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Abstract: In the present work, we have studied the performance of an open compression chamber with compressed air 

and driven by an oscillating water column. Recognizing the existence of a free-surface for the water column, the interface 

position between the trapped-air and water volume -together with the motion of the column-, is described by a non-linear 

energy equation that reflects the main dynamic characteristics. The above governing equation is posed in dimensionless 

form and solved by conventional numerical methods. In addition, a theoretical approximation of the first order in  to 

predict the resonant frequency of the oscillatory system is derived to complete the analysis. The numerical results of the 

above governing equation serve us to estimate the dimensionless work done by the oscillating water column as a function 

of three dimensionless parameters: a characteristic Froude number, , and two equivalent quasi-geometric parameters, 

 and , defined below.  The predictions show that the influence of the geometry and the involved physical parameters 

exert a great influence on work generation into the air-chamber. 

INTRODUCTION 

Nowadays, the present tendency to overcome the envi-
ronmental problems caused by thermal energy production is 
to use all available kinds of renewable energy. This enhances 
the status of all engineering techniques to convert the power 
contained in the global movement of the ocean in a renew-
able energy which can widely be used for a very long time. 
Especially the use of wave energy -a huge unexploited 
global power reservoir-, becomes a new centre of interest. 

The Oscillating Water Column (referred to hereafter as 
the OWC) seen as a wave energy converter device operates 
mainly with conventional technologies and probably the suc-
cess of these devices owes to its mechanical and structural 
simplicity. It consists of a partially submerged and hollow 
structure opened to the sea and normally, below the mean sea 
level. These structures partially enclose a column of water 
exposed to the incident wave field through the underwater 
opening and to the atmosphere through a power take-off 
mechanism. As the waves impinge on the device, pressure 
oscillations at the column underwater interface cause the 
water column rise and fall within the structure. The air 
trapped above the column surface within the structure is al-
ternatively expanded and compressed through the power 
take-off mechanism, typically a turbine, converting the air 
static and dynamic pressure into mechanical energy. The 
principle is suitable for either bottom mounted or floating 
configurations. The floating device allows greater flexibility 
in the choice of the deployment depth and location to suit 
environmental and energy constraints. 
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The conversion efficiency of an OWC may also be en-

hanced by beneficial interactions between the structure mo-

tion and the column oscillations. For many years, scientists 

and engineers have been constantly working to develop ef-

fective devices for the utilization of ocean wave-energy. An 

analysis of oscillating water column wave energy-device has 

been given by Evans [1]. He modeled the device by two 

closely spaced plates in two dimensions or a narrow tube of 

circular cross section in three dimensions. Under the as-

sumptions of linearized water wave theory and using the 

method of matched asymptotic expansions, he was able to 
obtain the maximum power that such system can develop.  

Theoretical analyses for such devices with more realistic 

geometries allowing spatial variations of the interior free 

surface were developed by Falcão and Sarmento [2] for two 

dimensional geometries, and later by Evans [3] who derived 

general results for configurations in two and three dimen-
sions. 

Long arrays of devices are required if wave energy is to 

provide a significant power contribution to large electrical 

grids. The hydrodynamic interaction between devices was 

first studied theoretically for systems of oscillating bodies 

Budal [4], Falnes and Budal, [5] and later extended to sys-

tems of oscillating pressure distribution by Evans [3]. These 

studies have been extended to analyze more complicated 

systems. For instance, Falcão [6] developed a theoretical 

analysis to describe the ocean wave energy absorption by a 

linear array of oscillating water columns of arbitrary geome-

try. Other fine aspects related with the operation of these 

devices and similar equipments were reported by Godoy-

Diana and Czitrom [7] to study the tuning of a seawater 

pump driven by a oscillating water column, and more re-

cently, Conde and Gato [8] clarified the role of the oscillat-
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ing water column on the dynamic characteristics of the air-
flow which is trapped inside a typical pneumatic chamber.   

