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Abstract:

Background:

Fuchs Endothelial Corneal Dystrophy (FECD) is a progressive disease that affects the corneal endothelium in both eyes. Recent
studies  have  identified  a  novel  genetic  basis  for  FECD,  and  basic  research  findings  have  provided  evidence  for  its  underlying
pathophysiology. Since its first description by Ernst Fuchs in 1910, the only therapeutic choice has been corneal transplantation using
donor corneas. However, accumulating evidence suggests that a change in this “rule” may be imminent.

Conclusions:

This article reviews the current knowledge of the genetics and pathophysiology of FECD, and it introduces some potent therapeutic
modalities that show promise as new treatments for this disorder.
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1. INTRODUCTION

Fuchs Endothelial Corneal Dystrophy (FECD) is a progressive disease that affects the corneal endothelium in both
eyes. The hallmarks of FECD in the clinical setting are the formation of excrescences, called guttae, on Descemet’s
membrane and the loss of corneal endothelial cells. FECD shows a gender dichotomy, with a female to male ratio of
2.5:1 to 3:1. FECD typically occurs at the age of 40–50, and it progresses to an advanced stage in some, but not all,
patients. In the advanced stage, decompensation of the corneal epithelium disrupts the water balance in the corneal
stroma, which induces edema of the corneal stroma and epithelium and causes severe vision loss [1]. Even in patients
without corneal edema, the formation of guttae and the thickening of the Descemet’s membrane due to accumulation of
Extracellular Matrix (ECM) components results in forward light scatter and a loss of vision quality [2, 3].

Recent studies have indicated an association between a novel genetic pattern and the development of FECD. In
addition, basic research studies are now beginning to reveal the underlying pathophysiology of this disease. Despite
these  advances  in  understanding the  nature  of  FECD, the  only  therapeutic  choice  for  its  treatment  remains  corneal
transplantation using donor corneas-the original treatment used when Ernst Fuchs first described this disease in 1910
[1]. However, accumulating evidence now indicates that important changes are imminent regarding the treatment of
FECD. This article provides a review of the current knowledge of the genetics and pathophysiology of FECD, and it
introduces some potent therapeutic modalities that show promise as new treatments for FECD.

2. METHODS

Literature  searches  were  performed  in PubMed  (https:// www.ncbi.nlm.nih.gov/ pubmed) and  ClinicalTrials.gov
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(https://clinicaltrials.gov/).  Key search terms were  the  references  cited in  each eligible  article  that  included “Fuchs
endothelial corneal dystrophy,” “TCF4,” “single nucleotide polymorphism, SNPs, or polymorphism.” This review is not
a  meta-analysis;  therefore,  we  selected  literature  that  allowed  us  to  introduce  future  perspectives  as  well  as  to
summarize  the  current  status  of  this  research  topic.

3. GENETICS

Studies of familial FECD cases show that the disease has an autosomal dominant inheritance pattern [4]. However, a
certain proportion of patients with FECD have sporadic disease, without a familial history. The ICD3 classification
categorizes FECD patients as those with: 1) early-onset FECD, 2) identified genetic loci, and 3) disease without known
inheritance [5].

Early-onset FECD is a rare form, and these patients exhibit corneal edema by the age of 30–40. Genetic screening of
a family with early-onset FECD identified a missense mutation of the COL8A2 gene that resulted in substitution of a
lysine for a glutamine (Q455K) on chromosome 1 p34.3-p32. Analysis of large families with a common form of late-
onset FECD also showed a significant linkage between the FCD1, FCD2, FCD3, and FCD4 loci on chromosomes 13,
18, 5, and 9, respectively [6 - 9]. Four genes (SLCA411, TCF8, LOXHD1, and AGBL1) were reported as causal genetic
mutations, although these genetic mutations were rarely identified in patients with FECD [9 - 14].

