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INTRODUCTION 

 In comparison with the classical perfectly (Walrasian) 

and imperfectly (Cournot - Bertrand) competitive models, 

auction market models are paid considerably less attention 

and usually restricted with several game-theoretic models; 

see e.g. [1,2] and references therein. However, the auction 

principle appears to be very suitable for control of certain 

economic processes related to privatization of great parts of 

the state property, especially, related to natural monopolies. 

For this reason, creation of adequate mathematical models of 

auction markets, which allow for investigation and solution 

of these very complicated problems, is very urgent. 

 Recently, the variational inequality approach for model-

ing separate auction markets of a homogeneous commodity 

with participants possessing price functions was proposed in 

[3-5]. It appeared to be very suitable both for obtaining exis-

tence and uniqueness results and for developing new solution 

methods. 

 In this paper, we first extend this approach for separate 

auction markets where participants’ reactions are described 

by general multi-valued price mappings. Next, we consider 

an essentially more complicated problem of managing a sys-

tem of such spatially separated auction markets under joint 

capacity and balance constraints. Such problems draw close 

attention due to the necessity to handle many problems aris-

ing from restructuring large energy systems. Usually, the 

corresponding models admit only fixed prices, nevertheless, 

they are formulated as two-level global optimization or so-

called MPEC problems or mixed integer optimization prob-

lems which create certain difficulties in dealing with high-

dimensional problems arising typically in applications; see 

e.g. [6,7] and references therein. Unlike these approaches,  
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we propose a variational inequality problem on a polyhedral 

feasible set and show that its solutions enable us to find both 

the bid and offer volumes and auction clearing prices for 

each separate market. This result gives an efficient tool for 

investigation and solution of very general spatial auction 

market problems. 

1. Single Auction with Price Mappings 

 Let us consider the auction market which involves  m  

sellers and  l  buyers of a homogeneous commodity, whose 

prices depend on offer/bid values. The  i -th seller chooses 

his offer value 
 
x

i
 within some segment 

  
[

i
,

i
]  and his 

price 
 
g

i
, whereas the 

 
j -th buyer chooses his bid value 

 
y

j
 

within some segment 
  
[ j, j

]  and his price 
 
h

j
. The stan-

dard situation corresponds to the case when 
  i

= 0 . 

 The simplest behavior of participants can be reflected by 

the assumption that all the prices are fixed, i.e. they are inde-

pendent of volumes and choices of other participants. How-

ever, we intend to consider the more general and real case 

where the behavior of participants is rather complex and 

mutually dependent. Namely, we suppose that given an of-

fer/bid values vector 
  
(x, y)  where 

  
x = (x

1
,…, x

m
)  and 

  
y = ( y

1
,…, y

l
) , their price reactions constitute a set 

  
W (x, y) Rm+l

. This means that each price 
 
g

i
 or 

 
h

j
 is a 

function whose values depend on all the volumes and the 

other prices, hence 

  
w W (x, y) w = (g

1
,…, g

m
,h

1
,…,h

l
) Rm+l

.  

 The particular case where prices of sellers do not depend 

on volumes and prices of buyers and, conversely, prices of 

buyers do not depend on volumes and prices of sellers, cor-

responds to the separable values of  W : 
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W (x, y) = G(x) H ( y); g G(x),h H ( y)

g = (g
1
,…, g

m
),h = (h

1
,…,h

l
).

 

 In the single-valued case we simply have 

  
W (x, y) = { (g

1
(x, y),…, g

m
(x, y),h

1
(x, y),…,h

l
(x, y)) }.  

 In general, we thus define the price mapping 

  
W : R

m+l (R
m+l ) . Here and below, 

  
( A)  denotes the 

family of all nonempty subsets of a set  A . Additionally, we 

can take into account the “passive" economic agents who do 

not participate explicitly in the auction process but agree 

beforehand with its price. We suppose that their total excess 

demand is fixed and equal to  b . The value of  b  may be 

positive or negative and may in principle determine the pre-

scribed dis-balance value. The usual choice   b = 0  leads to 

the precise balance and forces the auction market to be a 

closed system. However, if  b  is an arbitrary parameter, we 

can place the model in more general settings and take into 

account the reaction of some external economic agents. The 

solution of the problem is constituted by a volumes vector 

  
(x , y )  and a price 

 
p  such that there exists 

  
w = (g

1
,…, g

m
,h

1
,…,h

l
) W (x , y ),  

satisfying the conditions: 

  

g
i

p ifx
i
= i,

= p ifx
i

( i, i
),

p ifx
i
=

i
,

for i = 1,…,m;         (1) 

and 

  

h
j

p ify
j
= j,

= p ify
j

( j, j
),

p ify
j
=

j
,

for j = 1,…, l;         (2) 

and also 

  
(x , y ) Z,             (3) 

where 

  

Z = (x, y) Rm+l

i=1

m

x
i

j=1

l

y
j
= b,

i x
i i

, i = 1,…,m,

j y
j j

, j = 1,…, l.

