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Abstract: The Serre or Green and Naghdi equations are fully-nonlinear and weakly dispersive and have a built-in as-
sumption of irrotationality. However, like the standard Boussinesq equations, also Serre’s equations are only valid for 
long waves in shallow waters. To allow applications in a greater range of h0/l, where h0 and l represent, respectively, 
depth and wavelength characteristics, a new set of extended Serre equations, with additional terms of dispersive origin, is 
developed and tested in this work by comparisons with available experimental data. The equations are solved using an ef-
ficient finite-difference method, which consistency and stability are analyzed by comparison with a closed-form solitary 
wave solution of the Serre equations. All cases of waves propagating in intermediate water depths illustrate the good per-
formance of the extended Serre equations with additional terms of dispersive origin. It is shown that the computed results 
are in conformity with the analytical ones and test data. An equivalent form of the Boussinesq type equations, also with 
improved linear dispersion characteristics, is solved using a numerical procedure similar to that used to solve the extended 
Serre equations.  
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INTRODUCTION 

The classical Boussinesq equations are valid for rela-
tively low values of the frequency dispersion σ = h0/l, where 
h0 and l represent, respectively, depth and wavelength char-
acteristics. In fact, these equations are only strictly valid for 
shallow water conditions, so with h0/l not exceeding about 
0.05 (or about 0.20 accepting phase velocity errors in the 
order of 5%). Madsen et al. [1] and Madsen and Sørensen 
[2] included higher order terms of dispersive origin in the 
Boussinesq [3] equations, with adjustable coefficients for 
constant and variable depths, respectively, enabling applica-
tions in a wider range of values.  

As an alternative to the Madsen and Sørensen [2] equa-
tions, Nwogu [4] obtained a new approximation, resulting 
from the vertical integration of the fundamental equations of 
the Fluid Mechanics, and then expanding in terms of the 
frequency dispersion σ and nonlinearity ε parameters, with ε 
= a/h0, being a wave amplitude, and retaining terms until 
O(ε,σ2). To improve the dispersive characteristics of the new 
approach, [4] introduced a set of parameters which were 
calibrated by comparing the dispersion relation of the  
linearized model with the linear dispersion relation  
ω 2 = gk tanh (kh), allowing applications in the range h0/l < 
0.48, with an error for the phase velocity not greater than 
about 2%. An efficient predictor-corrector finite-difference 
numerical scheme to solve Nwogu’s equations, together with 
appropriate boundary conditions, is presented in [5].  
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Wei et al. [6] and Gobbi et al. [7] derived fully nonlinear 
extensions of the Boussinesq equations, from which the  
Nwogu’s approximation was recovered by neglecting higher-
order terms. A numerical scheme similar to that of [5] is util-
ized, with the inclusion of extra nonlinear terms. Basically 
using the same high-order predictor-corrector scheme, [8] 
developed a numerical code (COULWAVE) based on 
Nwogu’s equations for one and two layers. Parameteriza-
tions of bottom friction and wave breaking have been in-
cluded in the code, as well as a moving boundary scheme to 
simulate wave runup and rundown. 

Starting from the classical Boussinesq equations and 
adopting the methodology introduced by [1], Beji and 
Nadaoka [9] presented a new approach valid for applications 
until values of h0/l to the order of 0.25, and still with accept-
able errors in amplitude and phase velocity up to values of 
h0/l near 0.50. A higher order of approximation, valid for 
values of h0/l to the order of 0.48, is presented in [10]. Both 
approaches consider parameters that improve the linear dis-
persion characteristics of the standard Boussinesq equations. 
These parameters are derived by equating the dispersion re-
lation of the linearized equations with the linear relation  
ω 2 = gk tanh (kh).  

In this work, we follow the methodology introduced by 
[1], and adopted by [9], to extend the classical Serre or 
Green and Naghdi equations [11, 12] for applications in in-
termediate water depths, up to frequency dispersion values  
σ ≈ 0.50. An efficient numerical procedure is implemented 
to solve an extended approximation of the Boussinesq type 
and the new set of Serre equations for variable depth with 
improved dispersive characteristics. 