Researchers have since devoted their efforts to identify a genetic cause for the large proportion of patients with
FECD.  For  example,  a  Genome-Wide  Association  Study  (GWAS),  conducted  by  Baratz  and  colleagues  in  2010,
identified a significant association between late-onset FECD and the intronic Single Nucleotide Polymorphism (SNPs)
rs613872 in Transcription Factor 4 (TCF4) [15]. Similarly, replication studies have shown a strong association between
rs613872 and FECD, mainly in Caucasian cohorts [16, 17]. Other SNPs in TCF4, apart from rs613872, were associated
with FECD in populations from Singapore, Southern China, and India, suggesting the occurrence of ethnic variations in
the SNPs in TCF4 [18 - 20].

In 2012,  Wieben and colleagues reported the discovery of  an expanded CTG trinucleotide repeat  in intron 3 of
TCF4 in patients with FECD [21]. Their investigation of 66 FECD cases and 63 unaffected controls demonstrated a
sensitivity and specificity of 79% and 96%, respectively, for more than 50 repeats identifying FECD; this specificity
was higher than that previously reported for the rs613872 SNP. The percentages of patients with FECD that harbored
the CTG trinucleotide repeat expansion varied with their ethnicities; however, this strong association was replicated in
multiple ethnic groups (Table 1) [20, 22 - 27].

Table 1. Summary of previous reports of CTG trinucleotide repeat expansion in TCF4.

- Wieben ED [21] Mootha VV [22] Xing C [23] Nanda GG [20] Vasanth S [24] Nakano M [25] Foja S [26] Kuot A [27]
Population Caucasian Caucasian Chinese Indian - Japanese German Australian

Cases
(FECD) 66 120 57 44 574 47 61 189

Controls 63 100 121 108 354 96 113 183
CTG≥40 or 50

(FECD)
79%

(CTG>50)
73%

(CTG>40)
44%

(CTG>40)
34%

(CTG>50)
62%

(CTG>40)
26%

(CTG>50)
77%

(CTG>50)
51%

(CTG>40)
CTG≥40 or 50

(Control)
3%

(CTG>50)
7%

(CTG>40)
2%

(CTG>40)
5%

(CTG>50)
4%

(CTG>40)
0%

(CTG>50)
12%

(CTG>50)
5%

(CTG>40)

4. PATHOPHISIOLOGY

4.1. The Unfolded Protein Response

Under normal conditions, proteins undergo folding in the lumen of the Endoplasmic Reticulum (ER), and correctly
folded  proteins  are  then  packaged  into  ER  exit  vesicles  for  delivery  to  membranes  for  extracellular  secretion.  By
contrast,  improperly  folded  proteins  are  removed  in  the  proteasome  through  the  process  known  as  ER-Associated
Degradation (ERAD) [28 - 30]. However, impairment of homeostasis induces ER stress, which disrupts ERAD and
triggers apoptosis to remove rogue cells that accumulate unfolded proteins [31, 32]. This highly regulated process is
called  the  Unfolded  Protein  Response  (UPR),  and  the  UPR  is  involved  in  the  pathogenesis  of  various  diseases,
including Alzheimer’s disease, Parkinson’s disease, diabetes mellitus, multiple myeloma, and retinitis pigmentosa [33 -
38].

https://clinicaltrials.gov/
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In 2010, Engler and colleagues postulated that activation of the UPR plays a central role in the pathogenesis of
FECD through the induction of apoptosis in corneal endothelial cells [39]. They showed an increased and dilated ER
structure and upregulation of the markers of the UPR in the corneal endothelium of patients with FECD [39]. The same
research  group  subsequently  showed  that  homozygous  knock-in  of  Col8a2Q455K/Q455K,  a  causal  gene  for  early-onset
FECD, was sufficient to induce FECD-like ocular features in mice, and these changes were linked with UPR-associated
apoptosis  [40].  Recently,  our  group  showed  that  ECM  components,  such  as  type  I  collagen  and  fibronectin,  form
aggregates of unfolded proteins in the corneal endothelium of FECD patients [41]. We also showed that activation of
transforming  growth  factor-β  (TGF-β)  signaling  causes  a  chronic  overload  of  ECM proteins  within  the  ER,  which
induces an accumulation of unfolded protein and activation of the intrinsic apoptotic pathway through the UPR [42].
The genetic background underlying the UPR induction is not yet elucidated; however, accumulating evidence supports
a role for the UPR and associated apoptosis in FECD.

