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Abstract: Linear and nonlinear surface plasmon polaritons propagating along the interfaces between isotropic media and 
uniaxially anisotropic left-handed materials are investigated. A transition layer sandwiched between the connected media 
is described using a model of a two-dimensional gas of semiconductor quantum dots. The conditions of the existence of 
surface TM-modes when the components of the permittivity and permeability tensors of the anisotropic left-handed 
materials are simultaneously negative are determined. Explicit analytical expressions for a surface optical two-
dimensional soliton of self-induced transparency in the presence of single and biexciton transitions are given. Numerical 
simulations for surface solitons are given for different layered systems. It is shown that the total energy flow of the surface 
solitons depends on the parameters of the quantum dots and the connected media. 
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INTRODUCTION 

 Surface electromagnetic waves, which are also known as 
surface plasmon polaritons (SPPs), can propagate along the 
boundary surface of different media, in a region of 
frequencies where the permittivities of the two connected 
media have opposite signs [1,2]. Characteristic peculiarities 
of these waves are strong enhancement and spatial confine-
ment of the electromagnetic field of the wave near the 
interface, while they decay exponentially in the directions 
perpendicular to the wave vector. The properties of surface 
waves have attracted much interest in the context of nano-
optics and diverse applications [3,4]. In left-handed materials 
(LHMs), the interest in SPPs was connected in the beginning 
with the strong impact of SPPs on the image resolution of an 
LHM flat lens [5]. Later, SPPs in LHM have been 
considered for a wider class of wave phenomena [6-8]. Very 
recently, they have been used for a experimental realization 
of nonmagnetic cloaking in the visible frequency range, 
since the SPP field has only one polarization state [9]. 
 Different properties of surface waves in isotropic LHMs 
have been studied [2,4]. But the LHMs that have been used 
in different experiments are often anisotropic, and the 
analysis of the symmetry of the LHMs have shown that they 
have uniaxial anisotropy. The properties of SPPs propagating 
in uniaxial anisotropic LHMs are significantly different than 
in isotropic LHMs. In the general case of uniaxial 
anisotropic media, unlike for isotropic LHMs, the directions 
of energy flow cannot be in the exactly opposite direction of 
the wave vector [10]. 
 Two kinds of uniaxial anisotropic LHMs can be consi-
dered. The first, so called indefinite media, are the uniaxial  
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anisotropic LHMs which are characterized by permittivity 
and permeability tensors whose principal components do not 
have the same sign [11,12]. The second type of uniaxial 
anisotropic LHMs are metamaterials where all principal 
components of the permittivity and permeability tensors are 
negative [13,14]. The optical properties of these two uniaxial 
anisotropic LHMs are significantly different. 
 The conditions of the existence of linear surface waves at 
the interfaces between different isotropic media and 
indefinite media have been studied [12]. In layered systems, 
where one of the connected media is an indefinite material, 
nonlinear SPPs also have been considered [15]. But the 
properties of the SPPs propagating at the interfaces between 
different isotropic media and uniaxial anisotropic LHMs 
where all principal components of the permittivity and 
permeability tensors are negative have not been investigated. 
 Embedding semiconductor quantum dots (SQDs) in these 
layered structures makes them very promising systems for 
investigations of optical resonance phenomena in plasmonics 
[16]. SQDs are ideal realizations of zero-dimensional 
quantum confined systems and have led to the observation of 
a large number of novel and interesting physical effects 
which are promising for different applications [17]. The 
attractivity of SPPs lies in the fact that they can effectively 
confine the optical excitation in a nanoscale region near the 
interface and thus mediate strong optical interactions within 
this region. The resonance interaction between SPPs and 
SQDs can lead to different resonance linear and nonlinear 
optical phenomena for SPPs, such as, resonance absorption 
(Beer's law), Rabi oscillations, self-induced transparency 
(SIT), electromagnetically induced transparency, and SQD-
based laser [18]. 
 Under the condition of SIT, which in the beginning has 
been considered for atomic systems, resonance nonlinear 
waves can be formed when a nonlinear coherent interaction 
takes place via Rabi oscillations of the carrier density, whose 
conditions 
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1,2 T 1,T T! >> <<  ,  (1) 

are fulfilled. In attenuator media, the steady-state 2π pulse 
(soliton) and in an amplifier medium, the steady-state π pulse 
are generated [19]. Here, T and ω are the width and the 
carrier frequency of the pulse, T1 and T2 are the longitudinal 
and transverse relaxation times of the SQDs. 

