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Abstract: The particular structure of the assignment problem made of it a very popular subject of study and an important 

research tool in operations research and management science. In addition to the importance that the assignment problem 

represents in its own, it can appear as a relaxation of more complex combinatorial optimization problems. That is why the 

assignment problem has received great attention from the operations research community. The assignment problem may 

appear as an optimization problem with multiple objectives. In this paper, we address the problem of efficiency of feasible 

solutions of a multicriteria assignment problem. It is done in two steps. In the first step, we determine whether or not a 

given feasible solution of a multicriteria assignment problem is efficient. In a second step, if the feasible solution is not ef-

ficient, we provide an efficient solution that dominates it. The proposed method consists of transforming the original prob-

lem into an assignment problem with side constraints for which solution techniques already exist. 

INTRODUCTION 

 The (standard) assignment problem consists of assigning 

a number of tasks to an equal number of agents (each agent 

is assigned to exactly one task and each task has exactly one 

agent assigned to perform it) in such a way to minimize the 

overall cost of assigning agents to tasks, given the cost of the 

assignment of each agent to each task. The mathematical 

formulation of the standard assignment problem (SAP) is as 

follows: 
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subject to X  = 1, i = 1, ..., n

                X  = 1, j = 1, ..., n

                 X 0,1 , i, j = 1, ..., n

 

where for all i, j = 1, …, n, cij is the cost of assigning agent i 

to task j, Xij = 1 means that agent i is assigned to task j and 

Xij = 0 means that agent i is not assigned to task j. 

 The first set of constraints implies that each agent is as-

signed to one and only one task and the second set of con-

straints implies that to each task is assigned one and only one 

agent. 

 It is worth to mention that the constraints Xij = 0 or Xij = 

1 for all i, j = 1, …, n can be replaced by the constraints Xij  

0 for all i, j = 1, …, n because the assignment problem satis-

fies the important property of total unimodularity. 

 In addition to the minimization of assignment cost, an 

assignment problem may consider other objective functions  
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such as the minimization of completion time. When the as-

signment problem is considered with the minimization of 

assignment cost as the objective function, it is called the cost 

minimizing assignment problem. 

 It is worth to recall that the assignment problem has been 

used in a variety of application contexts such as personnel 

scheduling, manpower planning and resource allocation. 

 Sonia and Puri [1] reported that various methodologies 

including primal-dual algorithms, simplex-like methods, cost 

operation algorithms, forest algorithms and relaxation tech-

niques have been proposed in the literature to solve the cost 

minimizing assignment problem. 

 The well-known Hungarian method developed by Kuhn 

and published in 1955 [2] is recognized to be the first practi-

cal method for solving the SAP [3]. Due to the important 

impact of the seminal paper [2] on the research related to the 

assignment problem, the Naval Research Logistics journal 

that published [2] decided to reprint it in 2005 [4] exactly 

fifty years after its first publication. 

 The standard assignment problem can be seen as a re-

laxation of more complex combinatorial optimization prob-

lems such as traveling salesman problem [5-6], quadratic 

assignment problem [7], etc. It can also be considered as a 

particular transportation problem with all supplies and de-

mands equal to 1. The assignment problem has also several 

variations such as the semi-assignment problem and the k-

cardinality assignment problem. The reader interested in 

more details about these two problems or other variations 

can see [3] for a comprehensive survey of the assignment 

problem variations. 

 Many optimization problems in real-world applications 

are multiobjective in nature; indeed a single objective is 

rarely sufficient to embrace all facets of the problem which 

should be considered for the evaluation and comparison of 
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the alternatives. In that, the assignment problems are not an 

exception; they can also involve multiple objectives. Indeed, 

in the problem of assigning jobs to machines, the minimiza-

tion of completion time can also be an important objective in 

addition to the conventional objective which is the minimiza-

tion of assignment cost. 

 It is worth to indicate that throughout this paper, we in-

differently use the terms “multiobjective” and “multicrite-

ria”. 