In this work, a theoretical analysis was developed to 
characterize, in a simple form, the hydrodynamics of an 
OWC. The oscillation characteristics of this system were 
described by a non-linear differential equation which pre-
dicts the amplitude of the oscillations inside the water col-
umn. In particular, the done work due to this oscillating sys-
tem was evaluated as a function of the dimensionless pa-
rameters, using conventional numerical methods. In addition, 
we have proposed a singular perturbation method based on 
multiple-scales analysis, which was used in order to esti-
mate, in a first approximation, the resonant frequency of this 
energy converter device. Once the amplitude of oscillation is 
known, the pressure and volume variations inside the air 
chamber were determined in order to calculate the work 
done. 

FORMULATION 

The physical model in study is shown in Fig. (1). We 
consider an OWC wave energy device that consists essen-
tially of a bottom-fixed structure, whose upper part forms an 
air chamber and whose immersed part is open to the action 
of the ocean waves. In addition, the oscillating action of the 
waves produces a reciprocating flow of air displaced by the 
free surface motion. In consequence, the alternating motion 
of the air can drive an air turbine mounted on the top of the 
structure. In these systems, normally, are working a set of 
non-return valves to rectify the flow, considering that a con-
ventional turbine has to be used. The details of the above 
system can be found elsewhere [6]. For simplicity, we adopt 
one dimensional formulation; therefore, it is enough to intro-
duce a longitudinal or vertical coordinate y, which is meas-
ured upward in the normal direction to the mean sea water 
level. In the same figure, h0 is the water wave amplitude, 
measured from y = 0; H, R and Y represent the initial sub-
merged length of the column, the radius of the column and 
the oscillation amplitude inside the water column, respec-
tively. Because the dynamic of a OWC is generated as a con-

sequence of a spreading and oscillating seawater waves, here 
represented by a continuous function h(t); in this work for 
simplicity we assume the behavior of this variable is given 
by the following harmonic equation: 

0 sinh h t=              (1.1) 

where and t are the frequency of the water waves and the 

physical time, respectively. 

In order to obtain a simple mathematical model that  
describes the dynamics of the OWC, we consider a stream-
line which connects the free water surface (1) and the top of 
the water column (2), Fig. (1). Applying the well-known 
energy equation (White [9]) to the streamline from the point 
(1) to the point (2), we obtain  

( ) ( ) ( )
2

2
2 2 2

2 1 2 1
1

0
2 2

VV
ds P P V V g Y h K

t
+ + + + =   (1.2) 

where  is the seawater density ; 
1P  and 

2P  are the pres-

sures at the points 1 and 2, respectively. In particular, physi-

cally 1P  denotes the atmospheric pressure and 
2P  is the air-

pressure inside the chamber. /V t  represents the rate of 

change of the linear momentum, g  is the gravity accelera-

tion, ds  is the arc-length along the streamline and K  is a 

global loss coefficient originated by the friction between the 

water column and the circular wall of the container. Fur-

thermore, we have assumed that the viscous losses are only 

present inside the container. The first term of the left-hand 

side is approximated through the relationship, 

2 2
2

2 21
( ) ( )

V d Y d h
ds Y H h H

t dt dt
+ + ;   (1.3) 

taking into account that 
2 /V dY dt=  and 

1 /V dh dt= . In 

this form, the acceleration terms of the seawater surface level 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic diagram of the studied physical model. 
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and the corresponding surface level inside the column are 

multiplied by additional apparent mass; here represented by 

the terms ( )h H+  and ( )Y H+ , respectively. We an-

ticipate that the influence of these factors will introduce 

strong non-linear effects in the final expression for the gov-

erning equation. It should be noted that this kind of simplifi-

cations have been frequently made in the past and the details 

can be found elsewhere, (Czitrom et al. [10]). In addition, we 

consider that the amplitude of the water column is suffi-

ciently large compared with the amplitude of the water 

waves. Hence, we expect that V2>>V1 which reflects, implic-

itly, that the performance of the water column is operating in 

an optimal mode. The above implies that the kinetic-energy 

term 2

1 / 2V  is neglected in comparison with the other term 

2

2 / 2V . With the aid of the above comments and simplifi-

cations, and replacing relationship (1.3) into Eq. (1.2), we 

obtain that,  

( )
22 2

2 2
2 1 22 2

1 1
( ) ( ) ( ) 0

2 2

Vd Y d h
Y H h H P P V g Y h K

dt dt
+ + + + + + =

  (1.4) 