Numerical results of a solitary wave with amplitudes  
a/h0 = 0.60 and a/h0 = 0.30 are compared, respectively, with 
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a closed-form solitary wave solution of the Serre equations 
and with an approximate analytical solution of the classical 
Boussinesq equations. Results of a solitary wave travelling 
up a slope 1:50 and reflection on a vertical wall are com-
pared and discussed with available experimental data. Then, 
the numerical results of an incident periodic wave in a do-
main with h0/l = 0.50, which is the limit between intermedi-
ate water depths and deep water conditions, and therefore 
already beyond the conditions of validity of Nwogu and Liu 
and Sun models, are presented and discussed. 

Finally, numerical results of non-breaking periodic waves 
over an underwater bar are also presented and discussed 
through comparisons with test data available in the literature. 

MATHEMATICAL FORMULATION 

Boussinesq and Serre type equations are derived consid-
ering the fundamental equations of continuity and momen-
tum in the vertical plane, relative to the flow of a non-
viscous and non-compressible fluid subjected to the gravity 
action. In addition, the fundamental hypothesis of shallow 
water (σ << 1), as well as, in the case of Boussinesq ap-
proximation, a relative elevation of the surface due to the 
waves (ε = a/h0) having a value close to the square of the 
relative depth (σ = a/h0), which means that O(ε) = O(σ2), is 
assumed. Under these hypotheses, considering suitable di-
mensionless variables, the fundamental equations are inte-
grated in the vertical and expanded in terms of the small pa-
rameters σ and ε, retaining terms up O(ε, σ2), thus the fol-
lowing dimensionless system is obtained (See [13] for de-
tails): 
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where R is the Reynolds number, equal to h0c0 /v, c0 being 
the critical celerity, c

0
= gh

0
. The system of equations (1) 

applies to the generation and propagation of waves in the 
most general terms, but only in shallow water conditions and 
small relative amplitudes, allowing the consideration of: i) 
bottom variations in time; ii) friction at bottom, and iii) 
stresses on the water surface. In dimensional variables, 
eliminating the bar over the u variable to simplify writing 
and with a different notation, this approach is written as 
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where h x,t( ) = !
0
" # x( ) +$ x,t( )  is the flow depth, 

 
!

0
 is 

the free surface level at rest, ! x( )  represents the bathymetry, 
! x,t( )  is the free surface elevation, u x,t( ) is the horizontal 
velocity, t is time, g is the gravitational acceleration, !  is 

the fluid density, v is the kinematic viscosity, 
 
!

s
 and 

 
!

b
 

represent friction stresses on free surface and at bottom, re-
spectively. Considering the flow of a viscous fluid over a 
fixed bottom and negligible surface stresses, the system of 
equations (2) reduces to 
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By an addition and subtraction process, [9] consider a 
dispersion parameter β in the second equation of system (3), 
with a value obtained by comparison of the dispersion rela-
tion of the linearized form of this system with a second-order 
Padé expansion of the linear dispersion rela-
tion! 2

gk = tanh kh( ) . Then, using the approximation 

  
u
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= !g  "

x
 an improved set of Boussinesq equations for 

variable depth is obtained.  
Using identical methodology, Liu and Sun [10] consider 

two dispersion parameters α and γ, which values are deter-
mined as explained below. Rearranging terms, and given that 
ξx = -(ζ0-ξ)x, as well as ξxx = -(ζ0-ξ)xx, the following ap-
proximation with improved dispersive characteristics is ob-
tained 
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After linearization of the equations system (4), [10] ob-
tained the following dispersion relation 
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Comparing equation (5) with the second-order Padé expan-
sion of the linear Stokes dispersion relation ω 2/gk = tanh (kh) 
= kh(1+k2h2/15)/[1+2(kh)2/5], the expression α /2− γ /6 = 1/15 
can be obtained. With β = 1/5, as determined by [9], it fol-
lows that β = (3/2)α - (1/2)γ. By a further comparison between 
the linear shoaling characteristic of the extended Boussinesq 
equations and that of the linear Stokes waves, the two pa-
rameters α and γ have been optimized by [10] to be: 
α  =  0.1308 and γ = -0.0076, and therefore β  =  0.20. 

