
18 The Open Operational Research Journal, 2008, 2, 18-24

 1874-2432/08 2008 Bentham Science Publishers Ltd.

Minimizing Makespan on Parallel Machines with Machine Eligibility Re-
strictions

Chien-Hung Lin
1
 and Ching-Jong Liao

*,2

1
Jinwen University of Science and Technology, Taipei County, Taiwan

2
Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan

Abstract: In this paper, we consider a parallel machine problem where machines and jobs can be classified into two lev-

els: high and low levels. A high-level machine can process all jobs while a low-level machine can process only low-level

jobs. The objective of the problem is to minimize the makespan. This problem is a special case of the parallel machine

problem with machine eligibility restrictions. The problem is NP-hard and a heuristic algorithm has recently been pro-

posed. However, there are no algorithms in the literature that can solve the problem to optimality. In this paper, we de-

velop such an exact algorithm by utilizing some useful properties inherent in the problem. Computational experiments

show that the developed algorithm can find the optimal solution for various-sized problems in a short time.

Keywords: Parallel machines, Machine eligibility, Scheduling, Makespan.

INTRODUCTION

 The parallel machine scheduling problem has been dis-

cussed extensively in the literature under the assumption that

all the m machines are capable of processing each of the n

jobs. However, in many real-world situations a job can only

be processed on a subset of the m parallel machines. A

common situation involves the acquisition of new machines

that usually process a given job at the same speed as existing

machines, but have the capability to process other jobs that

existing machines cannot process [1]. Similarly, these new

machines may not be able to process some jobs that existing

machines, with older technologies, can process. As an exam-

ple given by Centeno and Armacost [2], the Probe workcen-

ter in wafer testing, one of the major phases in the manufac-

turing of integrated circuits, frequently involves a number of

testing machines in parallel with different capabilities but

with the same speed. This machine (server) eligibility re-

striction also exists in the service industry where various

customers are entitled to many different grades of service

levels. For example, credit card companies often have plati-

num or infinite members, who are more valued than the

regular members and are usually entitled to premium serv-

ices [3].

 The purpose of this paper is to develop an exact algo-

rithm to find optimal solutions for the parallel machine prob-

lem in the presence of machine eligibility restrictions. The

objective is to minimize the makespan. Following the three-

field notation, the problem can be denoted by

max/ / ,jPm M C where job j is only allowed to be processed

on subset jM of the m machines [4]. We address a special

case of max/ /jPm M C where both machines and jobs can be

*Address correspondence to this author at the Department of Industrial

Management, National Taiwan University of Science and Technology, 43

Keelung Road, Section 4, Taipei, Taiwan 106; E-mail: cjl@im.ntust.edu.tw

classified into two levels: high and low levels. Each job is

allowed to be processed on a particular machine only when

the level of the job is no lower than the level of the machine.

The addressed problem has been shown to be NP-hard by

Hwang et al. [3].

 Due to the complexity of max/ / ,jPm M C exact algo-

rithms can be developed only for problems with unit-length

jobs, i.e., max/ 1, / .j jPm p M C= Pinedo [4] showed that the

least flexible job (LFJ) rule is optimal for

max/ 1, /j jPm p M C= when the jM sets are nested. The sets

jM are nested if the functionality of machines may overlap

but not partially. Glass and Mills [5] improved Pinedo’s al-

gorithm with a new lower bound and further discussed other

scheduling objectives on the same problem. For uniform

parallel machines, Lin and Li [6] developed polynomial time

algorithms to minimize the makespan with jobs requiring

identical processing. Li [7] improved their algorithms and

extended their models to cover various other scheduling ob-

jectives.

 On the other hand, research on machine eligibility restric-

tions with general jobs (non-unit-length jobs) focuses on

developing heuristics for various objectives. Centeno and

Armacost [2] considered a maximum lateness problem with

non-zero release times. They discussed the problem in a real

industrial setting where due dates are equal to release dates

plus a constant. Later, they studied an on-line makespan

minimization problem with jobs having non-zero release

times [1]. As an application in the service industry, Hwang et

al. [3] considered a parallel machine scheduling problem

with the makespan objective under different grades of serv-

ice levels. They investigated the worst-case performance of

LPT (longest processing time) and provided an LG-LPT (low-

est grade-longest processing time) heuristic rule for the prob-

lem. According to the heuristic rule, jobs are first sequenced

based on the priority of the grade of service levels, and then

jobs within the same level are sequenced in the LPT order.

