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Abstract: The landslide motion in inclined underwater canyons is described in the framework of basic equations of the 

gravity driven shallow-water flows. A Coulomb (sliding) friction term is included in the model. The analytical self-similar 

solutions are obtained in the explicit form. The spatial structure of avalanche that depends on the cross-section of the in-

clined channel is studied. Temporal variation of landslide parameters for different cross-sections of the channel is ana-

lyzed. Obtained results can be used to test 2D numerical models of landslide motion and tsunami generation by underwa-

ter landslides. 
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1. INTRODUCTION 

The submarine and aerial landslides are frequently re-
ported as the sources of tsunami waves. In fact, such situa-
tion is typical for Lesser Antilles in Caribbean. The pyroclas-
tic flows were generated several times on the Montserrat 
Island due to continued volcano activity and caused three 
tsunami events recorded in Guadeloupe and Montserrat in 
the last decade [1-3] the repetition of such events is rather 
high. Various data of tsunami generation and propagation 
can be found in books [4-6] Diverse analytical and numerical 
models are developed to describe tsunamis generated by 
landslides. In series of papers [1, 7-14] the landslide is as-
sumed as a solid block moving under the joint action of 
gravity and friction. As its motion is known the hydrody-
namic equations for tsunami waves are solved with deter-
mined external source. More realistic models of tsunami 
generation include “two-layer” approach which jointly de-
scribes tsunami wave and a landslide propagation influenc-
ing one another. Such models of underwater landslides are 
based on homogeneous shallow-water flows that are de-
formed during propagation [15-22]. These models use vari-
ous approximations of vertical structure of velocity field 
(uniform as in ideal fluid, or parabolic for viscous fluid), as 
well as different approximations of the friction law (Cou-
lomb friction, Chezyquadratic friction and so on); the deriva-
tion of the mentioned models can be found for instance [23]. 

The number of analytical solutions of gravity driven shal-
low-water flow is limited. self-similar solutions called para-
bolic cap and M-wave similarity solutions with application 
to the avalanche dynamics were constructed in [24, 25]. Such 
solutions are obtained for a chute of constant inclination 
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and constant bed friction angle. [16] found the analytical 
solution of a one-dimensional dam-break problem over in-
clined plane taking into account Coulomb friction. It was 
actively used to test the numerical models applied to evalu-
ate the hazard of the volcano eruption in the Lesser Antilles 
and tsunami waves induced by landslides [21]. 

However, real underwater landslides move in basins of 

more complicated bottom geometry. As a rule, they move in 

submarine canyons which are generally diverging, converg-
ing or twisted. Anyway some of them have straight para-

bolic-like shapes (Fig. 1). We provide here new analytical 

solutions for underwater landslides in inclined channels of 
constant slope with the specific parabolic-like cross-section 

taking into account Coulomb friction. New effects in the 

landslide dynamics comparably to those known for the 1D 
motion along an inclined plate are related with the parabolic-

like cross-section shape of the canyon. 

The paper is organized as follows. The basic model to 
describe the landslide motion that represents gravity driven 
shallow-water flow in a narrow inclined channel of para-
bolic-like cross-section is briefly given in section 2. For nar-
row channels the basic equations are also 1D but they con-
tain additional coefficients that determine the parabolic-like 
cross-section. The self-similar solution for the landslide of 
finite length and symmetrical shape in the inclined canyons 
is found in the section 3. The discussion of obtained results 
is given in the conclusion.  

2. GOVERNING EQUATIONS OF GRAVITY DRIVEN 

SHALLOW-WATER FLOW 

The shallow-water system is the basic system to describe 
gravity driven flow (submarine landslide), various analytical 
and numerical models realized the shallow-water equations 
can be found in [23,26]. Here we will assume that the land-
slide can be presented by the flow of incompressible fluid 
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with the Coulomb-type friction term. In the first approxima-
tion we will assume that the dynamics of the underwater 
landslide can be described independently from tsunami 
waves induced by landslides see [7,8]. Formally, it is possi-
ble if the landslide density exceeds significantly the water 
density. In the system of coordinates linked to the topogra-
phy the equations of mass and momentum conservation have 
the following form 
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where S(x, t) is the area of the cross-section of the channel, 

h(x, t) is the height along x-axis of channel, and u(x, t) is the 

mean velocity flow, g is the acceleration due to gravity,  is 

the slope angle along x-axes, μ = tan( ) is the sliding friction 

coefficient, and  is the dynamic friction angle. The value of 

 depends on the landslide material, and is small for sand 

and large for granular debris avalanche. One-dimensional 

equations are valid if the inclined channel (submarine can-

yon) is narrow, and water flow is uniform in the transversal 

direction. This 1D system can be derived from two-

dimensional equations of gravity-driven flow given for in-

stance in books [26, 27]. 

To close this system, the function S(h) should be deter-

mined. If the cross-section has a parabolic-like shape (see 
Fig. 2),  

mykyz ||)( = ,             (3) 

with positive arbitrary constants, k and m, the function, S is 
calculated explicitly 
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2m
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h(m+1)/m .             (4) 

In general cross-section of the channel is parabolic, trian-
gular or concave for different values of m, (see Fig. (2)). 

As a result, the equation (1) transforms to 
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and the system of equations (2) and (5) becomes closed. It 

differs from the “classical” one-dimensional shallow-water 

equations [16, 26] in the constant coefficient m/(m+1), and 

may be transformed to them as m   (S ~ h).  

Below we assume the constant slope of the inclined 

channel , which should be relatively high (   > ) to pro-

vide the landslide motion. 