4.2. Oxidative Stress and Mitochondrial Dysfunction

Much  research  has  confirmed  an  involvement  of  oxidative  stress  in  the  pathogenesis  of  FECD,  and  a  linkage
between mitochondrial dysfunction and the generation of oxidative stress is suggested [43 - 47]. For instance, an early
study  indicated  that  the  numbers  of  mitochondria  were  decreased  in  parallel  with  downregulation  of  cytochrome
oxidase  [48].  Serial  analysis  of  gene  expression  revealed  that  expression  of  mitochondrial  antioxidant  genes  was
diminished  in  the  corneal  endothelium of  patients  with  FECD [49].  Jurkunas  and  colleagues  demonstrated  that  an
oxidant-antioxidant  imbalance  leads  to  oxidative  DNA  damage  and  apoptosis  [44].  Very  recently,  Benischke  and
colleagues reported that constitutive activation of mitophagy causes a reduction in mitochondrial mass and depletion of
the  numbers  of  functional  mitochondria  [50].  Accumulating  evidence  suggests  that  oxidative  stress,  induced  by
mitochondrial dysfunction, damages corneal endothelial cells. Interestingly, ER stress activates the intrinsic apoptotic
pathway (the mitochondrial pathway) in the corneal endothelium, as it does in other cell types [41]. Future studies will
likely elucidate the nature of the involvement of both ER stress and oxidative stress in the pathogenesis of FECD.

4.3. RNA Foci

In  2015,  Du  and  colleagues  reported  that  the  corneal  endothelial  cells  of  patients  with  FECD  harbor
poly(CUG)nRNA, and this results in the formation of RNA foci. They also suggested that RNA toxicity and missplicing
play an important role in the pathogenesis of FECD, similar to that played in myotonic dystrophy type 1, a trinucleotide
repeat expansion disease [51]. Mootha and colleagues also identified RNA foci in the corneal endothelium of subjects
with  FECD  who  showed  trinucleotide  repeat  expansion  in  TCF4,  but  these  foci  were  absent  from  the  corneal
endothelium  of  subjects  with  FECD  but  without  this  trinucleotide  repeat  expansion  [52].

5. FUTURE TREATMENTS

5.1. Current Therapy

Corneal  transplantation  using  donor  corneas  is  currently  the  only  therapy  for  treating  corneal  endothelial
decompensation diseases, including FECD. Penetrating keratoplasty, in which a full-thickness patient cornea is replaced
with  full-thickness  donor  cornea,  has  been  performed  since  1906.  New  surgical  procedures,  such  as  Descemet’s
Stripping Endothelial Keratoplasty (DSEK) and Descemet’s Membrane Endothelial Keratoplasty (DMEK), selectively
replace the diseased corneal endothelial layer with a lamellar donor graft that includes the corneal endothelium. These
lamellar surgeries have advantages over penetrating keratoplasty, and their use has therefore spread explosively [53].

5.2. Tissue Engineering Therapy

The  evolution  of  corneal  transplantation  procedures  now  enables  less  invasive  treatment  with  better  clinical
outcomes,  but  problems  remain.  The  most  serious  are  the  shortage  of  donor  corneas,  the  difficulty  of  the  surgical
procedure, and the incidence of graft failure in acute and chronic phases. These issues have motivated researchers to
devise tissue engineering treatments that can overcome the current transplantation limitations [53, 54].

Two  strategies  adopt  the  use  of  transplanted  cultured  corneal  endothelial  cells  as  regenerative  medicine:  1)
transplantation  of  a  cultured  corneal  endothelial  sheet  by  a  procedure  resembling  DSEK  or  DMEK  and  2)  direct
injection of  cultured corneal  endothelial  cells,  without  a  carrier,  into the anterior  chamber [55].  The sheets  used in
transplantation are produced by culturing corneal endothelial cells on a number of different substrates, such as collagen,
amniotic membrane, and human corneal stroma, and animal experiments have confirmed that the transplantation of the
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resulting sheet enables the regeneration of a transparent cornea [56 - 59]. However, to the best of our knowledge, the
transplantation of cultivated corneal endothelial sheets has not yet been introduced into the clinical setting.