 In multiobjective optimization problems, there often exist 

conflicts (contradictions) between the different objectives to 

be optimized simultaneously. Two objective functions are 

said to be in conflict if the full satisfaction of one, results in 

only partial satisfaction of the other. In other words, the op-

timal solutions for the two objective functions are not the 

same. There rarely exists a solution that is optimal with re-

spect to all objective functions. If such a particular case 

arises then only solutions that are optimal with respect to 

each objective function are efficient. That is why multiobjec-

tive optimization problems are said to be ill-defined mathe-

matically. Indeed, an optimal solution i.e. a solution that is 

optimal with respect to all objective functions rarely exists. 

 An important issue in multiobjective optimization prob-

lems is the determination of efficient (also called Pareto-

optimal, non-inferior, non-dominated) solutions among 

which the final solution is to be found. Dominated solutions 

are excluded from further investigations in the sense that the 

final solution of the multiobjective optimization problem is 

looked for among only the efficient solutions. 

 The final solution of a multiobjective optimization prob-

lem depends on the trade-offs between the different conflict-

ing criteria which the decision maker is willing to accept. To 

calculate what can be considered as the “optimal” solution in 

such models, additional information is needed – this infor-

mation can only be obtained from subjective preferences of 

the decision maker, and the preferred solution is then consid-

ered as the “best compromise” solution. The compromise 

relates to the trade-offs made between the different criteria. 

 The first paper addressing the multiobjective nature of 

the assignment problem was published by Charnes et al. in 

1969 [8]. Notwithstanding the fact that no solution technique 

was proposed in this paper, it has however emphasized the 

importance of considering multiple criteria in assignment 

problems which has the merit of initiating a new research 

direction in assignment problems. 

 Very few publications addressed the problem of deter-

mining the efficient solutions of a general multiobjective 

assignment problem with any number of objective functions 

and only particular cases such as the biobjective assignment 

problem [9] were considered. The proposed techniques can-

not be easily generalized to the general case of multiobjec-

tive assignment problem. 

 Pentico [3] reported multiobjective assignment problems 

where the solution techniques either combine all objective 

functions into a single objective function as in Scarelli and 

Narula [10] or consider the objective functions separately 

and sequentially as in Lee and Schniederjans [11]. Both ap-

proaches are not suitable to tackle the case where all objec-

tive functions are considered simultaneously. 

 As for other multiobjective optimization problems, an 

important research issue in multiobjective assignment prob-

lems is the one related to the study of efficient solutions. 

 Since in general the set of efficient solutions can be very 

large, many of them are not worth to be determined. That is 

why, we follow a different approach in this paper. Given a 

feasible solution with interesting characteristics, we deter-

mine whether or not this solution is efficient and in the case 

where it is not efficient we provide an efficient solution 

which dominates it. 

 The paper is organized as follows. In the second section 

we provide the description and formulation of the problem of 

studying the efficiency of feasible solutions of a multiobjec-

tive assignment problem as addressed in this paper. The third 

section is devoted to the presentation of the method followed 

to answer the questions raised in this paper and which is 

based on the transformation of the original problem into an 

assignment problem with side constraints. In the final sec-

tion, we give some concluding remarks. 

PROBLEM DESCRIPTION AND FORMULATION 

 Let us consider an assignment problem with s objective 

functions denoted as MOAP(s) and formulated as follows: 
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“min” is used to indicate that there does not necessarily ex-

ists a solution having the minimum value with respect to 

each objective function and undoubtedly the “optimal” solu-

tion will depend on the trade-offs to be made between the 

different objective functions. 

 Let X
0
 be a feasible solution of MOAP(s) i.e., X

0
 satisfies 

constraints (2), (3) and (4). 

