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Abstract: To achieve a GUT scale that is small,  200TeV, so that it is within the reach of conceivable earth-based 

accelerated colliding beam devices, we introduce a new approach to the subject of grand unification. Central to the 

approach is the abstraction of the heterotic string symmetry group physics ideas in a novel way which allows us to control 

baryon number violating effects to be consistent with current experimental limits. 
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INTRODUCTION 

 In view of its success, the structure of the Standard 
Model (SM) [1-10], as originally noted by the authors in 
refs. [11, 12], naturally suggests that the gauge interactions 
therein may be identified with a single unified dynamical 
gauge principle associated with a larger group G of which 
the SM gauge group, SU (2)L  U (2)Y  SU (3)

C
 in a by 

now standard notation, is a subgroup. This idea continues to 
be a fashionable area of investigation today. In what follows 
here, we also discuss the possible SM gauge forces' 
unification and we refer to the possibilities for such 
unification as GUTs as usual. 

 We note that recently progress [13-36] in treating the UV 
behavior of the Einstein- Hilbert theory for quantum gravity 
using resummation methods and using an underlying Planck-
scale loop space suggests that, as originally discussed by 
Weinberg [13], the unrenormalizability of the theory is cured 
dynamically, either via its interactions or via modifications 
of the theory at short distances. In what follows, we explore 
the possibility, which follows from such progress, that 
resolving the unrenormalizability of quantum gravity is a 
separate issue from the unification of all other known 
fundamental forces. 

 Specifically, with an eye toward the very high energy 
colliding beams devices, for example we have in mind the 
VLHC [37-42], our objective is to formulate GUTs so that 
they would be accessible to such devices with 100-200TeV 
cms energies. This we wish to do while satisfying the 
standard constraints on such theories: SM coupling constant 
unification, absence of anomalies, stability of baryons (this 
will be the most demanding requirement), naturalness [43-
47] and suppression of other unwanted transitions. We want 
to do this in 4-dimensional Minkowski space -- this 
condition we take as an example of our known physical 
reality condition. 

 Baryon number stability can be seen to be the most 
difficult constraint on our analysis as follows. By the 
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standard methods, for 100TeV scale physics for a dimension 
6 transition, a state with the size and mass of the proton has a 
natural lifetime of ~ 0.01yr while the proton must be stable 
to ~ 10

29 33
 yrs., depending on the mode. This requires a new 

suppression mechanism proton decay. 

 In proceeding to isolate such a mechanism, we hope to 
keep the GUT scale in the hundreds of TeV range in contrast 
to the usual [48, 49] ~10

13
 TeV regime, and we hope to avoid 

as well as yet unseen phenomena, where here we have in 
mind dimensions beyond 4 [48-52], additional vector 
representations of the gauge group [53-61], etc. 

 This is our realization of the approach that is sometimes 
called a radically conservative approach in that one uses in a 
novel way well-tested ideas. Toward our end, we notice that 
a GUT theory has the following three fundamental sectors: a 
gauge sector, a family sector and a Higgs sector for 
spontaneous symmetry breaking. We turn first to the family 
and gauge sectors. Let us also note that, in effecting this 
discussion, we present here a different realization of the 
basic ideas we already introduced in ref. [62]. Only 
experiment can tell us which realization is used by Nature. 

 Specifically, given the recent experimental evidence [63, 
64] of neutrino masses, we need to extend the 10 + 5  of 
SU(5) in ref. [12] to a sixteen dimensional representation. 

 We will use the 16 of SO(10) [65], which decomposes as 
10 + 5 +1  under an inclusion of SU(5) into SO(10). We 
know that in the only known and accepted unification of the 
SM and gravity, see for example refs. [66-72], the gauge 
group E8  E8 is singled-out when all known dualities [72] 
are taken into account to relate equivalent superstring 
theories

1
. 

 One pattern for the attendant symmetry breakdown is the 
following [72]: 

E8  SU (3)  E6  SU (3)  SO (10)  U  (1) 

                                                             
1We view here modern string theory as an extension of quantum field theory 

which can be used to abstract dynamical relationships which would hold in 

the real world even if the string theory itself is in detail only an 

approximate, mathematically consistent treatment of that reality, just as the 

old strong interaction string theory [73] could be used to abstract properties 

of QCD such as Regge trajectories even before QCD was discovered. 
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     SU (3)  SU (5)  U  (1)  U  (1) (1) 

     SU (3)  SU (3)
C
  SU (2)L  U (1)Y  U  (1)  U  (1) 

 Under this breaking the 248 of E8 then splits into (8, 1) + 
(1, 78) + (3, 27) + (3,27)  under SU (3)  E6 where each 27 
under E6 contains exactly one SM family 16-plet with 11 
other states that would be expected to get GUT scale masses 
because they are paired with their anti-particles in helicity 
via real representations. Let us assume that, by using the 
heterotic string breaking scenario, we get 6 families [48,49] 
under the first E8 factor, E8a, in the E8  E8 gauge group. 
These families are singlets under the second E8  E8b. We 
take the first 3 families to be those with the known light 
leptons and the remaining 3 families to be those with the 
known light quarks. The quarks in the families with the 
known light leptons are at a scale MQL that is beyond current 
experimental limits on new quarks; the leptons in the 
families with the known light quarks are at a scale MLL that 
is beyond the current experimental limits on heavy leptons. 
We now repeat the same pattern of breaking for the second 
factor E8b as well and we leave open the issue of observable 
families under this E8b, as they may exist in principle as well. 
The scales MQL, MLL are bounded by the grand unified 
theory (GUT) scale MGUT. This scenario stops baryon 
instability: the proton cannot decay because the leptons to 
which it could transform via (leptoquark) bosons are all at 
too high a scale. The extra heavy quarks and leptons just 
introduced here may of course appear already at the LHC. 