Minimizing Makespan on Parallel Machines with Machine Eligibility Restrictions The Open Operational Research Journal, 2008, Volume 2 19

 In this paper we consider the same problem as Hwang et

al. [3]. To the best of our knowledge, the problem has not

been solved to optimality by any algorithm. In the following,

we will propose an algorithm for obtaining the optimal solu-

tion to the problem.

PROBLEM FORMULATION

 Consider a two-level scheduling problem with

m ()h lm m= + machines and n ()h ln n= + jobs, where the

subscripts h and l stand for the high and low levels. Let jp

be the processing time of job ,j ()h lT T be the sum of proc-

essing times of all high-level (low-level) jobs, and

T (h lT T= +) be the sum of processing times of all jobs. The

objective considered is minimizing the makespan. We con-

sider the problem under the following assumptions:

• Both machines and jobs are classified into two levels:

high and low levels. A high-level machine can proc-

ess all jobs while a low-level machine can process

only low-level jobs.

• All the machines process jobs at the same speed.

• The numbers of machines in both levels are fixed and

known in advance, and so are the numbers of jobs in

both levels.

• The processing times of all jobs are integer.

• The ready times of all jobs are zero.

• No machine may process more than one job at a time.

• Preemptions are not allowed.

SINGLE HIGH-LEVEL MACHINE PROBLEM

 Since all jobs can be processed by the high-level ma-

chine, the number of high-level machines has a greater im-

pact on the solution. Thus, we start to investigate the prob-

lem with a single high-level machine, i.e., 1.hm =

 Let hM denote the single high-level machine and lp

denote the largest processing time of all low-level jobs. In

the following theorem, we show that the problem with a sin-

gle high-level machine can be formulated as a parallel ma-

chine problem without machine eligibility restrictions.

 Theorem 1. The problem with a single high-level ma-

chine can be formulated as a max//Pm C problem.

 Proof. When 1,hm = hM must be busy for processing

during the interval [0,].hT It remains to assign ,lT which is

equivalent to a parallel machine problem with non-

simultaneous machines where only one machine starts at

time hT and all the other lm machines start at time zero. We

can adopt the same idea of Liao et al. [8] by treating the in-

terval [0,]hT as a composite job and scheduling it with all

low-level jobs on the parallel machines, which is simply a

max//Pm C problem.

 In the next theorem, we develop a lower bound on the

makespan for the single high-level machine problem.

 Theorem 2. For the problem with 1,hm = a lower bound

on the makespan is given by

{ }max max , , / .l hC p T T m=

 Proof. The processing requirement hT has to be proc-

essed on ,hM and hence hT is a lower bound. Now consider

the following two cases:

(i) / :h l lT T m In this case, all the processing require-

ment lT should be processed on the lm machines,

which is reduced to a parallel machine problem. A

lower bound for the problem is { }max , / .l l lp T m

Since / ,h l lT T m the lower bound becomes

{ }max , .l hp T

(ii) / :h l lT T m< In this case, lT cannot be completed at

time .hT To minimize the makespan, hM may proc-

ess part of ,lT so a lower bound is / .T m

 Combining all the results, a lower bound can be estab-

lished as { }max max , , / .l hC p T T m=

 Example 1. As an illustration of Theorem 2, consider a

three-machine (1hm = and 2)lm = seven-job problem with

the data given in Table 1. We can compute

1 2 3 75 4 9, ... 8 6 5 4 1h lT p p T p p= + = + = = + + = + + + +

24, 33,h lT T T= = + = and / 33/ 3 11.T m = = So we

can obtain a lower bound { }max max 8,9,11 11.C = =

 By applying Theorems 1 and 2, we can now develop an

algorithm, named Algorithm 1, to solve the problem. Algo-

rithm 1 is based on an algorithm proposed by Lin and Liao

[9], but it is more efficient. The basic idea of Algorithm 1 is

to check whether a specific completion time ,C starting

from max ,C can be achieved. The procedure focuses on only

one machine and considers its assignable interval (0,).C We

assign jobs (workload) into (0,),C and then allocate the rest

of jobs to the remaining machines, which is again a parallel

machine problem and can be solved by Algorithm 1. If the

optimal solution of the embedded parallel machine problem

has a makespan equal to ,C the optimal solution is found;

otherwise, we change the job assignment in (0,)C and re-

peat the procedure. When all job assignments in (0,)C have

been tried by lexicographic search, we relax the assignable

interval by setting 1C C= + and redo the algorithm.