The basic system of gravity driven flow, (2) and (5), is 

analyzed below. Mathematically, it is a hyperbolic system 

with constant coefficients. As for water waves above in-

clined bottom [27, 29-31], the Riemann invariants can be 

found explicitly  
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Fig. (1). View of Monterey, Soquel and Carmel Canyons (Monterey Bay Aquarium Research Institute data [28]). 
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where 

0cossin >= μ ,           (7) 

and the system (5) – (2) can be re-written in the form 
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It should be mentioned that the equations (8) – (9) appear 
in the problems of long water wave runup on the coast in-
cluding tsunami wave runup [27, 29-31] but the main differ-
ence here is that the bottom slope is not small (as in “runup 
problems”) and the Coulomb-type friction is not neglected. 
The “landslide solutions” can not be directly obtained from 
the “tsunami solutions” because mathematically, the initial 
and boundary conditions for tsunami waves and landslide 
dynamics differ. Physical variables, h(x, t) and u(x, t) are 
found from the algebraic equations (6) and the down slope 
component of the velocity field (g t) propagated under the 
action of gravity can be eliminated by use of 
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where  (> 0) depends on the slope angle and friction coeffi-
cient, see (7). Another useful development is the change of 
coordinates, the accelerated reference system can be written 
as 

2
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In this case the basic equations (2) and (5) transform to 
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The system (14) – (15) will be used below to study the 
unsteady dynamics of the landslide in the inclined canyon.  

3. SELF-SIMILAR SOLUTION 

Let us try to find self-similar solutions of the equations 
(14) and (15). They can be obtained using the self-similar 
transformation of coordinates 
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which transforms equations (14) and (15) to 
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Similar system of the equations (at m  ) with applica-
tion to the avalanche dynamics is studied in the [26]. Second 
term in both equations can be eliminated if we determine 
velocity distribution in the landslide body as 
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Fig. (2). Cross-section of the channel computed for k = 1. 
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After substitution of (19) in (17) and (18) we obtain two 
differential equations for landslide height with respect to 
variables t and   

t
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Both equations are integrated and the adequate choice of 
constants can be written as 
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where the landslide length L(t) is a solution of 
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and q is determined by the initial spreading of the landslide. 
So, the underwater landslide has a parabolic cap shape in the 
longitudinal direction for any m (Fig. 3), but its height and 

length depend on the cross-section of the inclined channel. 
For an inclined plate, the parabolic cap solution was obtained 
in [24] and its time evolution is quantitatively investigated. 
This solution is reproduced in the book [24].  

The spatial structure of avalanche computed using the 
equation (3) depends on the cross-section of the channel 
(Fig. 4). The avalanche edge is quasi beak-shaped in the 
channel of the cross section (m = 0.5) and near lozenge-
shaped in the triangular cross section (m = 1); further in-
creasing of the incurvature of channel leads to formation of 
ellipsoidal-shaped gravity flows (m > 1).  

In general, equation (23) is integrated once 
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Fig. (3). Parabolic cap shape of the avalanche in longitudinal direction. 

 

Fig. (4). Landslide contours in the accelerated reference system in different channels. 
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here we used the initial condition L(t = 0) = L0. In the vari-

ables 
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The equations (24) are solved by quadratures  
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For some values of m (specific cross-section of shape of 
the canyon) the integral (27) can be evaluated:  
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and F(x, k) and E(x, k) are the elliptic integrals of first and 
second order correspondingly 
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Solution (28) for m =  (inclined plate) is also given in 
Pudasaini and Hutter (2007). 

The length of the parabolic cap varies in time depending 
on the cross-section of shape; see Fig. (5) (in dimensionless 
variables), it increases faster for concave channels (at the 
same values of spreading coefficient pL0).  

For large times the landslide length varies almost linearly 
in time 
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Using (22) and (28) the maximal landslide height can be 
calculated, Fig. (6).  

On the large times the landslide height is described by 
power asymptotic  

11 ~~)( ++ m
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For narrow channels the landslide height decreases 

slowly, in particular for channels of parabolic cross section, 

L ~ t
-2/3

.  

 

Fig. (5). Time evolution of the length of the parabolic cap landslide in different channels. 
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Using (19) and (24) we can express velocity distribution 
in the landslide body through landslide length 
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Velocity increases in both directions from the landslide 
centre (in modulus) and decreases with time. Fig. (7) demon-
strates temporal evolution of the velocity on the landslide for 
various cross-section shapes. 

CONCLUSION  

Computing landslide dynamics is an extremely important 
task in natural hazard assessments, and various physical and 

numerical models are developed. Analytical solutions allow 
studying the physical features of such processes (beginning 
of movement, direction of the landslide motion, spreading, 
forming of shocks and so on). Analytical solution for land-
slide dynamics in underwater canyons approximated by 
channels of parabolic-like cross-section was obtained here in 
the framework of the ideal shallow-water flow (Savage-
Hutter model). Obtained solutions show that the cross sec-
tion of the submarine canyon influences significantly on 
landslide parameters in time. The avalanche edge is quasi 
beak-shaped in the channel of the cross section (m  = 0.5) 
and near lozenge-shaped in the triangular cross section (m = 
1); it has ellipsoidal shape for m > 1. Thus, the length of the 
parabolic cap depends on the cross-section of shape and it 

 

Fig. (6). Time evolution of height of parabolic cap landslide in different channels (L0 = 1). 

 

Fig. (7). Temporal distribution of landslide velocity in point X = L/2 (q = 1, L0 = 1). 
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increases faster for concave channels (for the same value of 
the spreading parameter). Asymptotically, the landslide 
length varies almost linearly with time. Furthermore, land-
slide height decreases slowly particularly in channels of 
parabolic cross section. In whole, for landslides of same 
thickness nonlinear processes are developed more inten-
sively in narrow canyons.  

Analytical solutions given here can be used to test nu-
merical codes of tsunami generation by the submarine land-
slides. 
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