On the other hand, we adopt here the assumption of that 
compression process inside the air-chamber obeys the simple 
polytropic thermodynamic model, given by the relationship   

   

P
2

P
1

=
V 1

V 2

k

;               (1.5) 

where k is the well-known polytropic coefficient. In the 

above equation, we consider that the initial pressure of air 

inside the chamber is equal to the atmospheric pressure
1P ; 

therefore the corresponding volume   V 1  represents an arbi-

trary value of the air-volume at this pressure just before the 

compression process, which can easily be estimated by using 

the ideal-gas relationship at a standard temperature. Taking 

into account that, in addition, the volume    V 2  is a time de-

pendent function, i. e. 
   V 2 = V 2 (t) , from Fig. (1) can be ap-

preciated this function is given by 
   V 2 = V 1 R2Y (t)  and 

denotes the variation of the air-volume inside the compres-

sion chamber as Y increases or decreases due to the oscillat-

ing water column. Replacing the above relationship together 

Eq. (1.5) into Eq. (1.4), we obtain that,  

   

Y + H( )
d 2Y

dt2
h + H( )

d 2h

dt2
+

P
1 1

R2Y

V 1

k

1

+
1

2
1+ K( )

dY

dt

2

+ g Y h( ) = 0

 (1.6) 

For simplicity, Eq. (1.6) must be solved with the follow-
ing initial conditions 

( 0)Y t A= =    and   
( 0)

0
dY t

dt

=
= ,                     (1.7) 

where A  represents, in general, a characteristic amplitude of 
motion of the system. In this work, we choose for simplic-
ity 0A h= .  

Finally, Equation (1.6) together with the initial conditions 

(1.7) represents the mathematical model for this strongly 

non-linear oscillator. Equation (1.6) predicts the position and 

motion of the water column through the function ( )Y t and its 

derivative ( ) /dY t dt because this last represents just the ve-

locity
2V . It should be noted that those terms of Eq. (1.6) 

related with the external oscillations to the cavity and repre-

sented by the function h  are known because this function is 

given by Eq. (1). Together with the assumption of a har-

monic signal given by Eq. (1), we emphasize that the follow-

ing hypotheses were used in deriving Eq. (1.6): one dimen-

sional model for the energy equation with viscous losses, 

inclusion of apparent mass terms, a polytropic relationship to 

predict the pressure of the compressed air and the kinetic 

energy associated to the water column is larger than the cor-

responding kinetic energy of the motion of the seawater. In 

the following section, we write a more compact expression 

of the above equation using the dimensional analysis. In the 

next sections, we formulate and solve the problem using a 

dimensionless version of the above equations. The advantage 

of this formulation is that permit us to reduce the number of 

involved variables. 

NONDIMENSIONAL THEORETICAL MODEL 

A large variety of physical problems may be expressed 
under certain approximations and with suitable variables, in 
the form of one or more perturbed non-linear oscillators. We 
will formulate a systematic and generally applicable multi-
ple-scale procedure for the Eq. (1.6) in order to appreciate, in 
a first approximation, the order of magnitude of the resonant 
frequency by the oscillating water column. Obviously, this 
parameter represents one of the most important variables 
under this class of problems, because the energy absorption 
for this converter is directly related with the resonant fre-
quency of the system and therefore, with the performance of 
the system. 

Introducing the following dimensionless variables, 

Nt=      and    
0/Y h=                   (1.8) 

where N  is the natural frequency of the oscillator given by  

   

N
=

g

H
1+ 1

R2kP

gV 1

1/ 2

,        (1.9) 

and carrying out a Taylor-expansion for the third term of the 
right-hand side of Eq. (1.6) 

   

1
R2Y

V 1

k

1+
R2

V 1

kY +
1

2

R2

V 1

2

k(1+ k)Y 2
+ O(Y 3) , (1.10) 

then, Eq. (1.6) can be transformed to  
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Y + H( )
d 2Y

dt2
h + H( )

d 2h

dt2
+

P
1

R2

V 1

kY +
P

1

2

R2

V 1

2

k 1+ k( )Y 2
+

1

2
1+ K( )

dY

dt

2

+ g Y h( ) = 0 (1.11)

 

It should be noted that the natural frequency of the oscil-

lator, given by Eq. (1.9), can be easily derived by taking the 

linear version of Eq. (1.11). For simplicity, the details are 

omitted in the present work. On the other hand, the expan-

sion (1.10) was obtained taking into account that the ratio 

   
R2Y / V 1( ) 1. 

