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Abstract: This paper deals with an analytical solution of the shoreline evolution due to random sea waves. The phenome-
non of the shoreline change is modeled by means of a one-line theory. The solution is based on the hypotheses that the 
deviation of the shoreline planform from the general shoreline alignment (x-axis) approaches zero and that a particular re-
lationship between higher order derivatives of the shoreline holds. It is proved that the shoreline evolution is described by 
a diffusion equation, in which the diffusivity G1R is a function of the sea state and the sediment characteristics. Next, par-
ticular attention is dedicated to the longshore diffusivity. Its behaviour is analysed and effects of different spectral shapes 
and of different breaking depths are investigated. It is shown that the diffusivity assumes both positive and negative val-
ues. 
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INTRODUCTION 

Long-term evolution of the plan shape of sandy beaches 
was studied by several authors. The first work was devel-
oped by Pelnard-Considèr [1]. He introduced the one-line 
theory by describing the phenomenon with a diffusion equa-
tion. He verified its applicability with laboratory experi-
ments. Bakker [2] described the planform change extending 
the one-line theory by the use of two lines. The two line the-
ory was further developed by Bakker et al. [3], in which a 
numerical solution of the governing equations was neces-
sary. LeMéhauté and Soldate [4] presented analytical solu-
tions of linearized shoreline change equation with the spread 
of a rectangular beach fill. LeMéhauté and Soldate [5, 6] 
developed a numerical model that included the effect of sea 
level variation, wave refraction and diffraction, and the in-
fluence of coastal structures. Hanson and Larson [7] com-
pared analytical and numerical solutions. They verified that 
to neglect wave refraction was more restrictive then the 
small angle approximation. Larson et al. [8] introduced a 
large number of new solutions. The new solutions described 
shoreline change without coastal structures that are applica-
ble both to natural and artificial beach forms. Also solutions 
with the effect of coastal structures were presented. Larson et 
al. [9] presented analytical solutions for shoreline evolution 
in the vicinity of coastal structures with and without diffrac-
tion. They showed that the essential features of the shoreline 
change may be preserved using an idealization of the influ-
ence of coastal structures. One-line models were used also to 
predict long term planform evolution of beach nourishment 
(e.g. Dean [10, 11]; Hanson [12]). Limits of classical one-
line models have been analysed. Ashton et al. [13] and  
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Falqués [14] showed that the diffusivity can be negative. 
Falqués and Calvete [15] proposed an extended one-line 
model with two main improvements: the curvature of the 
coastline features is accounted for and the coastline features 
are assumed to extend offshore as a bathymetric perturbation 
up to a finite distance. 

N-line models were developed by Hanson and Larson 
[16], and Dabees and Kamphuis [17], which presented, re-
spectively, the INLINE model and the NLINE model. N-line 
models were more detailed and time consuming than one-
line models, but the difficulty to specify realistic relations for 
the cross-shore sediment transport and for the cross-shore 
distribution of the longshore sediment transport limited its 
applicability (Hanson et al. [18]). 

Hybrid models were developed to combine longshore and 
cross-shore models. For example, Larson et al. [19] devel-
oped 3DBEACH model, in which GENESIS one-line model 
is linked to SBEACH beach profile evolution model of Lar-
son and Kraus [20].  

This paper deals with the derivation of a new analytic so-
lution for the analysis of shoreline change in the context of 
one-line models. A new expression for the diffusivity, in the 
following named G1R, is proposed. It overcomes limits of 
periodic wave theory by considering random sea waves and 
taking into account wave spectrum. 

PROBLEM FORMULATION 

Governing Equation 

Let us consider a Cartesian coordinate system (Fig. 1), 
with the x-axis along the shoreline, the y-axis orthogonal to it 
and landward oriented, and the vertical z-axis with origin at 
the mean water level. The axis ξ is orthogonal to the shore-
line and is seaward oriented (then ξ is opposite to the y-axis) 
and b defines the water depth at breaking. 
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The rate of change of the shoreline in the time domain is 
expressed by the equation of solid material conservation [1]: 
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where Q is the volumetric amount of solid material which 
the sea is generally capable of moving. 

