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Abstract: The majority of the currently used cosmetics and drugs are natural products-based compounds or their deriva-

tives. This could add weight to the argument that natural based products are inherently better tolerated in the body than 

synthetic chemicals and have higher chance to be approved as new drugs. The present study was undertaken to analyze a 

natural product database compared to synthetic chemicals and to search for discriminative physicochemical properties that 

may probably help in differentiating between natural and synthetic compounds. We have formulated rules to assess the 

natural likeness of chemicals and thereby discriminate between natural-based and synthetic chemicals. A Mathews Corre-

lation Coefficient of 0.5 was obtained; nearly 81% of natural-based products and 68% of synthetic chemicals were pre-

cisely classified using this filter. The property criteria for drug-likeness and lead-likeness are more pronounced in natural 

products rather than synthetic ones. The fraction of synthetic chemicals which are natural-like could have higher chance to 

be successful drug.  

Keywords: Natural product, natural-likeness, drug-likeness, in silico prediction model, chemo-informatics.  

INTRODUCTION 

 Natural product-based medicines, particularly, herbal-
based drugs represented about 80 percent of all drugs in use 
by 1990 [1-3]. They represented the main source of leads for 
the development of new drugs for centuries [4-6]. During  
the past couple of decades, after the introduction of high 
throughput synthesis and combinatorial chemistry, natural 
products became less significant source of drugs and leads. 
Although global expenditure on drug research has doubled 
since 1991, the number of new drug entities approved annu-
ally decreased by 50% or even more [7, 8]. To change this 
situation, the players in the pharmaceutical industry shifted 
their interest back to natural or natural-based products [9-
15]. It becomes commonly accepted that natural based prod-
ucts are inherently better tolerated in the body and have in-
nate advantages for drug discovery and development over 
synthetic chemicals [16-19]. 

 Although computational methods are well established in 
drug discovery and molecular design [20-22], their applica-
tion in the field of natural products is still in its infancy.  
During the last decade we have seen an increased interest  
in the application of in silico tools in the natural product-
based drug discovery in order to accelerate identification of 
bioactive natural-based products, maximize their efficacy 
and minimize potential side effects. Computer assisted  
approaches [23], such as docking [24-27], pharmacophore  
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modeling [28-30] and virtual screening [31-34] have been 
carried out and reported related to the field of bioactive natu-
ral products. In order to introduce the natural products fea-
tures into the design of drug candidates, the discriminative 
features of natural products need to be unraveled. Most sci-
entific reports utilized structural features and substructures 
for scoring natural likeness of products [35-38]. However, 
the utility of ranges-based filters which is composed of 2D 
physicochemical descriptors in modeling could give some-
times less discriminative models but guarantee finding new 
chemical entities in higher rates [39, 40]. The present study 
aims to introduce a new highly efficient rules-based filter to 
assess the natural likeness of chemicals utilizing physico-
chemical properties and thereby differentiates between natu-
ral-based and synthetic chemicals. 

MATERIALS AND METHODS 

 A natural products database of commercially available 

natural products and natural product derivatives was down-

loaded from ZINC database (ZINC natural products http:// 

zinc.docking.org/catalog/npd.in). Other twenty thousands 

synthetic compounds were selected from ZINC database of 

commercially available chemicals (http://zinc.docking.org/ 

subset1/). All selected synthetic chemical are drug like ac-

cording to Lipinski rules of five and have entire diversity of 

Tanimoto < 0.7. In this study we seek a method that could 

provide simple rules to be utilized for differentiation be-

tween natural based and synthetic chemicals. For this pur-

pose we have utilized 2D descriptors that were computed by 

MOE 2008.10. MOE is an integrated drug discovery soft-

ware package with tools for chemoinformatics, bioinformat-
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ics, molecular modeling and visualization. It was developed 

by Chemical Computing Group, Inc. Montreal, Canada. 

 The decision, which set of relevant descriptors to use for 

differentiating between natural based and synthetic chemi-

cals, is crucial. We sought after the most significant set of 

descriptors from which guidelines for natural likeness could 

be extracted. The selection has been performed automatically 

as following: all descriptors were evaluated separately and 

the best discriminative descriptor was chosen to be the core. 

The second descriptor to be added to the core was selected 

from the rest descriptors while giving the best performance 

in discrimination. The process continued until we have an 

efficient rules-of-thumb filter. 

 We aim to construct a filter consisting of ranges of  

few descriptors that can differentiate well between natural 

based and synthetic chemicals. For this purpose, descriptors' 

ranges were optimized simultaneously in exhaustive search, 

by maximizing a function (Matthews’ Correlation Coeffi-

cient, MCC) [41] that considers each of the four possible 

outcomes for any chemical – Positive, Negative, False  

Positive and False Negative. Higher MCC means better dis-

tinction. 