FORCED MOTION NEAR TO RESONANCE 

In this subsection, we analyze a fundamental aspect of all 

type of oscillator: the characteristic frequencies required to 

achieve the resonance condition of the system. In order to 

make it, we can introduce together with the dimensionless 

variables given by Equations (1.8) a small parameter , that 

basically relates the competition between no-linear and the 

linear effects both linked to the “spring force” of the oscilla-

tor. This parameter can be constructed by taking the ratio of 

the fourth term to the sum of the third and sixth term of Eq. 

(1.11) and considering that Y  reaches at least values of or-

der 0h ; in this form we have that, 

   

=

P
1

2 H 2

R2 H

V 1

2

k 1+ k( )h
0

g +
P

1
R2

V 1

k

1,            (1.12) 

in a similar manner, we can relate the weak driving force , 

   
f O 1( ) , and the spring force with the aid of the following 

relationship, 

   

f =
weak driving force

spring force
1              (1.13) 

then 

   

f =

H + h( )
d 2h

dt2

g +
P

1
R2

V 1

k h
0

~
H + h

0( ) 2

g 1+
P

1
R2

gV 1

k

1   .     (1.14) 

Near resonance, the weak driving force 
   
f O 1( )  is 

large enough to cause displacements of order unity and the 

frequency of the oscillator is near to the natural frequency. In 

this case, therefore, we choose 
  

/
N

= 1+ , with 

   
O 1( ) . Thus, the driver frequency is close to resonance 

of the linear system. 

Finally, substituting Eq. (1.1) together with the above 
dimensionless variables given by Eqs. (1,8) and parameters, 
Eq. (1.11) can be written in dimensionless form as, 

   

1+( ) + +
2

+
1

2
1+ K( ) 2

=

g
2 H

sin
N

f 1 1 sin
N

sin
N

.

 (1.15) 

Taking into account that
   

/
N

= 1+  ;  with O 1( ) , 

Eq. (1.15) can be written in dimensionless form as 

   

1+( ) + +
2

+
1

2
1+ K( ) 2

=

f sin 1+( ) 1 1 sin 1+( )( ){ }sin 1+( ) ;

 (1.16) 

together with the initial conditions, 

 ( = 0) = 1   and   
  d / d ( = 0) = 0   ,             (1.17) 

where the dimensionless parameters are defined by 

  

=
h

0

H
<< 1  ; =

h
0

h
0

+ H
  ; =

g
2 H + h

0( )
 ,   (1.18) 

and later, in the Results section we will discuss in brevity, 

the physical meaning of these parameters. The convenience 

to write the original system in dimensionless form is that 

now it depends on a reduced set of dimensionless parameters 

and variables, i. e. the displacement of the water column is 

given by the function
  

= , f , ,( ) . 

Equation (1.16) can be solved rigorously by using the 
multiple-scale analysis. However, the objective of the pre-
sent paper is not to construct a formal solution with the 
above technique. In this context, we prefer to predict the 
minimal conditions to obtain a resonant frequency of this 
non-linear oscillator. In this context we propose the next 
perturbation expansion -expressed in terms of -, so that the 
resulting solution still depends, in general, on three parame-
ters and a wide variety of phenomena can occur. 

We propose the following two-scale expansion, 

  
=

0
,( ) +

1
,( ) + ....            (1.19) 

where  =  is a fast time scale. The details of this pertur-
bation technique can be found elsewhere, (Kevorkian and 
Cole, [11]). On the other hand, we explore the asymptotic 
limit of 

 1, because the influence of this dimensionless 
parameter has been previously studied by Wang et al. [12]. 