Under the assumptions made to obtain the system of 
equations (3), except the relative elevation of the free surface 
due to waves (ε = a/h0), which is now O(ε) = 1 instead of 
O(ε) <<1, the equations of continuity and momentum (6) are 
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obtained, in dimensional variables (known as Serre or Green 
and Naghdi equations for variable depth). See [14] for de-
tails. 
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where Ω = hxξx + 0.5hξxx + (ξ)2, h = ζ0 - ξ + η and, as stated 
before, ζ0 is water surface level at rest, ξ represents bathyme-
try, η is wave surface elevation, u is depth-averaged veloc-
ity, and g is gravitational acceleration.  

The procedure used to obtain the extended Boussinesq 
approximation (4) is now utilized to improve the dispersion 
characteristics of the model (6). Adding and subtracting 
terms of dispersive origin, with time derivatives of u in the 
second equation of (6), considering the parameters α and β , 
with β = 1.5α -0.5γ, as shown above, and replacing ut with  
–gηx, allows us to obtain the new system of Serre equations 
(7) with improved linear dispersion characteristics 
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As above,  ! = 0.1308 and 
 
! = 0.20 . 

NUMERICAL FORMULATION 

In order to solve the systems of equations (4) and (7), the 
terms containing derivatives in time of the u variable are 
grouped. Those systems of equations are re-written accord-
ing to the following equivalent forms 

a) From system (4) - extended Boussinesq approximation 
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b) From system (7) - extended Serre model 
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where η = ξ +h –ζ0, and therefore all space derivatives of η 
are easily obtained. 

To compute the solution of equation system (4) (values 
of the variables h and u at time t +∆t) we use a numerical 
procedure based on the following scheme, itself based on the 
last system of equations (8), for variables h, r and u [15]: 
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in the whole domain. 
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Schematically, in a finite-difference form, the equivalent 
system of equations (8), for variables h, r and u, may be 
written as follows [see [13, 16] for details]: 
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The third equation of (10) is explicit in relation to the r 
variable, and the resulting systems of equations for the first 
and third equations (h and u variables) are of three-diagonal 
form. At each interior point i the first, second and third-order 
spatial derivatives are approximated through centred differ-
ences and the time derivatives are approximated using for-
ward differences. Considering a uniform grid size x! , such 
that x
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In order to solve the set of equations (9), we assume that 
all values of 
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All finite-difference equations are implicit. Therefore, the 
solution of system (9) requires, in each time step, the compu-
tation of five three-diagonal systems of N-2 equations (steps 
1 to 5), which are easily computed using the three-diagonal 
matrix algorithm (TDMA), also known as the Thomas algo-
rithm. The stability condition to be observed can be ex-
pressed in terms of number of Courant, and is given by 

CR = gh
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< 1.0  (13) 

The best results are obtained by satisfying the con-
dition C

R
<< 1.0 , with !x " l 40 . 

For waves of small relative amplitude, the input bound-
ary condition for the velocity can be obtained from the eleva-
tion of the free surface and using the continuity equation; the 
resulting equation is 
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In intermediate water depths ( 0.05 ! h
0
l ! 0.50 ), and 

also for waves of small relative amplitude, a relation be-
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Both approximations (14) and (15) are acceptable. How-
ever, approximation (14) should be preferred, since it is ac-
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cording to the equations used. Both of them allow mono- and 
bi-chromatic wave inputs. Different kinds of waves may be 
used. Input signals like ! 0,t( ) !

max
= cos 2"  #ft( ) 2!"ft( )  

cos 2!  "f( ) (bi-chromatic wave group of ! ) or 

 
! 0, t( ) !max = 1 n( ) cos 2" f1t( ) + cos 2" f

2
t( ){ }   (wavetrains 

consisting of consecutive small and large waves, if f
1
! f

2
) 

allow us to simulate different wave patterns. In these equa-
tions f is the frequency and !

max
 is the maximum displace-

ment of a random wave generator. For mono-chromatic 
waves, the water-surface elevation reduces to 

 
! 0,t( ) !

max
= cos 2"  ft( ) . 