 SIT for SQDs has been considered for plane waves 
[20,21] and waveguide modes [22] as well as for SPPs in 
conventional media [23], in isotropic LHMs [24,25], and in 
indefinite LHMs [15]. The propagation of SPPs in uniaxial 
anisotropic LHMs with simultaneously negative principal 
components of the permittivity and permeability tensors is 
absolutely different from the earlier investigated cases. 

 Using the approach advanced in the previous work for 
indefinite media [15], the purpose of the present work is to 
theoretically investigate the condition of the existence and 
the processes of formation of SPPs and surface solitons 
propagating along the interface between different kinds of 
isotropic media and uniaxial anisotropic LHMs with 
simultaneously negative principal components of the 
permittivity and permeability tensors. For the investigation 
of solitons of SPPs, we consider the resonance transition 
monolayer of a two-dimensional gas of inhomogeneously 
broadened SQDs sandwiched on the interface. The special 
limiting cases for linear SPPs will be considered. Numerical 
simulations for SPPs are given for solitons of SPPs in 
layered structures in the cases when we consider different 
isotropic media/uniaxial anisotropic LHMs with a transition 
monolayer of SQDs. We consider four cases of isotropic 
media which are of physical interest: gallium arsenide, 
metallic media, single-negative materials (SNMs), and 
double-negative materials (DNMs). A SNM (magnetic or µ-
negative material) is a material where only magnetic 
permeability has a negative real value, and a DNM is a 
metamaterial with simultaneously negative real parts of the 
electric permittivity and magnetic permeability [12,26]. 

BASIC EQUATION 

 We consider the propagation of surface TM-modes along 
the interface between the isotropic media and the uniaxial 
anisotropic LHM with simultaneously negative principal 
components of the electric permittivity and magnetic 
permeability tensors, for the case when the optical pulse with 
width T and frequency 1T!

"
>>  is propagating along the 

positive direction of the z axis. On the flat border of division 
(x=0) between the two connected media, a thin transition 
layer with thickness d containing a small concentration of 
SQDs having the polarization 

( , , ) ( , ) ( ),pP x y z e p z t x!=

! !
 

is present, where pe!  is the polarization unit vector along the 
z axis. The semi-spaces are divided into x<0 and x>0, with 
the isotropic medium (medium I) with electric permittivity 

1( )! "  and magnetic permeability 1( )µ !  and the LHM 
(medium II), respectively. For simplicity, we consider only 
uniaxial anisotropic LHMs with simultaneously negative 
principal components of the permittivity and permeability 
tensors. 

 If we take the optical axis of the LHM O parallel to the 
interface of the two media along the z axis and assume that 
both the electric permittivity 2!̂  and the magnetic 
permeability 2µ̂  tensors are uniaxially anisotropic, we have 
[27]: 

2

0 0
ˆ 0 0

0 0

xx

yy

zz

!
! !

!

" #
$ %

= $ %
$ %
& '

 , 2

0 0
ˆ 0 0

0 0

xx

yy

zz

µ

µ µ

µ

! "
# $

= # $
# $
% &

. 

 In the considered case, the wave vector k
!

 is directed 
along the optical axis of the uniaxial anisotropic LHM O and 
therefore, the vectors of the electric E

!
 and magnetic H

!
 

fields and the wave vector constitute a left-handed triplet of 
vectors [10]. For uniaxial anisotropy, the media are isotropic 
in the plane perpendicular to the optical axis O and 
consequently xx yy! ! !

"
= =  and xx yyµ µ µ

!
= =  with the 

conditions zz! !
"

#  and zzµ µ
!

" . The quantities ,zz zz! µ  
and, ,! µ

" "
 are the permittivity and permeability in the 

directions parallel and perpendicular to the optical axis O, 
respectively. For further considerations, it will be more 
convenient to use the notations xx!  and zz!  for the 
components of the permittivity tensor. 
 Strictly speaking, the considered system for surface 
waves is not a LHM, because for SPPs the vector of the 
electric field E is not perpendicular to the wave vector and 
therefore the electric field E, the magnetic field H, and the 
wave vector k cannot form a strictly left-handed triplet of 
mutually orthogonal vectors, even when the wave vector is 
directed along the optical axis O. Nevertheless, considering 
that the term LHM is widely used in the literature (see, e.g., 
Refs.[6,7,10] and references therein), we will keep this term 
in the present work. 
 In the optical region of the spectrum, d<<λ, where d is 
the thickness of a transition layer and λ is the length of the 
surface optical wave. Therefore, SIT can be modelled as a 
SPP propagating along the interface isotropic media/LHM 
and the infinitely small thickness transition layer 
(monolayer) with SQDs [15,23].  