The sign of the left hand side of eq. (1) defines the shore-
line behavior: if ∂ξ/∂t>0 there is a beach accretion; if ∂ξ/∂t=0 
the beach is stable; if ∂ξ/∂t<0 there is a beach erosion. 

Longshore Sediment Transport by Random Sea Waves 

The longshore sediment transport depends upon both the 
sediment and the radiation stress tensor [21, 22], which is 
defined as: 
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where ρ is the water density and φ the velocity potential.  
Let us define the radiation stress tensor in the context of 

the theory of wind-generated waves, formulated by Longuet-
Higgins [23] and Phillips [24], which represents a random 
sea state as a sum of a very large number N of periodic com-
ponents with infinitesimal amplitudes ai, frequencies, ωi, 
different from each other, and random phase angles εi uni-
formly distributed over the interval [0,2π] and stochastically 
independent from each other. 

Under these assumptions, the linear water surface and ve-
locity potential processes are stationary Gaussian processes 
in time domain. The expression of the potential in a random 
three-dimensional sea state is equal to 

 (3) 

where g is the acceleration due to gravity, ϑi is the angle 
which the propagation direction of the ith component makes 
with the y-axis. The wave number ki is given by 
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The free surface displacement is: 
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where S0(ω,ϑ) is the directional wave spectrum of the sur-
face displacement in deep water, defined as 

!=

i

i
aS
2

0
2

1
),( "#"$#$  for i such that !!!! "+<<

i
, 

!!!! d
i

+<<  

In this context, substituting (3) in (2), the radiation stress 
tensor has the following expression: 
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The formula for the longshore transport rate is a function 
of the sediment characteristics and the radiation stress tensor 
and is expressed as (see e.g. [25]): 

bxy gdWRQ =  

where db is the breaking depth, W is defined as: 
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with K depending the size of the sand, as shown by Komar 
and Inman [26], Dean [27]; µ is the friction coefficient, p the 
sediment porosity, γa is the specific weight of the water and 
γs the specific weight of the sand. 

It is then defined the longshore sediment transport as: 

 

Fig. (1). Reference frame; vertical z-axis has origin at the mean water level; b denotes the breaking depth. 
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Derivation of the Diffusion Equation 

The equation of sediment conservation [eq. (1)] is ex-
pressed as a function of the shoreline ξ, by substituting the 
previous expression for the longshore transport [eq. (4)]. The 
main difficulty is the estimation of the derivative of Q with 
respect to x. 

In this context the following assumption is introduced: 
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In this way amplitudes, breaking depth and wave angles 
are expressed as the sum of a contribution estimated in the 
case of x-parallel contour lines and of small variations, to 
account for the variations of the shoreline. Usually, breaking 
depth and amplitude variations are neglected [25], because 
these are infinitesimal. The limit of this approach is that it 
doesn’t account for the variations of the longshore transport, 
in fact, even if ∂Q/∂x is infinitesimal, it cannot be said that 
these variations are negligible. Moreover, to neglect the ef-
fect of the shoreline curvature, it is introduced the following 
assumption [25]: 
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Given these hypotheses, a straight coastline, with 
bathymetric lines parallel to the shoreline, is considered. If 
ϑib is the angle that the direction of propagation of the ith 
component forms with the y-axis at breaking, the angle 
formed with the local tangent is ϑib+δϑib. The variation in 
incline thus carries the variation in the breaking conditions, 
in other words: breaking depth is dib+δdib; wave width on the 
breaker line is aib+δaib. 