Table 1. Processing Times for Example 1

Job 1 2 3 4 5 6 7

Level h h l l l l l

Processing time 5 4 8 6 5 4 1

h = high, l = low.

 The Steps of Algorithm 1 are given as follows.

20 The Open Operational Research Journal, 2008, Volume 2 Lin and Liao

Algorithm 1

Step 1: Let job c be a composite job with processing time

.hT Arrange all the jobs in the LPT order. Set the

upper bound max .C = Let

{ }max max , , / ,l hC p T T m= max ,C C=

(1) .a T m C=

Step 2: Assign jobs, in order (1,...,),n into the interval

(0,)C until the assigned workload equals to C (if

possible). If job k cannot be put into the remain-

ing interval, proceed with the next job (job 1k +).

Let denote the resulting job sequence and a

denote the associated workload.

Step 3: If ,a a< go to Step 5. Otherwise, assign the rest

of jobs () to the remaining machines by ap-

plying this algorithm inside the loop. Let maxC be

the optimal makespan of the embedded subprob-

lem.

Step 4: If maxmax ,C C< update max .C If max ,C C= the

optimal makespan is C ; stop.

Step 5: Apply lexicographic search to obtain a new job

sequence that is assigned into (0,).C If job 1 is

not in , set 1,C C= + update ,a and return to

Step 2. Otherwise, return to Step 3.

 We now elaborate the algorithm. In Step 1, we set the

prescribed makespan
maxC C= and compute the lower

bound on the assigned workload a in the interval (0,).C

The lower bound a will be established in Theorem 3. In

Step 2, we assign jobs into (0,)C and obtain a sequence

together with an assigned workload .a If a a< (Step 3), the

maximum completion time on the remaining machines must

be greater than .C This indicates that the prescribed

makespan C cannot be achieved. So we proceed immedi-

ately to change the job sequence (Step 5) without further

scheduling the remaining machines; this eliminates much

unnecessary computation. In Step 4, we update the incum-

bent solution if necessary and check whether the prescribed

makespan has been achieved. In Step 5, we change the jobs

in by using lexicographic search. As an illustration, sup-

pose job k is the last assigned job in . Then we replace

job k with job 1k + in . If the last assigned job is job ,n

it is removed and we consider the second to the last position.

The procedure is continued until C has been achieved.

When job 1 is removed from , it implies that C cannot be

achieved. In such a situation, we relax the prescribed

makespan by setting 1C C= + and redo the algorithm.

 Theorem 3. In Algorithm 1, a lower bound on the as-

signed workload in the interval (0,)C is given by

(1)a T m C=

 Proof. Assume that the prescribed makespan C can be

achieved. Then the total processing requirement T can be

assigned to the total capacity of machines ,m C and the

sum of the gaps on all the machines equals ().mC T

Hence, the gap between C and a (the assigned workload)

cannot be larger than (),mC T or mathematically

or (1)

C a mC T

a T m C

 Therefore, a lower bound on a is (1) .a T m C=

 Example 2. As an illustration of Algorithm 1, consider

the same numerical example as in Example 1. Application of

Algorithm 1 results in the following steps:

Step 1. Let job c denote a composite job with 9.hT =

The LPT sequence is (,3,4,5,6,7).c Let

max ,C = max 11,C C= = and (1)a T m C=

33 (3 1) 11 11.= =

Step 2. Assign (,7)c= with 10a = into interval (0,).C

Step 3. Since 10 11,a a= < = go to Step 5.

Step 5. By lexicographic search, we obtain a new job se-

quence ()c= with 9.a = Since job 1 is still in

, return to Step 3.

Step 3. Since 9 11,a a= < = go to Step 5.

Step 5. By lexicographic search, we obtain a new se-

quence (3,7).= Since job 1 is not in , set

1 12C C= + = and 33 (3 1) 12 9.a = = Re-

turn to Step 2.

Step 2. Assign (,7)c= with 10a = into (0,).C

Step 3. Since 10 9,a a= > = the rest of jobs (3,4,5,6)

are assigned to the remaining two machines by

performing the algorithm with two machines. We

obtain max 12C = along with the job sets (3,6)

and (4,5) assigned to the two machines.