 The division process of databases into training set and 

test set was performed by a random choice with 50% of the 

natural-based/ synthetic chemicals, while the remaining 

(50% of the databases) was used as a test set.  

 The need for a combinatorial optimization of descriptors' 

ranges dictates the requirement to transform descriptor val-

ues into discrete ones. Some descriptors already have a dis-

crete character, i.e., the numbers of Oxygen atoms, H-bond 

acceptors etc, while others, such as molecular weight, VDW 

surface area, etc., are continuous. The transformation to dis-

crete character was limited to give 50 values for upper and 

lower limit ranges each. 

 A set of rules is constructed by picking lower limit and 

upper limit for each descriptor. Each set has two values for 

each descriptor, constituting the range which is considered to 

be the “correct” one (by that set of descriptors) for natural 

likeness. The “correctness” of this set is measured by its 

MCC value, described below. The constructed set of rules is 

applied to the natural based chemicals in the training sets  

to calculate the value of the scoring function, its Matthews 

Correlation Coefficient (MCC) (equation 1).  

 MCC = (PN ) (PfNf )

(N +Nf )(N +Pf )(P +Nf )(P +Pf )           (1) 

 Where, P and N are the percentages of true positive and 

true negative predictions while Pf and Nf are the percentages 

of false positives and false negatives, respectively. True 

positives are natural based chemicals that are identified as 

natural-like chemicals. False positives are synthetic chemi-

cals that are identified as natural-like chemicals. False nega-

tives are natural based chemicals identified as synthetic-like 

chemicals, and true negatives are synthetic chemicals, identi-

fied as synthetic-like chemicals. The possible values for 

MCC range between -1.0 and 1.0 (1.0 for a perfect predic-

tion and –1.0 for a completely erroneous prediction).  

 An exhaustive search is performed for all combinations 

(more than one hundred million options) and the resulting 

sets of rules are sorted based on their MCC score. The best 

set of rules is presented. 

RESULTS AND DISCUSSION 

 Results obtained from the present study indicate that 

98.4% of chemicals in the natural products database obey 

Lipinski rule of 5 [42] and 85.6% obey Oprea lead-like rule 

[43]. An analysis of 2245 drugs were used in order to formu-

late the Lipinski rule of 5, which indicates that orally bio 

available drug-like molecules are likely to have  5 H-bond 

donors,  10 H-bond acceptors,  500 molecular weight and 

 5 log P. However, an analysis of 96 drugs and leads from 

which they were derived, were utilized to extract the Oprea 

rules for lead likeness, stating that lead molecules are more 

likely to have  450 molecular weight, between -3.5 and 4.5 

log P,  4 rings,  10 non-terminal single bonds,  5 hydro-

gen bond donors and  8 hydrogen bond acceptors. Drug like 

or lead like molecules should have less than 2 violations – 

descriptor's value that is out of the range. Fig. (2) shows the 

number of violation for drug-likeness and lead-likeness in 

natural products database. Fig. (2a) demonstrates that 98.8% 

of the compounds had less than 2 violations to Lipinski rule 

of 5, with 87.3% having no violation. Fig. (2b) shows that 

more than 85% of the natural products had less than 2 viola-

tions to Oprea lead-likeness, with 65.8% having no violation. 

These findings indicate that the property criteria for drug-

likeness and lead-likeness are highly pronounced in natural 

products. The distribution for the individual properties of the 

natural products is shown in Fig. (1). The molecular weight, 

H-bond donors, H-bond acceptors and logP (o/w) distribu-

tions peak at 300-400 dalton, 0, 4 and 2-3 units of logP re-

spectively.  

 Bajorath and his co-workers [37] proposed several sets  

of descriptors for distinguishing between natural products 

and synthetic molecules. Four out of the six proposed models 

composed only of 2D physicochemical descriptors while  

the two others include structural elements. We have utilized 

those sets of descriptors as well as the four descriptors of 

Lipinski to construct a discriminative filter able to distin-

guish between natural and synthetic molecules by optimiza-

tion ranges. Out of Bajorath proposed models, Model 5 (M5) 

composed of 8 descriptors gave the best result compared to 

the other sets in that group. As shown in Table 1, it has a 

Matthews’ Correlation Coefficient of 0.36, retaining 79% of 

the natural products and 56% of the synthetic molecules.  