 For a surface TM-mode, the electric field ( ,0, )x zE E E
!

 
lies in the xz plane perpendicular to the boundary of division 
between the two connected media, and the magnetic field 

   
!
H (0, H y ,0)  is directed along the y axis. 

 For the investigation of the SPP waves, we will follow an 
approach which is convenient for the consideration of linear 
as well as nonlinear surface waves. We will present a set of 
known equations from the previous work [28], which are 
necessary for understanding the further considerations. The 
quantities 

1( , ) ( )
1 1( , , ) ( , ) k Q x i Qz tU x z t U Q e d dQ! + "!

= ! !#  for ,0<x  

 (2) 

  
U2 (x, z,t) = U2 (!,Q)e"k2 (!,Q)x+i(Qz"!t ) d!dQ# for 0,x >  

are Fourier-decomposition of the fields. The quantities 
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the characterize the transverse structure of the SPP and are 
determined from the Maxwell equations in connected media. 
The functions 1,2U  stand for the components 

, , , , ,x z y x z yE E H D D B  in both connected media, where 

,x zD D  and yB  are the components of the displacement 
vector and the magnetic induction vector, respectively. We 
assume translational invariance in the y-direction so that all 
field quantities do not depend on the coordinate y. 
 Taking into account the surface current caused by the 
presence of the SQDs, the boundary conditions for surface 
waves at x=0 read [15,28]: 

2, 1,
4 ,y y

pH H
c t
! "

# =
"

2, 1, .z zE E=   (4) 

 Using Eqs. (2)-(4), we obtain the nonlinear wave 
equation for the z component of the strength of the electrical 
field at x=0 in the following form [15,28]: 

( )( , ) ( , ) 4 ( , )i Qz tf Q E Q e d dQ p z t!"## # # =$  (5) 

where 

1

2 1
( , ) ,zzf Q

! !

" "
# = +  (6) 

1, 2,( , ) ( , ) ( , )z zE Q E Q E Q! = ! = !  

 The equation (5) is valid for any dependence of the 
polarization of the SQDs ),( tzp  on the strength of the 
electrical field at x=0. In order to determine the dependence 
of the polarization ),( tzp  on the strength of the electrical 
field at x=0, we have to consider the structure of the 
energetic levels of the SQDs and the details of the nonlinear 
interaction of the surface pulse with the SQDs. The SQDa 
are described by the Liouville equations similarly to a bulk 
medium, but unlike the latter the SQDs are affected by the 
field in the thin film (monolayer) at x=0.  
 We assume that the pulse is tuned to transitions from the 
ground state |1> of the SQD to the states |2> and |3>, with 
energies ε1 = 0, ε2 =  ! ω0 = εx + δx/2, and ε3 =  !Ω0 = 2 
εx+δxx, respectively. The quantities εx=( ε2 + ε2’)/2 and ε3 
are the energies of the single-excitonic and biexcitonic states, 
respectively. δx = ε 2 - ε 2’ and δxx are the energies of the 
exciton fine structure splitting and biexcitonic binding 
energy (negative if bound), respectively (Fig. 1);  !  is 
Planck's constant. In order that δx/2<<  ! ω0 and δxx <<  !  
(Ω0 - ω0), the 1 to 2 transition and the 2 to 3 transition are 
very close to each other and to the pulse frequency ω. To 
avoid the influence of electron-phonon scattering [29], we 
assume that the pulse excites the system mostly within the 
zero-phonon line [30]. The energetic spectrum of the 
quantum dots can be considered as a quasi-equidistant three-
level system in a cascade configuration (µ13 = 0) under off-

resonant excitation Ω0 - ω0 - ω ≠ 0 and ω0 - ω ≠ 0. We 
assume that the detunings from the resonance Ω0 - ω0 - ω  
and ω0 - ω lie within the bandwidth of the pulse. 

 
Fig. (1). Schematic of the SQD energetic levels. 