Step 4. Since maxmax 12 ,C C= < we update max 12.C =

Since max ,C C= the optimal makespan is 12 and

the algorithm is stopped.

 The optimal schedule is to assign job set (1,2,7) to the

single high-level machine and job sets (3,6) and (4,5) to

the remaining two low-level machines.

TWO HIGH-LEVEL MACHINE PROBLEM

 In this section, we consider the problem with two high-

level machines, i.e., 2.
h
m = Let hp be the largest process-

ing time of all high-level jobs. In the next theorem, we estab-

lish a lower bound on the makespan for a problem with two

or more high-level machines.

 Theorem 4. For the problem with 2,hm a lower bound

on the makespan is given by

{ }max max , , / , / .h l h hC p p T m T m=

Minimizing Makespan on Parallel Machines with Machine Eligibility Restrictions The Open Operational Research Journal, 2008, Volume 2 21

 Proof. All the processing requirement hT has to be proc-

essed by the hm high-level machines, and hence an obvious

lower bound is { }max / , .h h hT m p Now consider the fol-

lowing two cases:

(i) / /h h l lT m T m All lT should be processed on the

lm low-level machines, so a lower bound is

{ }max / , .l l lT m p Since /h hT m / ,l lT m the lower

bound becomes

max Th / mh , pl{ }.

(ii) / /h h l lT m T m< : In this case, the hm high-level ma-

chines may process part of ,lT so a lower bound is

/ .T m

 Combining all the results, a lower bound can be estab-

lished as { }max max , , / , / .h l h hC p p T m T m=

 Example 3. As an illustration of Theorem 4, consider a

four-machine (2, 2),h lm m= = nine-job problem with the

data given in Table 2. We can compute

22,hT = 23,lT = / 11,h hT m = and / 12.T m = Hence

{ }max max 8,9,11,12 12.C = =

 Before presenting the steps of the algorithm for 2,hm =

we briefly explain the basic idea of the algorithm. To begin

with, we set a prescribed makespan max ,C C= where
maxC is

computed according to Theorem 4. We focus on one of the

two high-level machines and assign some high-level jobs

(along with some low-level jobs if necessary) into (0,).C

The remaining problem is treated as a single high-level ma-

chine problem that can be solved by Algorithm 1. If C can-

not be achieved, we change the job combinations in (0,)C

by lexicographic search. When all job combinations in

(0,)C have been tried, we relax the prescribed makespan by

setting 1C C= + and redo the algorithm.

 The Steps of Algorithm 2 are given as follows.

Algorithm 2

Step 1: Arrange all the high-level (low-level) jobs in LPT

such that 1 hnp p 1().hn np p+ Let

{ }max max , , / 2 , / ,h l hC p p T T m=

max ,C C= ,h ha T C= (1) ,a T m C=

max ,C = and () 0A k = for 1,..., .k C=

Step 2: Assign high-level jobs, in order (1,...,),hn into the

interval (0,)C until the assigned workload equals

to C (if possible). If job k cannot be put into the

remaining interval, proceed with the next job (job

1k +). Let h denote the resulting job sequence

and
h
a denote the associated workload.

Step 3: If h ha a< or () 1,hA a = go to Step 8. Otherwise,

set () 1hA a = and () 1.h hA T a = If ,ha C= set

,l = 0la = and go to Step 5.

Step 4: Assign low-level jobs, in order (1,...,),hn n+ into

the remaining interval (,)ha C until the assigned

workload equals hC a (if possible). Let l de-

note the resulting job sequence and la denote the

associated workload.

Step 5: If ,h la a a+ apply Algorithm 1 to assign the rest

of jobs into the remaining machines. Let maxC be

the optimal makespan of the embedded subprob-

lem.

Step 6: If maxmax ,C C< update max .C If max ,C C= the

optimal makespan is C ; stop. If ,ha C= go to

Step 8.

Step 7: Apply lexicographic search to obtain a new l

that is assigned into (,).ha C If there exist jobs in

l , return to Step 5.

Step 8: Apply lexicographic search to obtain a new h

that is assigned into (0,).C If job 1 is not in ,h

set 1,C C= + () 0A k = for 1,..., ,k C= update ha

and ,a and return to Step 2. Otherwise, return to

Step 3.