In order to permit the outgoing waves to be radiated off-
shore, the following relationship is applied: 

fn1
! C  " = !2 C  "I  (16) 

u  h
0
+!( ) = fn1

 (17) 

where fn1 = outgoing normal flux, η = actual sea surface ele-
vation, ηI = elevation of the incident wave, and C = wave 
celerity.  

At the output boundary, in order for the reflected wave 
amplitude to be identical to zero, a linearized non-dispersive 
form of the KdV ηt + c0ηx = 0 [17], where c0 = ω/k, has to be 
satisfied. 

APPLICATIONS 

Comparisons with Analytical Solutions 

In order to test the above numerical procedures (8) and 
(9), used to solve the systems of equations (4) and (7), some 
comparisons with known analytical solutions have been 
made. For this purpose, the numerical procedure used to 
solve the classical Boussinesq equations is validated through 
an approximate solitary wave solution of the form 

 

! x, t( ) = a sech
2 3a

4h
0

3
x " g  h

0
+ a( )  t " x

0
#
$

%
&

'
(
)

*)

+
,
)

-)
 (18) 

and to validate system (7), using procedure (9) with 
! = " = 0 , a closed-form solitary wave solution of the Serre 
equations is used, which is expressed as 

 

h x, t( ) = h0
+ a sech

2
K x ! Ct ! x

0( )"# $%

u = C  1! h
0
h( )

 (19) 

where h
0
= !

0
" #  is the water depth at rest, 

0
x  is the initial 

position of the crest, a is the wave amplitude, 

K = 3a 4h
0

2
h
0
+ a( )!" #$ , C = c

0
 1+ a h

0( )  and 

c
0
= gh

0
.  

The numerical models that use the procedures (8) and (9) 
to solve the systems of equations (4) and (7) have been ap-
plied to propagate a solitary wave in a channel 1.0 m depth 
and 250 m long, with the initial position of the crest wave 
0
x  initially located at 25 m from the origin. Fig. (1) shows a 
comparison between numerical results, using procedure (9), 
and the Serre solution (19) for a wave with  

a/h0 = 0.60 

a h
0
= 0.60 , while Fig. (2) shows a comparison of the 

numerical results obtained using procedure (8) and the Bous-
sinesq approximate solution (18) for the ratio a h

0
= 0.30 . 

Both computations were carried out with !t = 0.010 s. As 
shown below, the agreement between the numerical results 
of system (7), using procedure (9) with α = β = 0, with the 
analytical solution (19), for the ratio 600

0
.ha = , is perfect 

as much in wave amplitude as in phase, Fig. (1). 
Although there is a good agreement for the wave heights, 

a slight loss in phase accuracy is most pronounced in Fig. 
(2), for the Boussinesq approximation, as shown for t = 60 s 
in a zoom, Fig. (3).  

A parameter suitable to show how the computed values 
(V

ci
) differ from the analytical solution values (V

ai
) is the 

root mean square error (RMSE), given by 

 

Fig. (1). Solitary wave computation for a wave with a/h0 = 0.60. Comparison of the analytic solution (19) ( ______ ) with numerical results of 
model (7) with α = β = 0 ( LL ). 
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RMSE =
1

N
V
ci
!V

ai( )
2

i=1

N

"  (20) 

This parameter ranges from 0 to infinity, taking the value 
0 for a perfect fit. RMSE values equal to 0.0007 m and 
0.0027 m were found for the wave height in cases of Fig. (1), 
at time t = 50 s (Serre solution for the ratio a h

0
= 0.60 ), 

and Fig. (2), at time t = 60 s (Boussinesq solution for the 
ratio a h

0
= 0.30 ), respectively. Regarding the phase, there 

is a loss of approximately 0.025 s in Fig. (1) and of 0.20 s in 
Fig. (2). 

Incident Wave in Quasi-Deep Water Conditions 

As shown in [10], for the system (4), this model and the 
system of equations (7) are valid in intermediate waters and 
up to quasi-deep water conditions ( h

0
l ! 0.48 ). Fig. (4) 

shows results of models (8) and (9) in a depth gauge for a 
periodic wave of amplitude a = 0.025 m, period T = 0.85 s 
and wavelength l = 1.12 m, propagating into an initially un-
disturbed region of constant depth h

0
= 0.56  m, thus in 

quasi-deep water conditions. The gauge was located at  
x = 5.0 m from the inlet section of a channel. The computa-
tional domain was discretized with a uniform grid interval 
!x = 0.05m and a time step !t = 0.010 s was used.  