In eq. (4) each term is expanded to the first order in a 
Taylor series. By considering that: 
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where Hsb is the significant wave height at the breaking 
depth, the following diffusion equation is derived: 
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In eq. (6) terms Ii are defined as: 
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where the subscript b denotes breaking conditions, and it has 
been defined as: 
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with σ the standard deviation of the free surface displace-
ment. 

Eq. (5) is known as diffusion equation and is formally 
identical to the equation describing heat conduction in solids. 
Many authors worked on this topic, therefore, by considering 
the analogies between the initial and boundary conditions of 
the shoreline evolution and the heat conduction, analytical 
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solutions can be generated. The coefficient G1R [eq. (6)] can 
be interpreted as a diffusion coefficient with dimensions of 
length squared over time. 

On Diffusivity Computation 

Eq. (6) requires to fix a spectral shape in order to esti-
mate all integrals, at the breaking depth. In the following a 
deep water spectrum is assumed and the shoaling-refraction 
equation for random waves [25,28] is used to estimate the 
diffusivity. In this context (7) and (8) are related to the fixed 
spectrum. Following [28] amplitudes at the breaking depth 
are estimated as: 
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being ai0 the wave amplitude at infinite depth, CS(ω) the 
shoaling coefficient and CR(ω, ϑ) the refraction coefficient. 
This allows to estimate each term in (8) as: 
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APPLICATIONS 

Diffusivity Behavior 

Fig. (2) shows the values of G1R, calculated by means of 
eq. (6), as a function of αp0, which is the angle that the domi-
nant direction forms with the x-axis in deep water. It has 
been assumed db/Lp0=0.2, Lp0 being the dominant wave 
length at infinite depth, a Pierson – Moskowitz frequency 
spectrum [29] and a directional spreading function of 
Mitsuyasu et al. [30]. The analysis is limited to the range 
[0,90°] of wave direction, being diffusivity symmetric with 
respect to αp0=90°. Fig. (2) reveals that the diffusivity has 
both positive and negative values. It is clearly positive after a 
particular angle, defined critical angle αcrit. The critical angle 

 

Fig. (2). Diffusivity change as a function of the angle that the dominant direction forms offshore with the x-axis. The following characteris-
tics have been assumed: db/Lp0 = 0.2, Pierson – Moskowitz frequency spectrum, directional spreading function of Mitsuyasu et al. 

 

Fig. (3). Sub regions: zone 1 is characterized by a positive curvature, zone 2 is characterized by a negative curvature. 

 
 

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50 60 70 80 90

G1R(αp0)/G1R(90 )

αp0 [degree]
αcrit=24

 
 
 

y

x

11 2



112    The Open Ocean Engineering Journal, 2010, Volume 3 Barbaro et al. 

is defined as the angle which corresponds to a zero value of 
the diffusivity. 

Fig. (3) shows how (5) can be used to predict the shore-
line evolution. Zone 1 has positive curvature, while zone 2 
has negative curvature. Then, if diffusivity is positive zone 1 
is advancing and zone 2 is eroding; vice versa for a negative 
diffusivity. If the diffusivity is zero, then the shoreline is 
stable. 

Fig. (4) shows the contribution of each term in (6) to the 
diffusivity. It shows that the first term in (6) captures the 
general behavior of the diffusivity. It is a simple way to 
check if it assumes both positive and negative values, but for 
the applicability of eq. (5) more terms are necessary. 

Effect of the Relative Breaking Depth 

Fig. (5) shows the effect of the relative water depth. It 
has been assumed a Pierson – Moskowitz frequency spec-
trum and a directional spreading function of Mitsuyasu et al. 
The following breaking depths have been considered: db/Lp0 
= 0.02, 0.05, 0.10, 0.20 and 0.30. 

The magnitude of the longshore diffusivity decreases as 
breaking depth becomes smaller and smaller. For larger of 
the breaking depth, the diffusivity can be negative for wave 
direction smaller than the critical angle, which are 24° and 
34° for db/Lp0=0.2 and 0.3 respectively. In general, the criti-
cal angle increases with the relative water depth. 