Table 2. Processing Times for Example 3

Job 1 2 3 4 5 6 7 8 9

Level h h h h l l l l l

Processing time 8 6 5 3 7 6 5 3 2

h =high, l=low.

 We now explain the algorithm. In Step 1, a lower bound

on the assigned workload of high-level jobs is established as

,h ha T C= which is simply an application of Theorem 3

for 2.m = In Step 2, we assign high-level jobs into (0,)C

and obtain a sequence h together with an assigned work-

load .ha The purpose of Step 3 is to avoid repeating the

same procedure. Although the number of high-level job

combinations in (0,)C is quite large, the number of different

workload values is relatively small. To achieve this purpose,

we use ()A k as an indicator to identify whether a workload

k has been tried. The indicator () 1A k = if the workload k

has been tried, and () 0A k = otherwise. In Step 4, we con-

tinue assigning low-level jobs into the remaining interval

(,)ha C and obtain a sequence l together with an assigned

workload .la In the next step, if ,h la a a+ it implies that

the prescribed makespan may be achieved, so we apply Al-

gorithm 1 to assign the rest of jobs to the remaining ma-

chines. Otherwise, we need to change the jobs in l by lexi-

cographic search (Step 7). In Step 6, we update the incum-

bent solution if necessary and check whether the prescribed

makespan has been achieved. If l is empty, we need to

change the jobs in .h When job 1 is removed from ,h it

22 The Open Operational Research Journal, 2008, Volume 2 Lin and Liao

implies that the prescribed makespan C cannot be achieved,

so we proceed with 1C + and redo the algorithm.

 Example 4. As an illustration of Algorithm 2, consider

the same numerical example as in Example 3. Application of

Algorithm 2 results in the following steps:

Step 1. The LPT sequences are (1,2,3,4) for high-level

jobs and (5,6,7,8,9) for low-level jobs. Let

max max, 12, 10,hhC C C a T C= = = = = and

(1) 9.a T m C= =

Step 2. Assign (1,4)h = with 11ha = into interval

(0,).C

Step 3. Since 11 10h ha a= = and (11) 0,A = set

(11) 1.A =

Step 4. Since no low-level jobs can be assigned into the

remaining interval (,),ha C l = and 0.la =

Step 5. Since 11 9,h la a a+ = = apply Algorithm 1 to

assign jobs 2, 3, 5, 6, 7, 8, 9 to the remaining three

machines. We obtain max 12C = along with the job

sets (2, 3), (5, 8, 9) and (6,7).

Step 6. Since maxmax 12 ,C C= < we update max 12.C =

Since max ,C C= the optimal makespan is 12 and

the algorithm is stopped.

 The optimal schedule is to assign job sets (1, 4) and (2, 3)

to the two high-level machines and job sets (5, 8, 9) and

(6,7) to the two low-level machines.

MULTIPLE HIGH-LEVEL MACHINE PROBLEM

 In the same manner, we can develop an algorithm for the

problem with three or more high-level machines. Note that a

lower bound on the makespan has been given in Theorem 4.

Also, recall that in Algorithm 2 we focus on one of the two

high-level machines and treat the remaining problem as a

single high-level machine problem, which can be solved by

Algorithm 1. Similarly, for the hm high-level machine prob-

lem, we still focus on one high-level machine and treat the

remaining problem as an (1)hm high-level machine prob-

lem, which can be solved by the associated algorithm. For

notational convenience, the algorithm for solving the prob-

lem with hm high-level machines is named Algorithm .hm

Algorithm hm is similar to Algorithm 2 except the following

two steps.

Algorithm hm

Step 1: … { }max max , , / , / ,h l h hC p p T m T m= …

Step 5: If ,h la a a+ apply Algorithm (1)hm to assign

the rest of jobs into the remaining machines. …

COMPUTATIONAL RESULTS

 The computational experiments consist of two parts. In

the first part, we justify the use of Theorem 3 in Algorithm 1.

In the second part, we evaluate the developed Algorithms 1

and 2 and access the performance of the LG-LPT heuristic of

Hwang et al. [3]. All the algorithms were coded in Visual

Basic and run on a PC with Pentium 3.0 G CPU.