As shown in Fig. (4), the results obtained with both ap-
proaches are very close. A steady periodic flow has been 
established and the linearized non-dispersive form of the 
KdV !

t
+ c

0
!
x
= 0  proved to be suitable for output bound-

ary. There is only a slight improvement on stability of the 
wave using the extended Serre model with improved disper-
sion characteristics. 

Solitary Wave Travelling up a Slope and Reflection on a 
Vertical Wall 

Experimental data and numerical results are available for 
a solitary wave propagating on the bathymetry shown in Fig. 
(5) [18, 19]. It shows a constant depth before x = 55 m and a 
slope 1:50 between x = 55 m and x = 75 m. An impermeable 
vertical wall is placed at x = 75 m, corresponding to fully 
reflecting boundary conditions. A solitary wave of amplitude 

 

Fig. (2). Solitary wave computation for a wave with a/h0 = 0.30. Comparison of the approximate analytic solution (18) ( ______ ) with nu-
merical results of model (4) with α = γ = 0 ( LL ). 

 
Fig. (3). Solitary wave computation for a wave with a/h0 = 0.30, at time t = 60.0 s. Comparison of the approximate analytic solution (18) 
( ______ ) with numerical results of model (4) with α = γ = 0 ( LL ). 
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0.12 m is initially centred at x = 25 m. The computational 
domain was uniformly discretized with a spatial step 
!x = 0.05m. A zero friction factor has been considered. 
Computations were carried out with a time step !t = 0.010 s. 
Fig. (6) compares numerical time series of surface elevation 
and test data at x = 72.75 m.  

Fig. (6) shows two peaks; the first one corresponding to 
the incident wave, and the second to the reflected wave. The 
extended Serre model predictions for both peaks are in con-
formity with the measurements. RMSE values equal to 
0.0090 m and 0.0117 m were found in first and second 
peaks, respectively, for the wave height. Regarding the 
phase, there is a loss of approximately 0.05 s and of 0.10 s in 
those peaks. 

Predictions of the extended Boussinesq equations for 
both peaks are less accurate. Particularly for the reflected 
peak which is overestimated in about 20%. This result is not 
surprising, given the lower validity of the Boussinesq model 
for waves of higher relative amplitude. Indeed, this model 
assumes O !( ) <<1 , contrary to the Serre model, which 
isO !( ) = 1 . A visual comparison of numerical results of the 

extended Boussinesq approximation (8) with a similar study 
performed by [19], using the extended Boussinesq model 
developed by [4], shows no relevant differences in the 
graphs. 

Periodic Wave Over an Underwater Bar 

Beji and Battjes [20] conducted experiments in a flume 
of 0.80 m wide with a submerged trapezoidal bar with slopes 
1:10 (upstream) and 1:20 (downstream). Before and after the 
bar, the water depth is 0.40 m, with a reduction to 0.10 m 
above the bar, as shown in Fig. (7). Experimental data ob-
tained in this installation are available in the literature, and 
can be used for comparisons. 

The measured data are compared with the numerical re-
sults of the extended Boussinesq model (8) and Serre equa-
tions (9), both improved with linear dispersive characteris-
tics. Comparisons are made in three wave gauges located at x 
= 10.5 m, x = 13.5 m and x = 17.3 m. For this purpose, a 
regular incident wave case with height 0.02 m, period  
T = 2.02 s and wavelength 3.73 m has been simulated. The 
computational domain was discretized with a uniform grid 
interval !x = 0.025m. A time step !t = 0.0010 s was used. 

 

Fig. (4). Numerical results obtained with models (8) ( LL ) and (9) ( ______ ), in a depth gauge located at x = 5.0 m from the inlet section of 
the wave in the channel. 

 
Fig. (5). Bathymetry for a solitary wave travelling up a slope and its reflection on a vertical wall (not in scale). 