Asymptotic Limit for  << 1  

In this limit, Eq. (1.16) can be readily simplified to the 
following 
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+ +

2
= f sin +( )   

 

1 1 sin +( )( ){ }sin +( )  .            (1.20) 

Substituting Eq. (1.19) into Eq. (1.20), we obtain after 
collecting terms of the same power of , the following set of 
equations up to terms of order :  

 

2

0

2
+

0
= 0    ,          (1.21) 

with the initial conditions 

  
0

0,0( ) = a, 0

t
0,0( ) = 0    ;             (1.22) 

where a  is any amplitude inside the OWC. 

   

2

1

2
+

1
=

2
2

0

0

2
+ f sin +( )

 

 

1 1 sin +( )( )sin +( ){ }   .

          (1.23) 

Let the solution be represented in terms of a slowly vary-

ing amplitude 
  
R( )  and phase 

 
( )  relative to the driving 

force 

   0
,( ) = R( )cos + ( )( )    .            (1.24) 

Referring to the initial conditions given by Eq. (1.22), we 
can choose 

( ) ( )0 , 0 0R a= =    .              (1.25) 

Equations for the slowly varying amplitude and phase are 
obtained in the usual way from the condition that mixed-
secular terms do not appear in the solution of 1 . Replacing 
Eq. (1.24) into Eq. (1.23), we obtain 

The coefficients of 
  
cos + ( )( )  and 

  
sin + ( )( )  must both vanish in Eq. (1.26) in order 

to avoid the secular terms. To find these equations, we use 

the identity  

  

sin + ( )( ) = sin + ( )( )cos ( )( )
sin + ( )( )sincos ( )( )

. 

Then, the basic system to be studied is 

   

dR( )
d

+ f cos ( )( ) + 1 = 0            (1.27) 

and  

   

d ( )
d

1

2R( )
f sin ( )( ) 1 = 0    .      (1.28) 

In the following subsections we consider two special 
cases to obtain some simple results. 

Free Un-Damped Motion 

For this case, we consider that 0f =  and therefore, the 
system of Eqs. (1.27) and (1.28) reduces to 

   

dR

d
= 0  , R 0( ) = a  ,

d

d
=  , 0( ) = 0  .

            (1.29) 

The solution has  constant.R a= =  That is, the ampli-
tude of motion is preserved and the phase  is  

 = . 

Returning to the expansion given by Eq. (1.19) and con-
sidering Eq. (1.21), we obtain 

( )cosa=    ,           (1.30) 

which is a simple harmonic equation without the presence of 
an external force; this represents the solution for a simple 
oscillator with undamped motion. 

Forced Linear Motion 

In order to achieve this case is necessary to establish that 
1f =  and our basic system, Eqs. (1.27) and (1.28) for a 

slowly varying amplitude and phase becomes 

   

dR( )
d

= cos ( )( ) + 1              (1.31) 

   

d ( )
d

=
1

2R( )
sin ( )( ) 1    .             (1.32) 

As  , we easily obtain a steady-state behavior 
given by 

   

2

1

2
+

1
= f sin +( ) 1 1 sin +( )( ){ }sin +( ) +

sin + ( )( )
dR( )

d
+ R( )cos + ( )( )

d ( )
d

R( )cos + ( )( )( )
2

   .       (1.26)
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R =
1

2

cos + 1( ) = 0,  =
2

   .

           (1.33) 

From equations (1.33), we can appreciate that for 

 the amplitude   R 0 . While for  0 , the am-

plitude has a divergent value since the first of Eqs. (1.33) 

gives  R . It can be clearly appreciated in Fig. (2). 

Physically, the above result means that the system is in reso-

nance. It should be noted that under this limit 
  1, the 

damping effect represented by the fourth term of the right-

hand side of Eq. (1.15) was neglected. Therefore, a finite 

value for the amplitude does not exist. Otherwise, a complete 

formulation must consider the retention of the damped term 

of Eq. (1.15). However, in the present work the discussion 

for obtaining a finite value of the amplitude was not consid-

ered. 

NUMERICAL RESULTS 

In all numerical calculations estimated in the present 

work, we have used the following data 
  
P

1
= 101.3 kPa , 

31000 /kg m= , and 1.4k = (for air). In addition, for this 

analysis we have chosen the geometry of the chamber with a 

radius 3R m= , 
   V 1 = 300m3  and the frequency of the ex-

ternal seawater wave given by 2 rad/s= . 

