topological solitons will exist only for m =1  and no other 

value of m  can be permitted for the topological soliton 

solutions to be valid. This is a very important observation 

that is being made, for the first time in this paper. 

 Similarly, from the linearly independent function 
mp+ jtanh  for j =1, 2 , setting their coefficients to zero 

yields 

= a 2
+ 2B2( )  (27) 

and 

B = A
b

a
 (28) 
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which is the relation between the free parameters A  and B . 

This relation (29) also imposes the constraint 

ab > 0  (29) 

which must be valid for the topological soliton solutions to 
exist. Finally, substituting (23) and (24) into (8) yields the 
velocity of the soliton as 

v = 2a  (30) 

 Hence, for the existence of topological solitons of the 
generalized cNLSE, equation (1) must be modified to 

iqt + aqxx + ib qqx q qx( )q = 0  (31) 

whose topological 1-soliton solution is given by 

q(x, t) = A tanh[B(x vt)]ei( x+ t+ )
 (32) 

where in (33) the relation between the free parameters is 
given by (29), while the wave number is given by (28) and 
the velocity of the soliton is (31). The condition for the 
existence of topological soliton is seen in (30). 

3. CONSERVATION LAWS 

 One of the most important aspects of NLEEs is the 
conservation laws. Without these conserved quantities 
(integrals of motion), the study of any NLEEs is not 
complete. This is because the dynamics of the propagating 
waves, that are governed by these equations, is not 
completely understood without these laws. 

 In order to evaluate conserved quantities, we resort to the 

invariance and multiplier approach based on the well known 

result that the Euler-Lagrange operator annihilates a total 

divergence. Firstly, if (T t ,T x )  is a conserved vector 

corresponding to a conservation law, then 

DtT
t
+ DxT

x = 0  

along the solutions of the differential equation ( de = 0 ). 

 Moreover, if there exists a nontrivial differential function 

Q , called a `multiplier', such that 

Eq[Q.(de)] = 0,  

then 

Q.(de) = DtT
t
+ DxT

x ,  

where Eq  is the Euler-Lagrange operator for some 

(conserved) vector (T t ,T x ) . Thus, a knowledge of each 

multiplier Q  leads to a conserved vector determined by, 

inter alia, a Homotopy operator [5, 9]. 

For a system de1 = 0  & de2 = 0 , Q = ( f , g) , say, so that 

f .(de1) + g.(de2) = DtT
t
+ DxT

x ,  

and 

E(u,v)[DtT
t
+ DxT

x ] = 0.  

 Here, either T t
 or T t

 is the conserved density. 

 

3.1. Conserved Densities 

 To determine the conservation laws of the cNLSE, we 

split the equation into real and imaginary parts with 

q = u + iv  to get 

ut + avxx 2bv(vux uvx ) = 0,

vt + auxx 2bu(vux uvx ) = 0
 

so that the multipliers ( f , g)  are determined by 

E(u,v)[ f .(ut + avxx 2bv(vux uvx ))

+g.( vt + auxx 2bu(vux uvx ))] = 0.
 

 For our purposes, we determine these for f  and g  

dependence on (t, x,u, v,ux ,uxx ,uxxx , vx , vxx , vxxx ) . Following 

some tedious calculations for ( f , g) , the conserved densities, 

thereafter, are determined to be T t
 (with the corresponding 

densities of the cNLSE T t
), see below. 

(a). ( f , g) = (u, v) , 

 T t =
1

2
(u2 + v2 ) , 

 t =
1

2
| q |2 . 

(b). ( f , g) = (uxx , vxx ) , 

 T t =
1

2
uuxx + vvxx( ) , 

 t =
1

2
(qqxx

*
+ q*qxx ) . 

(c). ( f , g) = (bu(v)2 + b(u)3 + avx , bv(u)2 b(v)3 + aux ) , 

 T t =
1

4
bu4 + 2bu2v2 + bv4 2avux + 2auvx( ) , 

 
t = ai(qqx

* q*qx ) + b | q |
4

. 

(d). 
( f , g) = (2bx(u)3 + 2bxu(v)2 + 2axvx + 4(a)

2 tuxx

+av, 2bx(v)3 2bxv(u)2 + 2axux 4(a)2 tvxx + au)
, 

 T t =
1

2

bxu4 + 2bxu2v2 + 2au xvx + 2atuxx( )

+v bxv3 2axux + 4a
2tvxx( )

, 

 t =
1

2
[bx | q |4 +aix(qqx

* q*qx ) + 2a
2t(qqxx

*
+ q*qxx )] . 

3.2. Conserved Quanities 

 From the conserved densities that are derived in the 
previous subsection, the conserved quantities are given as 
follows: 

I1 =
tdx =

1

2
| q |2 dx =

A2

B
 (33) 

I2 =
tdx =

1

2
q qxx + qqxx( )dx =

2A2

3B
2B 3 2

+ B2( ){ }    (34) 
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I3 =
tdx = ia qqx q qx( ) + b | q |4{ }dx =

4A2

3B
bA2 3a( )   (35) 

I4 =
tdx =

b

2
x | q |4 +

ia

2
x qqx q qx( ) + a2t q qxx + qqxx( )  

=
a2tA2

3B
2B 3 2

+ B2( ){ }  (36) 

4. CONCLUSIONS 

 This paper integrates the generalized cNLSE by the 
soliton ansatz method. Both topological as well as non-
topological 1-soliton solutions have been obtained. It has 
also been proved that for the existence of topological 
solitons, the generalized CLSE must reduce to the regular 
cNLSE. Finally, the multiplier method approach is used to 
calculate a few conserved quantities of the cNLSE. 

 These results lay the basic foundation for the generalized 
cNLSE. Later these results will be used to study the soliton 
perturbation theory with Bohm potential. Additionally, the 
generalized cNLSE with Bohm potential will be integrated 
by the aid of He's semi-inverse variational principle. Those 
results will be reported in future publications. 
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