 The Hamiltonian of the system is given by [17,21]: 

0 ,H H V= +  
where 

0 0 0| 2 2 | | 3 3 |,H != >< + " ><! !  

describes the kinetics of the single-excitonic and biexcitonic 
states and V PE= !

! !
 is the Hamiltonian of the light-quantum 

dot interaction. Under the assumption of off-resonant 
excitation with a constant detuning 

0 0 0 ,! ! ! !" # # $ # = %  the polarization which is 
determined by interband transitions occurring in the quantum 
dots between the three energetic levels is given by 

 12 12 23 32( )( ) . .p n g d c cµ ! µ != " + " +#   (7) 

where n is the uniform quantum dot density, 
12 12 23 23 12, ;µ µ ! µ µ ! µ= =

! !! ! !  and 23µ
!

 are the dipole elements for 
the corresponding transitions and !

!
 is the polarization unit 

vector along E
!

. We assume the dipole moments to be 
parallel to each other and to be directed along the z axis, 

12 23 ; ( )gµ µ= ! is the inhomogeneous broadening lineshape 
function resulting from dot size fluctuations. The quantities 

ij!  are the matrix elements of the density matrix !  
determined by the Liouville equation 

( | | | | ),nm
lm nl

l

i n H l l H m
t

!
! !

"
= < > # < >

" $!  (8) 

where n,m,l=1,2,3. 

SOLUTION OF EQUATIONS 

 We can find the solution of the equation (5) following the 
way presented in the works [17, 21]. We can simplify Eq. (5) 
using the method of slowly changing profiles. For this 
purpose, we represent the functions E and p in the form 

 
1

ˆ ,l l
l

E E Z
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=!  12 1 . .,p n pZ c cµ= +  (9) 
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where ˆ
lE  and p  are the slowly varying complex amplitudes 

of the optical electric field and the polarization, respectively, 
and ( ) .il kz t

lZ e !"
=  To guarantee that E is a real number, we 

set *ˆ ˆ ˆ.l lE E E
!

= =  This approximation is based on the 

consideration that the envelope Ê  varies sufficiently slowly 
in space and time as compared to the carrier wave parts, i.e., 

ˆ ˆ ,E E
t

!
"

<<
"

 
ˆ ˆ .E k E
z

!
<<

!
  (10) 

 These equations and analogous expressions for p  are 
called the slowly varying envelope approximation [19]. 
 It follows from the Liouville equation (8) that the 
polarization (7) is purely imaginary in the case of perfect 
resonance Δ=0. But in SQDs, the situation is different and Δ 
is not equal to zero. In this case, both the real and imaginary 
parts of the polarization (7) are not equal to zero. 

 In these cases, the validity of the simple factorization  
of the imaginary part of the polarization 
Im ( ) ( ) Im (0)p F p! = !  is assumed, meaning that the off-
resonant dipoles respond to the electric field in the same way 
as the resonant dipoles, but with a detuning-dependent 
reduction in amplitude 

2
1( )

1 ( )
F

T
! =

+ !

 

which is called the dipole spectral response function [19]. 
 Substituting the equations (6) and (9) in the wave 
equation (5), and taking into account the explicit form of the 
envelope of the polarization (7), which is determined from 
the Liouville equation, we obtain, after dividing the real and 
imaginary parts of equation (5), the dispersion law for a 
propagating surface pulse 
 ( , ) 0,f k! =   (11) 
and a nonlinear wave equation in the form: 
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where the width of the pulse T is determined by the equation 
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c is the speed of light in vacuum, ,zt
V

! = " V is the constant 

pulse velocity, and 
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where ω and k are the frequency and wave number of the 
carrier wave and v  is the group velocity of the linear SPP. 
 The solution of Eq. (12) for the envelope function has the 
form [19]: 

0

2ˆ sec

zt
VE h

T Tµ

!

= ,  (16) 

where 0 122 / .µ µ= !  We can determine the constant 
velocity of the 2π pulse (soliton) of the SPP to be 

 
2
12

2 2

4 ( )1 .
n g dv

V v f v T
!µ

"
#

$ $
= +

+ $%!   (17) 

Eqs. (2), (3), (11), (13)-(17) determine the parameters of the 
surface soliton for any value of x, z, and t and show that for 
the existence of a soliton, it is necessary that the conditions 

0,f
!