 

 

  Wall  

0.40 m 

 55 m  75 m 

  1/50 0.70 m 
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Both relations (14) and (15) were tested as input boundary 
conditions and the results, for this case, are quite close. Fig. 
(8) shows a comparison of test data with numerical results of 
both models (8) and (9). 

As shown in the sequence of wave gauges, Fig. (8), as 
the wave shoals up the front face and over the bar, in very 
shallow water conditions, it steepens dramatically [Figs. (8a) 
and (8b)] accumulating higher harmonics which are released 
on the downslope, producing an irregular pattern behind the 
bar, Fig. (8c). Globally, numerical results of the improved 
Serre and Boussinesq models agree quite well with the 
measured data. As expected, over the bar, in the gauge 
placed at x = 13.5 m, the results of the extended Boussinesq 
model are generally slightly less accurate than those of the 
improved Serre model. RMSE values equal to 0.0013 m and 
0.0027 m, for the wave height using Serre and Boussinesq 
approximations, respectively, were found in this gauge. 

Also important is a comparison of the classical Serre 
model (6) with the extended Serre equations (7). The Serre 
model (6) is only valid for shallow waters, thus under condi-
tions up to h

0
l ! 0.05 . In this experiment, the dispersion 

parameter (! = h
0
l ) is greater than 0.05 (about 0.11) in 

front and behind the bar, and therefore affects the validity of 
the numerical outcomes. Due to the fact that over the bar 
there are very shallow water conditions (! " 0.03 ) the clas-
sical Serre equations are used considering the input boundary 
located at section x = 13.5m, where the input signal is known 
(measured data). In this way, results of the Serre’s classic 

model are not influenced, as would happen, by changes aris-
ing from the wave propagation before the bar, under inter-
mediate water depths. Fig. (9) shows a comparison of nu-
merical results of the classical Serre model (6) with the ex-
tended Serre equations (7), considering, in the first case, the 
input boundary at x = 13.5 m (gauge signal). 

The influence of additional terms of dispersive origin in-
cluded in the extended Serre equations is clearly shown in 
Fig. (9). The classical Serre model results (dashed line) are 
clearly of lesser quality. It should be noted that this applica-
tion also demonstrates the good behavior of our numerical 
model to propagate a complex signal imposed at boundary. 

CONCLUSIONS 

This paper presents a methodology to improve the linear 
dispersion characteristics of the classical Serre equations for 
variable depth, based on the procedure used by various re-
searchers for Boussinesq type models. Extend the classical 
Serre equations for applications in intermediate water depths 
and quasi-deep waters is a significant contribution; in fact, 
these are the conditions usually found in nearshore zones.  

The influence of the dispersion characteristics is clearly 
evidenced by the generation and propagation of waves in 
intermediate water depths, as is shown in cases of: (1) input 
and propagation of a periodic wave in a channel with h0/l = 
0.50, and (2) very demanding applications over bottoms with 
considerable slopes. The overall agreement of the extended 

 
Fig. (6). Solitary wave travelling up a slope and its reflection on a vertical wall. Free surface elevation in a depth gauge located at x = 72.75 
m. Experimental ( ); Serre extended ( LL ); Boussinesq extended ( ______ ). 

 
Fig. (7). Bathymetry for a periodic wave propagating over a bar (not in scale). 

 

    Absorber  Wave generator 

 0.40 m 
0.30 m 1/20 1/10 

 6 m  14 m  12 m  17 m  25 m 
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Fig. (8). Periodic wave propagating over a bar. Free surface evolution at three gauges installed at a) x = 10.5 m, b) x = 13.5 m and  
c) x = 17.3 m. Experimental ( ); Serre extended ( LL ); Boussinesq extended ( ______ ). 

 
a) 

 

 
b) 

 

 
c) 
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Fig. (9). Periodic wave propagating over a bar.  Comparison of test data ( ) with numerical results of the extended Serre model (7) 
( LL ) and the classical Serre equations (6) ( ! ! ! ! ). 
 

Serre model with improved dispersion characteristics is very 
good both in shallow water conditions as in intermediate 
water depths and up to quasi-deep waters (h0/l < 0.50). 

An extension to two dimensions in the horizontal plane is 
currently being developed and will be the subject of a second 
paper. 
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