 A new discriminative filter between natural products and 

synthetic chemicals was constructed as described in the 

method section. In order to ensure non-redundant informa-

tion in the features utilized for model construction, correla-

tion between descriptors in natural products database  

were computed by WEKA (http://www.cs.waikato.ac.nz/ml/ 

weka/) and stored into a matrix, see Table 2. The values of 

the correlation coefficient are constricted into the interval  

[-1, 1], correlation coefficient equal 1 corresponding to per- 

fectly correlated features while coefficient of -1 correspond-

ing to perfectly uncorrelated features. As shown in Table 2, 
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Table 1. Filters for Differentiating between Natural Products and Synthetic Molecules 

Model MCC True Natural Products True Synthetic Molecules 

Lipinski descriptors1 0.27 78 48 

M12 0.28 89 34 

M23 0 100 0 

M34 0.34 69 65 

M55 0.36 79 56 

Our model
6
 0.5 81 68 

1: Molecular Weight, Hydrogen Bond Acceptors, Hydrogen Bond Donors and calculated logP(o/w). 
2: petitjean, PEOE_VSA_+2, b_double, PEOE_VSA_-5, PEOE_VSA_+3, radius and vsa_other 

3: PC+, PC-, RPC+, RPC-, Fcharge, a_nI, a_nP, a_nBr, b_triple, vsa_acid, vsa_base 
4: b_1rotR, VadjEq, a_ICM, PEOE_RPC-, VdistEq, VdistMa, PEOE_RPC+ and VAdjMa 

5: a_ICM, bpol, chi0v_C, b_double, chi1v, a_nH, b_single and b_ar 
6: KierFlex, a_nN, chiral_u, KierFlex and vsa_acid 
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Fig. (1). Histograms of a) Lipinski violations for drug-likeness and b) Oprea violations for lead-likeness. Drug like or lead like could bear up 

to 1 violation. 
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the correlation matrix of our model descriptors for the natu-

ral products sample contains only elements  0.4 (in absolute 

values). 

 The property distribution of the proposed five discrimina-
tive descriptors for both the natural products database  
(NPD) and synthetic products database (CPD), are shown in 
Fig. (3). The histograms showing 3a) number of nitrogen 
atoms (a_nN), 3b) total hydrophobic Vander Waals area 
(Q_VSA_Hyd), 3c) number of unconstrained chiral centers 
(chiral_u), 3d) KierFlex – molecular flexibility index (Kier-
Flex) and 3e) sum of VDW surface area of acidic atoms 
(vsa_acid). x- axis label is the upper limit of binned data, 
e.g., 6 in KierFlex histogram is equivalent to 3-6. The  
enrichment factors (fraction of natural products/ fraction of 
synthetic chemicals) equal 5.8, 3.2, 5, 2.8 and 1.9 for 
a_nN=0; KierFlex  3; chiral_u  3; KierFlex  160 and 
vsa_acid > 27 respectively. Distribution histogram 3a shows 
that number of nitrogen atoms peaks at 1 in natural products 
and at 2 in synthetic chemicals. As well, sum of VDW sur-
face area of acidic atoms is higher in synthetic chemicals 

compared to natural products. As shown in Fig. (3b), it 
peaks at 220 in natural products and at 280 in synthetic 
chemicals. 

 Two thousands natural products and two thousands syn-
thetic chemicals were selected randomly from the pool 5 
times (assuring that the molecules in the new set have not 
been selected before for the previous sets). Table 3 lists the 
performance of the model on the different sets and as shown, 
the proposed model is highly robust. 

 Our natural likeness rules states that synthetic chemicals 
are more likely to have up to 1 violation while natural-based 
products having more than 1 violation to the following rules: 
a_nN  2, 160  Q_VSA_Hyd  548, chiral_u < 3, 3  Kier-
Flex  28 and vsa_acid  27. These extracted rules are useful 
for separating natural-based chemicals from synthetic ones. 
Mathews Correlation Coefficient of 0.5 is attained; nearly 
81% of natural-based products and 68% of synthetic chemi-
cals were correctly classified with this filter. In Fig. (4) we 
present some known natural-based drugs that are predicted 
as natural chemicals according to our proposed model. One 

Fig. 2. Cont.... 
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Fig. (2). Histograms of four physicochemical properties of compounds from the natural products database (NPD) showing a) molecular 

weight, b) logP(o/w), c) hydrogen bond acceptors and d) hydrogen bond donors. These selected descriptors are related to oral bioavailability 

and drug likeness. The physicochemical profile of the NPD molecules was computed by MOE 2008.10. 