>  1.v
V

>   (18) 

are fulfilled. Parameters of the surface optical solitons 
depend not only on the SQD parameters and the 
permittivities of the two interface media, but also on the 

magnetic permeability ( )µ !
"

 and its derivative |
d
d !

µ
"

#=
#

 

of the LHM, which is unusual in comparison with 
parameters of the SPP in conventional media [23]. 

 In the absence of a transition layer, the nonlinear 
polarization p=0, and the right hand side of equation (5) 
equals zero. In this linear limit, equation (5) has a simple 
solution with constant amplitude 0U . The parameters of the 
linear SPP propagating on the interface between the isotropic 
media and a LHM for any value of x, z, and t and determined 
from Eqs. (2), (3), (11) and (14) assuming the Fourier-factor 

1,2 0;1,2( , ) ( ) ( ).U Q U k Q! " !# = $# $   

CONDITIONS FOR THE EXISTANCE OF SPPS 

 The dispersion relation (11) for SPPs propagating on the 
interface of the isotropic media and the LHM with a 
transition layer containing a gas of SQDs is valid for linear 
as will as nonlinear waves. This statement is valid under the 
condition that we are neglecting the real part of the 
polarization Re ( )p ! .  
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 Substituting equations (3) in Eq. (11), the dispersion law 
for linear SPPs and surface solitons of SIT is the same and 
reads: 

 
2

2
2

( ),k C
c
!

!=   (19) 
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C(! ) = "xx"1

"zzµ1#µ
$
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"zz"xx #"1
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 The quantities !
1

 and !
2

 can be rewritten for further 
consideration in a more convenient form 
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 The SPP can exist only in the region of frequencies !  
for which the quantities !

1
, !

2
 and   C(! )  are real and 

positive, i.e., the conditions of the existence of SPPs  
 ( ) 0,C ! >  ( ) 0D ! >   (20) 
are fulfilled. 
 From Eqs. (19) and (20), we can see that the conditions 
of the existence of the SPP in the system isotropic medium/ 
LHM depends not only on the signs of the components of the 
electric permittivities and the magnetic permeabilities of the 
connected media, but also on their numerical values. 

TOTAL ENERGY FLOW 

 The time-averaged Pointing vector of the TM mode 

,S
!

 over a period 2 ,!

"
 which is associated with the 

energy flow of the pulse, has z components in isotropic 
medium 1 and the LHM- medium 2 of the following form: 

1
2 2 2
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z
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 The corresponding total energy flow is 
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1 1 20

ˆ ˆ
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16z z
xx

H HCN S dx S dx
k
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" # $ # $
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= + = +' '  (21) 

 Equation (21) has a general form and is valid for any 
boundary condition for the strength of the magnetic field of 
the SPP. When the transition layer is absent, the boundary 
condition for the envelopes of the strength of the magnetic 
field of the surface TM-mode has the form 

1 2
ˆ ˆH H= , and Eq. (21) simplifies  

 
2

1
1 1 2

1 1 ˆ( ) .
16 xx

CN H
k

!

" # $ # $
= +  (22) 

 The total energy flow for a linear SPP is positive or 
negative, depending on the sign of the quantity 

1 1 2

1 1 .
xx! " ! "

+  

 When a resonance transition layer is present, the 
connection between 1Ĥ  and 2Ĥ   follows from the boundary 
condition (4): 

 
2 2 2* * 2

2 1 1 1
ˆ ˆ ˆ ˆ( ) ,H H iR p H pH R p= + ! +  (23) 

where 

  
R =

4!µ12"n
c

.  

 From Eq. (23), it is evident that the resonance transition 
layer, i.e., the availability of SQDs, has an influence on the 
total energy flow of the surface TM-mode which depends on 
the parameter R and the polarization p . 

 In the considered case, the quantities 1Ĥ  and 2Ĥ  are real 
functions, and hence Eq. (23) simplifies 

22 2 2
2 1 1

ˆ ˆ ˆ Im .H H iRH p R p= + +  (24) 

 Consequently, when the resonance transition layer is 
present, the total energy flow depends on the parameters of 
the SPP, the SQDs, and the connected media. 