The non-linear differential equation, Eq. (1.16), was solved 
by using the conventional Runge-Kutta method in combina-
tion with a shooting iterative scheme. We anticipate that to 
obtain the work done, we have used the well-know relation-
ship, 

   

W = P
2
dV

V
1

V 2

 ,                       (1.34) 

and combining it with Eq. (1.5) and the numerical solutions 
of Eq. (1.16), the results of the present section are easily de-
rived.  

In Figs. (3) and (4), we show the dimensionless ampli-

tude  as a function of the dimensionless time  for some 

values of the involved parameters ( = 0.7 ,   f = 0.05 , 

and0.04  0.1= ) and two different values of =0.1 and 

0.4, respectively. In Fig. (3), we note that for decreasing val-

ues of , the amplitude tends to grow up weakly, while the 

frequency of the oscillations remains constant for both val-

ues of . From a physical point of view, the above results 

have different interpretations depending on the definitions of 

the dimensionless parameters , , f  and . For in-

stance, in Fig. (3) we wanted to explore the influence of the 

parameter and those parameters that can change more eas-

ily of Eq. (1.12) are: the initial volume of the chamber    V 1 , 

the initial length 
0h  and the radius R . Therefore, for increas-

ing values of which means that 
  
h

0
and R increase while 

   V 1  decreases, the physical amplitude tends to reach large 

values. Recognizing that a better operation of the OWC is to 

obtain higher values of the amplitude, we can conclude that 

the best option is to increase R and to decrease   V 1 , since 

both parameters can be controlled.  

In a similar manner to the previous results, Fig. (4) shows 

the numerical solution of the nondimensional amplitude  

as a function of the dimensionless time  for the same val-

ues of the parameters , f  and of Fig. (3); however, 

now the parameter 0.4= . Comparing with the results 

shown in Fig. (3), there is a small variation of the ampli-

tude ; however, this variation is most noticeable when the 

air is decompressed. In this case, the influence of the pa-

rameter , defined as the ratio of the initial amplitude of the 

wave to the initial submerged height of the chamber, affects 

obviously the displacements inside the air-chamber. From a 

physical point of view, again, the above result has a direct 

consequence: increasing values of means basically that the 

 

 

 

 

 

 

 

 

 

Fig. (2). Resonance curve for the limit B<< 1. 
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height H of the chamber is being reduced and the physical 

amplitude grows weakly. Recognizing that a better operation 

of the OWC is to obtain higher values of the amplitude, we 

can conclude that the best option is to increase H in order to 
avoid the undesirable effect of the air decompression. 

The four nondimensional parameters , , f and  

show the influence of different physical variables basically 

related with geometrical lengths, spring and external forces. 

The parameter that defines the characteristic Froude num-

ber for this problem, involves to the gravity constant g , the 

external frequency , the initial amplitude 
0h and the sub-

merged length of the column H . Obviously, the Froude 

number has a great influence on the hydrodynamics oscilla-

tion, situation that can be seen in Fig. (5). In this figure, the 

numerical predictions for the nondimensional amplitude  

as a function of the time, , are shown by imposing a value 

of 1.4=  and the same values of the parameters , f and 

 used in Fig. (3). Comparing the results of Fig. (3) against 

the results of Fig. (5), we can appreciate that the amplitude 

 has the higher values of the amplitude for this last figure, 

reaching practically twice the value of 
  
h

0
. Between both 

figures, from a physical point of view, we can conclude that 

for smaller values of the physical frequency  the ampli-

tude grows and therefore, a better operation of the OWC 

device is achieved under this condition.  

In Fig. (6), the numerical solution for the nondimensional 

amplitude  versus the nondimensional time, , is shown 

by imposing a value of 1.4=  and the same values of the 

parameters , f and  used in Fig. (4). Comparing the 

results of Fig. (4) against the results of Fig. (6), we appreci-

ate that the amplitude  has higher values of the amplitude 

for the last figure. From a physical point of view, we can 

conclude, again, that for smaller values of the physical fre-

quency  the physical amplitude grows; however, the de-

compression condition into the chamber is now stronger. 