 Consider the first part of the experiments, where Algo-

rithm 1 was implemented with and without the use of Theo-

rem 3. Various job-sized problems with five machines

(1, 4)h lm m= = were solved. The processing times were

randomly generated from a discrete uniform distribution [1,

500]. The results are summarized in Table 3, which gives the

average of 100 replications. It can be observed that without

the use of Theorem 3 many problems cannot be solved

within the 600-second limit, where the number of unsolved

problems is given in parentheses. For small- and medium-

sized problems the number of unsolvable problems is in-

creased as the job number increases. However, the problem

becomes easier for large-sized problems because the enor-

mous job combinations may easily match the specified inter-

vals to attain optimality. By comparing the results in the two

columns, it shows clearly that the use of Theorem 3 in Algo-

rithm 1 can improve the algorithm significantly.

 In the second part of the experiments, we evaluate both

the efficiency of the developed algorithm and the effective-

ness of the LG-LPT heuristic proposed by Hwang et al. [3].

In the experiment, the processing times of jobs were ran-

domly generated from a discrete uniform distribution

(1,)DU b with b = 25, 50, 100, and 500. Problems were

generated with number of machines 3,4,5m = and number

of jobs n = 10, 15, 20, 30, 50, 100, 500, 1000. The numbers

of high-level machines and jobs were set as 1,2hm =

(1)l hm m and (/) .h hn m m n= For example, in a

problem with 4,m = 1hm = and 30,n = we have 8.hn =

The combinations of the three factors give a total of 160 sets

of problems. For each problem set, 100 replications are

made. Hence, we report the results of the total 16,000 prob-

lems solved.

Table 3. Average Computation Times (in Seconds) by Algo-

rithm 1 with or without Theorem 3

n
Algorithm 1

without Theorem 3

Algorithm 1

(with Theorem 3)

10 0.0125 0.0084

15 0.3406 0.0845

20 5.6136 0.0153

30 0.6337(28) 0.0292

50 0.0000(46) 0.0016

100 0.0002(36) 0.0017

500 0.0080(8) 0.0097

1000 0.0249(4) 0.0267

The number in parentheses at the superscript represents the number of instances (out of
100) taking more than 600 seconds. The average computation time is computed exclud-

ing these instances.

Minimizing Makespan on Parallel Machines with Machine Eligibility Restrictions The Open Operational Research Journal, 2008, Volume 2 23

 Tables 4 and 5 give the average computation time for

each problem solved by Algorithms 1 and 2, respectively.

Examining these tables, we observe that the algorithms ap-

pear to perform rather efficiently in deriving the optimal

solutions, although they have exponential time complexities.

In general, the computation time increases as the number of

machines or the range of processing times increases. How-

ever, as stated earlier the computation time may not always

increase as the number of jobs increases because it is easier

to match the specified interval when there are more jobs.

 Table 6 gives the mean percentage deviation (MPD) from

optimum and the number of optimal solutions (No. Opt.)

obtained by the LG-LPT heuristic in each set of 100 problem

instances. The processing times were generated from

(1,500).DU It is observed that the MPD tends to decrease as

the number of jobs and the number of machines increase

because the problems become easier. For the same number

of machines, problems with few high-level machines have

smaller MPD. The results for the number of optimal solu-

tions are similar to those of mean percentage deviations.

Table 5. Average Computation Time (in 10
-3

 seconds) for

Algorithm 2 (2)hm =

m = 4 m = 5
n

(1,25) (1,50) (1,100) (1,500) (1,25) (1,50) (1,100) (1,500)

10 0.8 1.3 4.8 24.8 2.3 2.0 5.0 27.2

15 1.4 5.3 8.4 101.1 5.3 6.4 69.2 125.8

20 0.6 1.9 8.1 119.2 0.9 7.3 30 206.9

30 0.2 0.3 0.9 59.1 0.5 0.2 0.6 29.5

50 0.6 0.3 0.3 5.2 0.5 1.1 1.3 3.1

100 0.5 0.8 0.9 2.8 0.6 1.3 1.1 2.2

500 8.3 8.4 8.1 8.6 8.4 8.3 8.1 8.9

1000 27.2 27 28.6 27.8 25.8 25.8 24.4 26.7

CONCLUSIONS

 Although the parallel machine problem has attracted

much attention, the studies on the practical problem with

Table 6. Mean Percentage Deviation and Number of Optimal Solutions Obtained by the LG-LPT Heuristic

mh = 1 mh = 2

m = 3 m = 4 m = 5 m = 4 m = 5 n

MPD No. Opt. MPD No. Opt. MPD No. Opt. MPD No. Opt. MPD No. Opt.