 The Standard Model SU (3)
C
 SU (2)L U (1)Y gauge 

bosons are now identified with a mixture of the two copies 
of such bosons from the two E8’s of the heterotic string 
theory

2
: we assume the two E8’s each break to a product 

group SU (3)  E6 and each of the corresponding E6’s 
breaks to give two copies of SU (3)

C
  SU (2)L  U (1)Y, 

so that for the gauge bosons for SU (3)
C

i  SU (2)Li  U(1)Yi 
E8i, G

a
i, a=1,…,8, A

i’
i, i’=1, …, 3, Bi, i = 1, 2, in a standard 

notation, we assume a further GUT scale breaking that 
leaves the following linear combinations massless at the GUT 
scale MGUT while the orthogonal linear combinations acquire 
masses (MGUT)  

Af
i ' = i=1

2
2iAi

i '

Bf = i=1
2

1iBi

 (2) 

 The { aj} satisfy 

i=1

2

ai
2

, a = 1, 2 

 We take the minimal view that confinement holds for the 
quarks in each of the families from the two E8’s. We set the 
two strong interaction gauge couplings to be equal at the 
GUT scale by imposing discrete symmetry so that we have 
gluons G1

a
 for the known quarks. We are aware that the as 

yet unseen color group may have to be broken, following the 
methods in ref. [74] for example, if experiment so dictates. 

                                                             
2If one wants to avoid any reference to superstring theory, one can just 

postulate our symmetry and families as needed, obviously; we leave this to 

the discretion of the reader. 

 Eq. (2) allows us some choices in realizing the known 
EW bosons. We recall the values [75, 76] of the known 
gauge couplings at scale MZ as follows: 

S  (MZ ) MS = 0.1184 ± 0.0007

W  (MZ ) MS = 0.033812 ± 0.000021

EM  (MZ ) MS = 0.00781708 ± 0.00000098

 (3) 

 Although the respective unified coupling ratio values are 
1 and 2.67, there is a factor of almost 4 between S (MZ) and 

W (MZ) and between W (MZ) and EM (MZ); the latter factor 
is well-known [77] to necessitate MGUT ~ 10

13
  10

12
 TeV. 

Here, we may use the { kj} to realize most of the 
discrepancy between the observed values of the coupling 
ratios and the unification coupling ratios of 1 and 2.67. This 
will allow GUT scales within the reach of foreseeable 
accelerated colliding beam devices. 

 Specifically, one may set 

21 1 / 2.000

11 1 / 3.260

 (4) 

and this will leave a “small” amount of evolution to be done 
between the scale MZ and MGUT. 

 Specifically, from the choices in (4), taken together with 
continuity of gauge coupling constants at the thresholds 
(There is now a candidate for the Englert-Brout-Higgs [78-
81] boson H in the mass regime which we indicate here, see 
refs. [82,83].) mH 120 GeV and mt = 171.2 GeV 
respectively, we calculate the GUT scale as MGUT  136TeV, 
as advertised, when one-loop beta functions [8,9] are used. 
We have 

b0
U (1)Y =

1

12 2

4.385, MZ μ mH 120GeV

4.417, mH < μ mt

5.125, mt < μ MGUT

 (5) 

from the standard formula [8,9] 

b0
U (1)Y =

1

12 2
j

n j (Yj / 2)
2

 (6) 

where b0 U(1)Y is the coefficient of g
3
 in the  function for 

the U(1)Y coupling constant g’ in the SU (2)L  U (1)Y EW 
theory, nj is the effective number of Dirac fermion degrees 
freedom, i.e. a left-handed Dirac fermion counts as , a 
complex scalar counts as , and so on. For QCD and the 
SU(2)L theories we have 

b0
SU (2)L =

1

16 2

3.708, MZ μ mH 120GeV

3.667, mH < μ mt

3.167, mt < μ MGUT

 (7) 

b0
QCD =

1

16 2

7.667, MZ μ mt

7, mt < μ MGUT

 (8) 
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from the standard formula [8, 9] 

 
b0

H =
1

16 2

11

3
C2 H( )

4

3 j

n j T (Rj )  (9) 

where T(Rj) are defined via tr { a
Rj

 b
Rj

}= T(Rj) ab for the 
generators { a

Rj
} of the group H in the representation Rj 

when ab is the Kronecker delta and the quadratic Casimir 
invariant eigenvalue for the adjoined representation of H has 
been denoted by C2(H). 

 These results (5,6,7,8,9) together with the standard one-
loop solution [8,9]: 

gH
2 μ( ) =

gH
2 (μ0 )

1 2b0
H gH

2 μ0( ) ln(
μ

μ0
)

 (10) 

allow us to compute MGUT 136TeV when the ij are as they 
are given in (4). Here, the squared running coupling constant 
at scale  is denoted by gH

2
 ( ) for H = U(1)Y, SU(2)L, QCD 

 SU (3)
C
. 

 For illustration we have chosen the value of 136TeV for 
the unification scale. In principle any value between the TeV 
scale and the Planck scale is allowed in our approach so that 
we wait for experiment to tell us what the true value is. 

 We sum up with the following observation, already made 
in ref. [62]: we propose here a “green pasture” between the 
TeV scale and the GUT scale instead of the traditional 
“desert” [12, 77]. 
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