Table 2. Correlation Matrix for Natural Products 

Descriptor KierFlex Q_VSA_HYD a_nN chiral_u vsa_acid 
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Q_VSA_HYD 0.175 1 -0.4 0.066 -0.252 

a_nN -0.217 -0.4 1 -0.239 -0.14 

chiral_u 0.14 0.066 -0.239 1 -0.038 

vsa_acid 0.187 -0.252 -0.14 -0.038 1 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5 6 7 8 9 10

Hydrogen Bond Donor

F
ra

ct
io

n
 o

f 
co

m
p

o
u

n
d

s



Physicochemical Properties of Natural Based Products versus Synthetic The Open Nutraceuticals Journal, 2010, Volume 3    199 

 

a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b 

 

 

 

 

 

 

 

 

 

 

 

 

 

c 

 

 

 

 

 

 

 

 

 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4 5 6 7 8 9 10
Number of nitrogen atoms

F
ra

ct
io

n
 o

f 
co

m
p

o
u

n
d

s

NPD

CPD

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

160 220 280 340 400 460 520 580
Q_VSA_HYD

F
ra

ct
io

n
 o

f 
co

m
p

o
u

n
d

s

NPD

CPD

0.00

0.10

0.20

0.30

0.40

0.50

0 1 2 3 4 5 6 >6
Chiral_u

F
ra

ct
io

n
 o

f 
co

m
p

o
u

n
d

s

NPD

CPD

 



200    The Open Nutraceuticals Journal, 2010, Volume 3 Zaid et al. 

Fig. 3. Cont…. 
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Fig. (3). Comparison of property distribution of five discriminative descriptors for the two data sets (NPD – natural products database,  

colored Gray and CPD – synthetic products database, colored black). The histograms showing a) number of nitrogen atoms, b) total hydro-

phobic Vander Waals area, c) number of unconstrained chiral centers, d) KierFlex – molecular flexibility index and e) sum of VDW surface 

area of acidic atoms. x- axis label is the upper limit of binned data, e.g., 6 in KierFlex histogram is equivalent to 3-6. 

Table 3. Robustness of the Proposed Model 

Partition Number Natural% Synthetic% MCC 

1 80.8 68.1 0.5 

2 81.7 68.6 0.51 

3 80.5 67.3 0.49 

4 81.2 67.3 0.5 

5 80.7 68.3 0.5 

 

of the earliest success stories in developing a drug from a 
natural product was aspirin. It is chemically similar to 
Salicin which is a natural chemical produced from willow 
barks. Topiramate is a sulfamate derivative of the naturally 
occurring sugar D-fructose. Dydrogesterone molecular struc-
ture is almost identical to that of natural progesterone. Citric 

acid is a weak organic acid, and it is a natural chemical 
exists in a variety of fruits and vegetables. Tretinoin is the 
acid form of vitamin A. Pilocarpine is a parasympath-
omimetic alkaloid obtained from the leaves of tropical 
American shrubs from the genus Pilocarpus. Geraniol is a 
monoterpenoid and an alcohol considered as the primary part 
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of rose oil, palmarosa oil, and citronella oil. Kinetin is a kind 
of cytokinin, a class of plant hormone that promotes cell 
division. Pyridoxine is a vitamin B6 and the dragon fruit 
from South East Asia is a very good source for it. 
Dicoumarol is a natural chemical substance of combinded 
plant and fungal origin. It is a derivative of coumarin, a 
substance made by plants and transformed by a number of 
species of fungi into dicoumarol. Some of these drugs such 
as Aspirin, Pyridoxine and Dicumarol belong to the top-
selling prescribed drugs. 

CONCLUDING REMARKS 

 A highly efficient rules based model for natural- likeness 
of chemicals has been unraveled and could be incorporated 
into virtual screening process of large chemical databases  
as well as in library design of natural like chemicals. As 
well, since natural based products are inherently better  
tolerated in the body than synthetic chemicals and have 
higher chance to be approved as new drugs, selection  
of natural-like drug candidates is justified. Our model  
for natural likeness proposed herein states that synthetic 
chemicals are more likely to have up to 1 violation while 
natural-based products having more than 1 violation to the 
following rules: Number of nitrogen atoms  2, total hydro-
phobic Vander Waals area ranges between 160 and 548, 
number of unconstrained chiral centers is less than 3, mo-
lecular flexibility index (KierFlex) ranges between 3 and 28, 
while sum of VDW surface area of acidic atoms is up to 27. 

This model attained Mathews Correlation Coefficient of 0.5; 
nearly 81% of natural-based products and 68% of synthetic 
chemicals were correctly classified. The model is highly 
robust when was run on 5 different sets of natural products 
and synthetic chemicals. 
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