10 1.45 54 1.46 64 0.18 96 3.92 41 1.84 76

15 1.39 48 2.57 26 2.07 48 3.89 14 2.69 26

20 0.91 29 1.33 51 2.31 34 2.39 5 2.84 6

30 0.34 51 0.67 42 0.76 57 1.31 1 1.74 2

50 0.12 38 0.25 41 0.31 52 0.40 7 0.53 7

100 0.03 59 0.05 59 0.10 47 0.10 12 0.17 7

500 0.00 70 0.00 75 0.00 69 0.00 54 0.00 36

1000 0.00 88 0.00 86 0.00 80 0.00 79 0.00 73

Table 4. Average Computation Time (in 10
-3

 Seconds) for Algorithm 1

(mh = 1)

m = 3 m = 4 m = 5
 n

(1,25) (1,50) (1,100) (1,500) (1,25) (1,50) (1,100) (1,500) (1,25) (1,50) (1,100) (1,500)

10 0.3 0.2 0.5 2.3 0.8 1.7 5.6 18.1 1.3 2.0 2.5 8.4

15 0.2 0.3 0.3 1.1 0.5 3.8 1.7 32.7 2.0 13.9 63.8 84.5

20 0.5 0.5 0.5 2.2 0.6 0.2 0.5 1.3 0.2 0.6 1.4 15.3

30 0.6 0.5 0.2 0.5 0.2 0.3 0.5 1.3 0.5 0.5 0.6 29.2

50 0.6 0.5 0.6 0.3 0.5 0.6 0.8 0.9 0.8 0.8 0.9 1.6

100 0.6 0.3 0.8 0.8 1.3 1.3 0.6 2.0 0.8 0.8 1.1 1.7

500 7.3 7.5 8.1 8.1 8.1 7.3 8.1 8.0 7.7 8.1 8.1 9.7

1000 28 25.6 26.6 27.5 25.3 25.6 25.5 26.1 24.4 24.8 24.4 26.7

24 The Open Operational Research Journal, 2008, Volume 2 Lin and Liao

machine eligibility restrictions are relatively few. Due to the

complexity of the problem, most previous research has fo-

cused on the problem with unit-length jobs, and the limited

research considering general jobs (non-unit-length jobs) has

mainly aimed at developing heuristic algorithms. In this pa-

per, we have proposed an algorithm that can be used to solve

the problem with general jobs to optimality. The algorithm

has employed some powerful properties, so that it can derive

the optimal solutions for various-sized problems in a short

time. The algorithm has also been used to evaluate the exist-

ing heuristic for the problem. Further research is needed to

develop solution methods for other parallel machine prob-

lems with machine eligibility restrictions, such as non-nested

machine eligibility or multi-level system.

REFERENCES

[1] Centeno G, Armacost RL. Minimizing makespan on parallel ma-
chines with release time and machine eligibility restrictions. Int J

Prod Res 2004; 42: 1243-56.

[2] Centeno G, Armacost RL. Parallel machines scheduling with re-

lease time and machine eligibility restrictions. Comput Ind Eng
1997; 33: 273-6.

[3] Hwang HC, Chang SY, Lee K. Parallel machine scheduling under a
grade of service provision. Comput Oper Res 2004; 31: 2055-61.

[4] Pinedo M. Scheduling: Theory, Algorithms, and Systems. 2nd ed.
Prentice-Hall, Englewood Cli s, NJ. 2002.

[5] Glass CA, Mills HR. Scheduling unit length jobs with parallel
nested machine processing set restrictions. Comput Oper Res 2006;

33: 620-38.
[6] Lin Y, Li W. Parallel machine scheduling of machine-dependent

jobs with unit-length. Eur J Oper Res 2004; 156: 261-6.
[7] Li CL. Scheduling unit-length jobs with machine eligibility restric-

tions. Eur J Oper Res 2006; 174: 1325-28.
[8] Liao CJ, Shyur DL, Lin CH. Makespan minimization for two paral-

lel machines with an availability constraint. Eur J Oper Res 2005;
160: 445-56.

[9] Lin CH, Liao CJ. Makespan minimization subject to flowtime
optimality on identical parallel machines. Comput Oper Res 2004;

31: 1655-66.

Received: December 31, 2007 Revised: February 20, 2008 Accepted: February 29, 2008