Influence of the Directional Spectrum 

Fig. (6) shows a comparison assuming two different fre-
quency spectra. In both cases it has been assumed a direc-
tional spreading function of Mitsuyasu et al. and db/Lp0=0.02. 
Then a Pierson-Moskowitz (continuous line) and a mean 
JONSWAP spectrum [31] (dotted line) have been consid-
ered. The normalized functions are almost indistinguishable, 
but it has to be pointed out that the longshore diffusivity, at 
αp0 = 90°, varies with the bandwidth of the spectrum. The 
diffusivity decreases as narrower the spectrum is. At this 
purpose, the values of the diffusivity at αp0 = 90° are esti-
mated. The estimation shows that, for fixed sediment charac-
teristics, the diffusivity is: 

 

Fig. (4). Terms of eq. (6). The following characteristics have been assumed: db/Lp0 = 0.2, Pierson – Moskowitz frequency spectrum, direc-
tional spreading function of Mitsuyasu et al. 

 

Fig. (5). Diffusivity change for different relative depths db/Lp0. To each curve is associated a value of db/Lp0; the frequency spectrum is Pier-
son – Moskowitz, with directional spreading function of Mitsuyasu et al. 
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Fig. (7) shows the effect of the directional spreading 
function. For the analysis a cosine power function has been 
assumed: 
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np being a function of fetch and wind velocity. 
In Fig. (7) the continuous line is related to the case 

np=20, the dotted line to np=50 and a point-line curve is 
adopted for a long crested wave. Only for αp0<30° the effect 
of the directional spreading function is meaningful. Larger is 
np, lower values assumes the diffusivity. 

A comparison is carried out considering a Pierson-
Moskowitz frequency spectrum and a narrow-band spectrum 
(Fig. 8). The normalized functions have the same character-
istics as in Fig. (7), but the values are a function of the spec-
trum bandwidth as observed for Fig. (6). 

 
Fig. (6). Diffusivity change for different frequency spectra. The following characteristics have been assumed: db/Lp0 = 0.02, directional 
spreading function of Mitsuyasu et al., Pierson-Moskovitz spectrum (continuous line) and a JONSWAP spectrum (dotted line). 

 

Fig. (7). Diffusivity change for different directional spreading functions. The following characteristics have been assumed: db/Lp0 = 0.02, 
Pierson – Moskowitz frequency spectrum. In both cases a cosine power directional spreading function has been used. The continuous line 
corresponds to np=20, the dotted line to np=50, the point-line curve to long crested waves. 
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CONCLUSIONS 

In this paper a new analytical solution for the shoreline 
change has been proposed. It extends the Boccotti’s [25] 
solution for periodic waves in the context of random wind-
generated waves. The governing equation is expressed in the 
form of a diffusion equation and the expression of the diffu-
sivity G1R has been obtained for a random sea state. It has 
been shown as it is possible to estimate the shoreline change 
starting from the diffusivity and the curvature of the shore-
line. 

The change of G1R has been analyzed. It has been verified 
that the diffusivity increases with αp0, for αp0 between 0 and 
90°, αp0 being the angle that the dominant direction of the 
wave motion forms with the x-axis. The effect of the relative 
breaking depth has been investigated. It has been shown as 
the effect of an increased relative breaking depth is to de-
crease the diffusivity. The main consequence is that the dif-
fusivity can assume negative values for large wave breaking 
depths, db/Lp0, greater than 0.15 with wave direction αp0 
smaller than the critical angle. 

Effects of different spectral shapes have been investi-
gated. Two elements can be emphasized: the longshore dif-
fusivity decreases as narrower the wave spectrum is, both in 
the frequency domain and in the direction one. Then, in a 
three-dimensional wave field, the longshore diffusivity is 
smaller with respect to a narrow spectrum, for a fixed value 
of the zeroth moment of the spectrum. 
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