Some  research  groups,  including  ours,  have  attempted  to  regenerate  corneal  endothelium  directly  by  injecting
cultured corneal endothelial cells into the anterior chamber without a carrier [60 - 62]. However, animal experiments
have revealed that an insufficient number of the injected cells adhere to the back side of the cornea, so that a corneal
endothelium fails to regenerate in vivo. Our previous research indicated that cell adhesion is inhibited by the activation
of  Rho/ROCK  signaling,  and  conversely,  inhibition  of  this  signaling  pathway  by  a  Rho  kinase  (ROCK)  inhibitor
enhances cell adhesion. Therefore, we applied a ROCK inhibitor to promote engraftment [63, 64]. We confirmed, using
rabbit and monkey corneal endothelial dysfunction models, that coinjection of cultured corneal endothelial cells and a
ROCK inhibitor into anterior chamber resulted in the regeneration of the corneal endothelium [64, 65].

In 2013, after obtaining the approval from the Japanese Ministry of Health, Labour, and Welfare, we initiated a
clinical trial (Clinical trial registration: UMIN000012534) at the Kyoto Prefectural University of Medicine to evaluate
this cell injection therapy as a treatment for corneal endothelial dysfunction [66]. Our preliminary clinical data have
confirmed  that  coinjection  of  cultured  corneal  endothelial  cells  and  a  ROCK  inhibitor  regenerates  the  corneal
endothelium and restores a transparent cornea in human subjects. Further clinical data are necessary, but cell-based
therapy appears to be a potent future treatment for corneal endothelial decompensation diseases, including FECD.

5.3. ROCK Inhibitor Eye Drops

Rho is a small GTPase, and RhoA activates ROCK, a serine/threonine kinase that phosphorylates various substrates.
ROCK  signaling  plays  an  essential  role  in  several  fundamental  cellular  events,  such  as  cell  adhesion,  motility,
proliferation, differentiation, and apoptosis [67 - 69]. In 2009, we reported that inhibition of ROCK signaling promotes
the  in  vitro  proliferation  of  corneal  endothelial  cells  [63].  Subsequently,  we  found  that  administration  of  a  ROCK
inhibitor in eye drop form promotes wound healing in the corneal endothelium in rabbit and monkey models [70 - 72].

We have since conducted pilot clinical research to investigate the use of topically applied ROCK inhibitor eye drops
in patients who have undergone central corneal endothelium removal by transcorneal freezing. Our findings suggested
that the eye drop form of ROCK inhibitor is a potent therapeutic treatment choice for patients with early-stage FECD
[71, 73]. Notably, one 52-year-old male patient diagnosed with late-onset FECD recovered full corneal transparency
after transcorneal freezing and the use of ROCK inhibitor eye drops. His central corneal thickness was reduced from
703 μm to 568 μm and his visual acuity improved from 20/63 to 20/20. His corneal transparency was maintained for
more than 6 years, and the original plans for an eventual corneal transplantation were canceled [73].

Recent investigations have examined the effect of surgical removal of the central Descemet’s membrane, including
pathological corneal endothelium [74 - 76], and one clinical study has indicated a positive effect of combining ROCK
inhibitor eye drops with this procedure [77]. However, clinical data for the usefulness of ROCK inhibitors in FECD
treatment remain limited, so randomized clinical trials are still needed before adoption of this eye drop as a routine
therapeutic option.

5.4. Potent Pharmaceutical Agents

Stealth BioTherapeutics (Newton, MA) has been developing drug candidates for targeting diseases associated with
mitochondrial dysfunction. They initiated a phase 2 clinical trial of elamipretide in eye drop form, with the expectation
that  this  drug  would  target  the  inner  mitochondrial  membrane  to  help  preserve  mitochondrial  energetics
(http://www.stealthbt.com/). The results of this clinical trial have not yet been released, but elamipretide is currently the
most advanced-stage pharmaceutical aimed at the treatment of FECD.