NUMERICAL ESTIMATIONS 

 Precious metallic nanostructures are used in optical 
LHMs, and therefore the losses are significant for surface 
optical waves in LHMs. Silver is known to have significantly 
lower losses than other metals at optical frequencies. The 
plasma frequency for silver is 15 12 2.18 10p s! "

#
= $ %  and the 

damping frequency 12 12 5.08 10 s! " #
= $ %  [31]. On the other 

hand, a planar array of split-ring resonators can be fabricated 
on a gallium arsenide (GaAs) substrate [32]. On the surface 
or at the boundary of the semiconductors (for instance, GaAs 
or InAs) with another medium, a small concentration of 
SQDs can be grown. Therefore, for the consideration of the 
properties of SPPs,it will be expedient to begin in the layered 
system gallium arsenide/uniaxial anisotropic LHM with 
simultaneously negative principal components of the 
permittivity and permeability tensors, which is prepared on 
the basis of silver and a small concentration of SQDs 
sandwiched on the interface between the connected media. 

 In metals and LHMs, SPPs occur when the carrier 
frequency !  is below the plasma frequency p! . For the 
coherent interaction of the pulse of the surface wave with the 
medium, the duration of the pulse should be much shorter 
than the characteristic plasmonic oscillation damping 
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time 2!
"

. Solitons of SPPs in regular and indefinite media 

are investigated when one of the connected media is a 
semiconductor with SQDs [15]. SQDs are promising objects 
for the amplification of SPPs [33]. The transverse relaxation 
times of quantum dots, which are of the order of 
nanoseconds to several tens of picoseconds [34], are longer 
than the characteristic plasmonic oscillation damping 

time 2!
"

. Therefore, pulses of SPPs with durations which are 

of the order of up to several tens of femtoseconds which are 
used for investigations of coherent effects in metals can be 
used to investigate SIT of SPPs. On the other hand, the 
spectral width of the pulse has to be much smaller than ! , 
so that the envelope approximation (10) is appropriate and 
valid for pulses with width T ≥ 20 fs. Consequently, a pulse 

with a width in the interval ( 2!
"

, 20 fs), which is acceptable 

for investigations of coherent processes for nonresonance 
nonlinear SPPs in LHMs [6,7], also satisfies Eq. (1), the 
conditions of SIT in SQDs. 
 We consider several physically interesting examples of 
layered systems by means of numerical methods. For the 
numerical simulation, we use typical parameters for the 
pulses, materials, and SQDs: 

15150 10 ,T s!
= "

1510 ,Hz! "= #  17
12 0.8 10µ

!
= "  esu cm, 

10 25 10 ,n cm!
= " 1,µ

!
= "  * 60! =!  meV, (25) 

where *
!!  is the full-width half-maximum inhomogeneous 

broadening of the SQDs. 

 Case (a). First, we consider the layered GaAs/LHM 
system, in which a small concentration of SQDs is 
sandwiched on the interface between the connected media. In 
this system, medium I is gallium arsenide with the 
parameters 1 9.9,! =  1 1.µ =  

 For medium II, we consider a uniaxial anisotropic LHM 
with simultaneously negative principal components of the 
permittivity and permeability tensors. The permittivity 

component
2

21 18p
xx

!
"

!
= # = # , which corresponds to the 

plasma frequency for silver p! . For the other nonzero 
permittivity component zz!  we consider two different cases: 

 Case (a.1). 1.zz! = "  In this case, after numerical 
calculations, we obtain 

102.28 10 / ,V cm s= ! "
102.29 10 / ,v cm s= ! "  

202.48 10 ,f cm s!

"
= # $  

19.8,C = 0.1,D =  6 10.46 10 ,k cm!
= "  

6 1
1 0.330 10 ,k cm!

= "
6 1

2 0.333 10 ,k cm!
= "  (26) 

 For linear SPPs, the total energy flow 
2

1
ˆ3613 .N H= !  

 Because the parameters C, D, κ1 and κ2 have positive 
values, the conditions of the existence of linear SPPs, Eq. 
(20), are fulfilled. For the existence of soliton of SIT for a 
SPP it will be necessary that the additional conditions Eqs. 
(1) and (18) are satisfied. 

 Using these conditions, we can construct a plot of the 
general form of the z component of the electric field of the 

 
Fig (2). Plot of the z component of the electric field at a fixed value of the z coordinate, showing the envelope of the soliton of a SPP E and 
the transverse structure of the TM mode in the layered structure gallium arsenide/ LHM with simultaneously negative principal components 
of the permittivity and permeability tensors and when the resonance transition monolayer containing the ensemble of SQDs is present. Along 
the x-axis, the soliton amplitude decays exponentially as one moves away from the boundaries at x=0. At x=0, the shape of the soliton 
corresponds to the hyperbolic-secant solution of Eq. (16) (see Fig. 3). The plot corresponds to the Case (a.1) for which   ! zz = "1.  
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two-dimensional soliton of a SPP for a fixed value of z (see 
Figs. 2 and 3). Here, 1 ,xE Ee !"