 In the first step, we are interested in determining whether 

or not X
0
 is an efficient solution of MOAP(s) and in the case 

where X
0
 is not efficient, we determine in the second step a 

solution X
*
 that is an efficient solution of MOAP(s) and 

which dominates X
0
. The idea is that the efficiency of X

0
 is 

investigated because it is assumed to be an interesting solu-

tion for the decision maker and its efficiency is checked be-

fore its selection as a final solution. In the case where it is 

not efficient, X
*
 is not only efficient but it also dominates X

0
 

which makes of it even a better candidate for selection. 

 Let us recall that X
0
 is an efficient solution of MOAP(s) 

if and only if there does not exist any solution X satisfying 

constraints (2), (3) and (4) such that: (i) Z
k
(X)  Z

k
(X

0
), for 
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all k = 1, …, s, and (ii) there is at least one index h, 1  h  s, 

for which Z
h
(X) < Z

h
(X

0
). 

 It is worth to notice that Z
k
(X)  Z

k
(X

0
), for all k = 1, …, 

s with at least one strict inequality is equivalent to Z
k
(X)  

Z
k
(X

0
), for all k = 1, …, s and 

0

1 1
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Z X Z X . 

 Consequently, the feasible solution X
0
 is efficient if the 

system (S) defined as follows is not feasible. 
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 Let us define Cij, Aijk and Bk, for i, j = 1, ...., n, and k = 1, 

..., s as follows: 

s
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 Let us define Z(X) as follows: 
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 With these transformations, we obtain an assignment 

problem with s side constraints which we denote as 

APSC(X
0
). Its formulation is as follows: 
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 It is worth to notice that the number of side constraints in 

APSC(X
0
) is equal to the number of objective functions in 

MOAP(s). 

 For the kth side constraint, k = 1, …, s, the left member is 

simply the kth objective function in MOAP(s) and the right 

member is the value of kth objective function for the feasible 

solution X
0
. 

 The objective function of APSC(X
0
) is the sum of the s 

objective functions Z
k
(X), k = 1, …, s of the problem 

MOAP(s). 

 APSC(X
0
) is exactly similar to the 0-1 assignment prob-

lem with side constraints studied by Mazzola and Neebe in 

[12] and for which they proposed both a branch-and-bound 

algorithm to solve it to optimality and a heuristic procedure 

for obtaining approximate solutions. 

 The branch-and-bound algorithm developed in [12] com-

bines a depth-first polychotomous branching strategy with a 

bounding procedure utilizing the subgradient optimization. 

 In the next section, we will see how solving the problem 

APSC(X
0
) to optimality can: (i) provide an answer to 

whether or not the feasible solution of MOAP(s) X
0
 is effi-

cient and (ii) in the case where it is not efficient determine an 

efficient solution of MOAP(s) which dominates X
0
. 

PROBLEM SOLVING 

 Let X
0
 be a given feasible solution of MOAP(s) i.e. X

0
 

satisfies constraints (2), (3) and (4). 

 It is worth to notice that the set of feasible solutions of 

MOAP(s) and the set of feasible solutions of SAP are the 

same. Consequently, the set of feasible solutions of 

MOAP(s) can be obtained through the use of any solution 

technique of SAP. 

 In this section, we address two problems: (i) we investi-

gate whether or not X
0
 is an efficient solution of MOAP(s) 

and (ii) in the case where X
0
 is found to be not efficient we 

determine an efficient solution that dominates X
0
. With re-

spect to each objective function of MOAP(s), the obtained 

solution is at least as good as X
0
. 

 Let X
*
 be an optimal solution of APSC(X

0
) obtained e.g., 

through the use of the branch-and-bound algorithm of Maz-

zola and Neebe [12]. 