Therefore, the optimal election is the case treated in Fig. (4), 

where the decompression effects are diminished.    

Fig. (7) shows the nondimensional work as a function of 

the parameter and a fixed value for the Froude number, 

0.7= . In this figure, we can appreciate that in the limit 

 

 

 

 

 

 

 

 

Fig. (3). Numerical solution for the nondimensional amplitude as a function of the dimensionless time , for two different values of .  

 

 

 

 

 

 

 

 

 

Fig. (4). Numerical solution for the nondimensional amplitude as a function of the dimensionless  time , for two different values of . 
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of 0 , the work reaches maximum values of 34.8 10  

and 35.6 10  for the values of the parameter 0.32=  

and 0.16= , respectively. From a physical point of view, 

the above result means that is more effective to increase the 

initial submerged length of the column since in this form the 

work done is higher. However, it depends on the assumed 

values of the initial volume    V 1  and the radius R . For exam-

ple, an adequate operation of the OWC device can be 

reached with small values    V 1  and large values of R . This is 

a direct consequence of the definition of the parameter . In 

addition, an oscillating behavior for the work done is also 

obtained. The physical explanation is due to that the decom-

pression effects play a significant role to control the corre-

sponding oscillations. It was previously discussed in Figs. 

(4) and (6).  

Finally, the work done as a function of the dimensionless 

parameter under similar conditions of those shown in Fig. 

(7), except the Froude number produces practically a unique 

maximum value of the work done of order of 39.0 10  for 

0.32=  and 0.16= . In Fig. (8), the value of Froude 

number has been increased twice and the result is to increase 

even more the work done. From a physical point of view, we 

clarify for this figure the influence of the frequency . For 

smaller values of the ocean wave frequency, the motion of 

the column absorbs more energy and therefore is easier to 

obtain the largest amounts of work done by the water col-

umn.  

DISCUSSION AND CONCLUSIONS 

In the present work, a very simple model based on the 
energy equation for predicting the non-linear oscillations of a 
water column that is pushing a fixed volume of trapped air is 
analyzed. The main objective was to predict the work done 
inside the air-chamber. Obviously, the resonance condition 
must be determined as a part of the problem since the opti-
mal operation of these energy absorbing devices are regu-
lated by this condition. In order to make it easier and recog-
nizing that the number of physical variables and properties 
are large, we have derived and solved the energy equation in 
a dimensionless form in order to reduce the involved pa-
rameters. In this manner, the motion of the water column and 
the work done depend basically on four dimensionless pa-

 

 

 

 

 

 

 

 

Fig. (5). Numerical solution for the nondimensional amplitude as a function of the nondimensional  coordinate , for two different values 

of . 

 

 

 

 

 

 

 

 

 

Fig. (6). Numerical solution for the nondimensional amplitude as a function of the dimensionless time , for two different values of . 
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rameters: , , f  and . The physical influence of these 
dimensionless parameters was widely discussed and serves 
us to characterize the basic operation of this energy converter 
device. In particular, we have shown that the hydrodynamic 
of an Oscillating Water Column (OWC) is strongly influ-
enced by the oscillation conditions of the ocean waves, con-
trolled mainly by the frequency and the amplitude of the 
ocean waves. One limitation of the analysis is that the pa-
rameter  must be small in order to guarantee a continuity 
condition through the seawater-OWC system; particularly, it 
does not have to be greater than 1/2. Clearly, the numerical 
solutions show that the maximum amplitude of the water 

column inside the structure occurs for small values of . The 
above results are in concordance with the predictions of Figs. 
(7) and (8), since the maximum values of the work done sat-
isfy also this condition. In those figures, when increases, 
the ocean wave frequency  decreases and for this case, we 
have the maximum work generated by the compressed air. 
Recognizing that the definition of the efficiency of the en-
ergy convert device is, in general an arbitrary condition, we 
postulate that the dimensionless version of the work done 
represents just the efficiency. Therefore, both figures are 
maps for the performance of these devices.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Nondimensional work as a function of the parameter for two different values of . 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Nondimensional work as a function of the parameter for two different values of . 
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