=! for 0x !  and 2 ,xE Ee!
=!  

for 0x ! . 

 The parameters of the SPP are very sensitive to the 
properties of the connected media. Indeed, if we change only 
the parameter zz!  and take instead of 1zz! = "  the value 

5zz! = "  with the same values of all other parameters [Case 
(a.2)], we obtain 

82.28 10 / ,V cm s= ! "
82.38 10 / ,v cm s= ! "  

213.5 10 ,f cm s!

"
= # $  

109.7,C = 1,D =  6 110 ,k cm!
=  

6 1
1 10 ,k cm!

=
6 1

2 0.5 10 ,k cm!
= "  (27) 

 Now the total energy flow 
2

1
ˆ53N H= !  for linear SPPs. 

 Comparing the two Cases (a.1) and (a.2), we can see that 
changing only one parameter zz!  from 1zz! = "  to 5zz! = " , 
the parameters of the SPP are changed significantly: the 
group velocity v, the velocity of the nonlinear pulse V, and 
the total energy flow N are decreased by two orders of 
magnitude (102). The form of the soliton also changes 
significantly (Figs. 2 and 4), though at the boundary (x=0), 
they have the same forms - the hyperbolic-secant form 
determined by the solution Eq. (16). For the Case (a.1), a cut 

 
Fig. (3). Plot of the z component of the envelope of the electric field E at a fixed value of the z coordinate (see Fig. 2) with a cut of the 
envelope of the soliton at x=0 which corresponds to the hyperbolic-secant solution Eq. (16). The plot corresponds to the Case (a.1), for 
which 1zz! = " . 

 
Fig. (4). Plot of the z component of the electric field at a fixed value of the z coordinate showing the envelope of the soliton of a SPP E and 
the transverse structure of the TM mode in the layered structure gallium arsenide/ LHM with simultaneously negative principal components 
of the permittivity and permeability tensors and when the resonance transition monolayer containing the ensemble of SQD is present. Along 
the x-axis, the soliton amplitude decays exponentially as one moves away from the boundary at x=0. The plot corresponds to the Case (a.2), 
for which 5zz! = " . 
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of the envelope of the soliton at x=0 is shown in Fig. (3). For 
the Case (a.2), the envelope of the soliton at x=0 has the 
same form. 

 Case (b). Next, we consider a DNM (isotropic LHM) as 
the isotropic connected medium I with 1 10,! = "  1 1µ = ! . 
For the anisotropic LHM, we take 5zz! = " . All other 
parameters are the same. After calculation, we obtain, (see 
Fig. 5) 

97.5 10 / ,V cm s= ! "
97.9 10 / ,v cm s= ! "  

213.2 10 ,f cm s!

"
= # $  

90,C = 0.8,D =  1996117 ,k cm!
=  

1
1 939461 ,k cm!

=
1

2 469731 ,k cm!
=  

2

1
ˆ1275N H= !  (28) 

 Case (c). Next, we consider a SNM (magnetic material) 
as the isotropic connected medium I with 1 5,! =  1 1µ = ! . 

For the anisotropic LHM, we take 1zz! = " . All other 
parameters are the same. After calculation, we obtain, (see 
Fig. 6) 

91.1 10 / ,V cm s= ! "  91.2 10 / ,v cm s= ! "  
211.6 10 ,f cm s!

"
= # $   

77,C =  3.2,D =  1920641 ,k cm!
=   

1
1 949953 ,k cm!

=  1
2 189991 ,k cm!

=   
2

1
ˆ428N H= !   (29) 

Case (d). Next we consider a metallic medium as the 
isotropic connected medium I with 1 10,! = "  1 1µ = . For the 
LHM, we take 5zz! = " . All other parameters are the same. 
After calculation, we obtain, (see Fig. 7) 

93.12 10 / ,V cm s= ! "  93.38 10 / ,v cm s= ! "  
211.98 10 ,f cm s!