 Depending on the value of the objective function of 

APSC(X
0
) for the optimal solution X

*
, two cases can be dis-

tinguished: 

n n n n s
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ij ij ij ij
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n n n n s
k

ij ij ij ij

i=1 j=1 i=1 j=1 k

C X C X Z (X )
=

=
0 0

1

       (13) 

 In the first case (12), the feasible solution X
0
 is efficient 

because any feasible solution of MOAP(s) which is at least 
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as good as X
0
 with respect to all criteria i.e., fulfils the con-

straints of APSC(X
0
) cannot be strictly better than X

0
 on one of 

the s criteria. Indeed, if there exist a solution X
’
 that is feasible 

for APSC(X
0
) and an index h, 1  h  s, such that Z

h
(X’) < 

Z
h
(X

0
), then: 

 
n n s s

' k k *
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i=1 j=1 k k

C X Z (X ) Z (X )
= =

=
0

1 1

       (14) 

contradicts the fact that X
*
 is an optimal solution to APSC (X

0
). 

 In the second case (13), the feasible solution X
0
 is not effi-

cient and X
*
 is an efficient solution that dominates X

0
. Indeed, 

since Z
k
(X

*
)  Z

k
(X

0
), for all k = 1, …, s because X

*
 satisfies 

constraints (11), and (13) is fulfilled then there necessarily ex-

ists an index h, 1  h  s, such that Z
h
(X

*
) < Z

h
(X

0
). Conse-

quently, X
*
 dominates X

0
. X

*
 is an efficient solution for 

MOAP(s). Indeed, if X
*
 is not efficient, then there will exist X 

satisfying (2), (3), and (4) such that Z
k
(X)  Z

k
(X

*
), for all k = 

1, …, s and 

s s
k k *
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 Since for all k = 1, …, s, Z
k
(X)  Z

k
(X

*
) and Z

k
(X

*
)  

Z
k
(X

0
), then necessarily Z

k
(X)  Z

k
(X

0
) for all k = 1, …, s. 

Hence, X satisfies (11). Since X satisfies also (2), (3), and (4), 

then X is a feasible solution of APSC (X
0
). The fact that X

*
 is 

an optimal solution of APSC (X
0
) implies that 

s s
k * k

k k

Z (X ) Z (X)
= =1 1

which contradicts condition (15). 

 We have shown that solving APSC (X
0
) to optimality is a 

sufficient means to answer the question “Is X
0
 an efficient solu-

tion?” and to determine an efficient solution that dominates X
0
 

in the case where X
0
 is not efficient. 

CONCLUSIONS 

 Real-life assignment problems may involve more than a 

single objective function to optimize that is why multiobjective 

assignment models suit better to real-life assignment applica-

tions than single objective assignment models. An important 

concept in multiobjective optimization is the one related to 

efficient solutions. 

 In this paper, we investigated the problem of knowing 

whether or not a given feasible solution of a multiobjective 

assignment problem is efficient and in the case where it is not 

efficient we provided a technique to determine an efficient so-

lution that dominates it. A fortiori, the later is at least as good 

as the former since it has equal or better performances on all 

criteria. 

 The way in which the problem of efficiency of feasible 

solutions of a multiobjective assignment problem is tackled in 

this paper is different from the conventional one where all effi-

cient solutions are determined in a first step and the final solu-

tion is looked for among them in a second step. It should be 

noticed that until now there does not exists any technique that 

can determine all efficient solutions of a general multiobjective 

assignment problem; only particular cases such as the biobjec-

tive assignment problem are dealt with in the literature. 

 We provided a means for answering the two questions 

raised in this paper through the transformation of the original 

problem into an assignment problem with side constraints simi-

lar to the one considered in [12] for which there exists a 

branch-and-bound algorithm that solve it to optimality. It is the 

comparison between the feasible solution of the multiobjective 

assignment problem and the optimal solution(s) of the induced 

assignment problem with side constraints that allow to answer 

the two questions. 

 The main application of the work developed in this paper is 

mainly the case where an interesting feasible solution of a 

multiobjective assignment problem is given and where its se-

lection as a final solution is conditioned by the fact whether or 

not it is an efficient solution. 

 It is important to notice that this work provides an addi-

tional potential application of the solution techniques of the 

assignment problem with side constraints and particularly those 

solving it to optimality. 
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