Kim and colleagues reported that N-Acetylcysteine (NAC), a thiol-containing antioxidant and radical scavenger,
rescued  cultured  corneal  endothelial  cells  from  damage  mediated  by  ER  and  oxidative  stress  [78].  They  also
demonstrated  that  systemic  use  of  NAC  suppressed  the  progression  of  FECD  in  early-onset  FECD  model  mice
(Col8a2Q455K/Q455K), thereby providing an in vivo proof of concept of the use of NAC as a potent therapeutic candidate for
treatment of FECD [78]. The same research group also showed that the addition of lithium further increased the survival
of cultured corneal endothelial cells when ER and oxidative stresses were triggered [79]. A higher corneal endothelial
cell density was also maintained in early-onset FECD model mice given a lithium treatment than in a non-treatment
group [79]. The researchers suggested that lithium increases the survival of corneal endothelial cells by an upregulation
of autophagy; therefore, lithium may represent a new therapeutic agent for the treatment of FECD [79].

http://www.stealthbt.com/
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More  recently,  the  same  group  attempted  a  drug  screening  based  on  the  postulated  FECD  pathophysiology
involving ER and oxidative stresses and cell death [80]. They induced ER stress with thapsigargin and oxidative stress
with hydrogen peroxide in cultured corneal endothelial cells, and then screened 640 compounds found in the Food and
Drug Administration (FDA)-approved drug library. They reported that oxotremorine and mefenamic acid were potential
survival factors that overcame stress-related cell death.

Our group has reported that activation of TGF-β signaling activates genes that induce the epithelial-mesenchymal
transition (EMT). These include ZEB1 and SNAI1, and their induction results in the accumulation of ECM components
[81]. This production of ECM components was more strongly upregulated in cell models established from patients with
FECD than in control corneal endothelial cells, following exposure of the cells to TGF-β. We recently reported high
expression levels of TGF-β isoforms and TGF-β receptors in the corneal endothelium of patients with FECD, and we
proposed that activation of TGF-β signaling induces a chronic overload of ECM components, resulting in apoptosis
through  the  UPR  [42].  We  also  showed  that  inhibition  of  TGF-β  signaling  suppressed  this  accumulation  of  ECM
components  and  suppressed  UPR-mediated  apoptosis  in  cell  models  established  from  patients  with  FECD.  These
findings suggest that inhibition of TGF-β might be a potent therapeutic option [42]. A summary of the proposed drug
candidates for treating FECD is shown in Table 2.

Table 2. Proposed drug candidates for treating FECD.

Candidate Drugs Status Proposed Mechanism Author or Company
Elamipretide Phase 2 clinical study Preserves mitochondrial energetics Stealth BioTherapeutics

Rho kinase inhibitor Pilot clinical research Promotes cell proliferation Okumura N, Koizumi N [71, 73]
N-acetylcysteine Animal model Increases cell survival Kim EC [78]

Lithium Animal model Increases cell survival Kim EC [79]
Oxotremorine in vitro Increases cell survival Kim EC [80]

Mefenamic acid in vitro Increases cell survival Kim EC [80]
TGF-β inhibitor in vitro Suppresses unfolded protein mediated cell death Okumura N [42]

CONCLUSION

Corneal transplantation has been the only therapy available for treating FECD for many years. However, recent
advancements in tissue engineering techniques may now provide innovative cell-based therapies. “Missing links” still
necessitate further investigations, but new information regarding the genetic background and pathophysiology of FECD
is  rapidly  accumulating.  Importantly,  the  recent  findings  improve  the  understanding  of  FECD,  but  they  also  guide
further investigations aimed at identifying future therapeutic modalities. Indeed, several drug candidates have recently
been reported, although none of these drugs has yet been introduced into the market. Corneal transplantations using
donor corneas continue to remain the standard treatment, but we believe that the new therapeutic options, such as cell-
based therapy and the use of pharmaceutical agents, will provide less invasive and more effective therapies.
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