"
= # $   

 
Fig. (5). Plot of the z component of the electric field at a fixed value of the z coordinate showing the envelope of the soliton of a SPP E and 
the transverse structure of the TM mode in the layered structure a DNM (isotropic LHM) as the isotropic connected medium I / LHM with 
simultaneously negative principal components of the permittivity and permeability tensors and when the resonance transition monolayer 
containing the ensemble of SQD is present. Along the x-axis, the soliton amplitude decays exponentially as one moves away from the 
boundary at x=0. The plot corresponds to the Case (b). 

 
Fig. (6). Plot of the z component of the electric field at a fixed value of the z coordinate showing the envelope of the soliton of a SPP E and 
the transverse structure of the TM mode in the layered structure a SNM (magnetic material)/ LHM with simultaneously negative principal 
components of the permittivity and permeability tensors and when the resonance transition monolayer containing the ensemble of SQD is 
present. Along the x-axis, the soliton amplitude decays exponentially as one moves away from the boundary at x=0. The plot corresponds to 
the Case (c). 
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271,C =  2.8,D =  6 11.7 10 ,k cm!
= "   

6 1
1 1.76 10 ,k cm!

= "  1
2 878409 ,k cm!

=  
2

1
ˆ1181N H= !

 (30) 
 These calculations indicate that linear SPPs and solitons 
of SIT in different layered systems (isotropic media/LHMs) 
with a SQD transition layer may be experimentally 
observable. 

CONCLUSION 

 We have considered the properties of linear and 
nonlinear SPP TM modes at the interface between an 
isotropic material and a uniaxial anisotropic LHM with 
simultaneously negative principal components of the 
permittivity and permeability tensors. The dispersion relation 
is determined by equation (19). Conditions for the existence 
of linear SPPs in these layered structures are determined 
from equation (20). For the existence of SPP solitons, it is 
necessary that the conditions Eqs. (1) and (18) are satisfied. 

 In the absence of a transition layer with SQDs, or when 
the carrier wave frequency ω is far away from the fre-
quencies of excitation of the SQDs, the SQDs do not 
influence the wave processes, and under this condition linear 
SPPs are formed. The parameters of the linear surface waves 
for any value of x, z and t, are determined from equations 
(2), (3), (11) and (14). The total energy flow for linear SPPs 
is positive or negative, depending on the sign of the quantity 

1 1 2

1 1 .
xx! " ! "

+  

 When a transition layer with SQDs is sandwiched 
between an isotropic medium and a LHM, surface resonance 

solitons of SIT are formed. The explicit shape and the 
parameters of the surface soliton ( 2!  pulse) for any value of 
x, z and t are determined from Eqs. (2), (3), (11)-(17). The 
parameters of the surface optical solitons depend not only on 
the permittivity and the magnetic permeability ( )µ !

"
 and 

its derivative |
d
d !

µ
"

#=

#
 of the LHM, but also on the SQD 

parameters. Depending on the parameters of the SPP, the 
SQDs, and the connected media, the total energy flow for 
solitons depends on the parameter R and the polarization p  
[Eq. (24)]. 
 The parameters of the surface solitons are very sensitive 
to a change of the parameters of the connected media. 
Gallium arsenide, a metallic medium, a SNM, and a DNM 
are considered as isotropic media. The results of the 
numerical simulations show that in different isotropic media, 
the parameters and form of the solitons of a SPP are 
significantly different [see Eqs. (25)-(30)]. This statement is 
especially evident when comparing the two Cases (a.1) and 
(a.2), where we change the value of only one parameter  ! zz : 
the group velocity, the velocity of the nonlinear pulse, and 
the total energy flow vary by two orders of magnitude. The 
forms of the solitons (at 0x ! ) also change significantly 
(Figs. 2 and 4), though at the boundary (x=0), they have the 
same forms - the hyperbolic-secant form determined by Eq. 
(16) (Case (a.1) is shown in Fig. 3). 
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Fig. (7). Plot of the z component of the electric field at a fixed value of the z coordinate showing the envelope of the soliton of a SPP E and 
the transverse structure of the TM mode in the layered structure a metallic medium / LHM with simultaneously negative principal 
components of the permittivity and permeability tensors and when the resonance transition monolayer containing the ensemble of SQD is 
present. Along the x-axis, the soliton amplitude decays exponentially as one moves away from the boundary at x=0. The plot corresponds to 
the Case(d), for which 5zz! = " . 
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