.  

 Thus, the choice of bid/offer volumes must be feasible in 

the sense of restrictions for volumes of economic agents and 

equilibrate the supply and demand, furthermore, each trader 

sells the minimal (respectively, maximal) value if its price is 

greater (less) than the (unknown) auction price 
 
p , and each 

buyer purchases the maximal (respectively, minimal) value if 

its price is greater (less) than the (unknown) auction price 

 
p , which conforms to the auction principle. 

 The main difficulty of the formulation (1)-(3) is in the 

fact that it involves the superfluous unknown auction price. 

We propose an equivalent variational inequality (VI) formu-

lation of the problem for excluding the unknown price 
 
p . 

Theorem 1. (i) If 
  
(x , y , p )  is a solution of problem (1)-

(3), then 
  
(x , y )  solves the problem: 

  

w = (g
1
,…, g

m
,h

1
,…,h

l
) W (x , y ),

i=1

m

g
i
(x

i
x

i
)

j=1

l

h
j
( y

j
y

j
) 0 (x, y) Z.

        (4) 

 (ii) Conversely, if 
  
(x , y ) Z  satisfies (4), then there 

exists a number 
 
p  such that 

  
(x , y , p )  is a solution of 

problem (1)-(3). 

 Proof. (i) Let (1)-(2) hold for some 
  
(x , y ) Z  and 

  
w = (g

1
,…, g

m
,h

1
,…,h

l
) W (x , y ) . Then we can define 

the Lagrangian 

  

L(x, y, p) =
i=1

m

g
i
x

i
j=1

l

h
j
y

j
p

i=1

m

x
i

j=1

l

y
j

b        (5) 

and rewrite conditions (1)-(2) as follows: 

  

L(x , y , p )

x
i

(x
i

x
i
) 0 x

i
[ i, i

], i = 1,…,m;

L(x , y , p )

y
j

( y
j

y
j
) 0 y

j
[ j, j

], j = 1,…, l.

    (6) 

 By using the suitable Karush-Kuhn-Tucker theorem (see 

e.g. [8, Chapter 4, Theorem 2.4] or [9, Proposition 1.3.4]), 

we see that 
  
(x , y )  must solve the problem 

  

minimize
i=1

m

g
i
x

i
j=1

l

h
j
y

j
,

(x, y) Z

          (7) 

i.e. 
  
(x , y )  solves problem (4). 

 (ii) If a pair 
  
(x , y )  solves problem (4) for some 

  
w = (g

1
,…, g

m
,h

1
,…,h

l
) W (x , y ) , it solves (7). By using 

the other part of the same Karush-Kuhn-Tucker theorem, we 

obtain that there exists 
 
p  such that (6) holds, i.e. the La-

grangian defined in (5) has the saddle point. But (6) implies 

(1)-(2) and the result follows. 

 From the proof it follows that the auction price 
 
p  coin-

cides with the Lagrange multiplier for the balance constraint 

  i=1

m

x
i

j=1

l

y
j
= b . After solving VI (4) we can find the auc-

tion price easily from (1)-(2). 

 Observe that each participant, unlike the perfect competi-

tion conditions, may now utilize additional information 

about the other agents, however, the auctioneer rule gives a 
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clear principle for setting the price. If we define the mapping 

  
V : R

m+l (R
m+l )  by the formula: 

  

v V (x, y) v = (v
1
,…,v

m
,v

m+1
,…,v

m+l
),

(v
1
,…,v

m
, v

m+1
,…, v

m+l
) W (x, y)

         (8) 

and set 
  
z = (x, y) , then (4) is rewritten in the standard multi-

valued VI format: Find  z Z  such that 

  
v V (z ),< v , z z > 0 z Z.          (9) 

 Hence, we can apply the well-developed techniques from 

the theory and solution methods of VIs for investigation and 

solution of the initial problem. 

 Recall that a multivalued mapping 
  
Q : R

n (R
n )  is 

said to be a  K  (Kakutani)-mapping on a set  X  if it is upper 

semicontinuous on  X  and has nonempty, convex, and com-

pact values. 

 For instance, we apply the known result that any VI with 

 K -mapping and convex and compact feasible set is solv-

able; see e.g. [10] and [11, Theorem 4.2.12]. 

 Corollary 1. If the set  Z  is nonempty and bounded, and 

  
V : R

m+l (R
m+l )  in (8) is a  K -mapping on  Z , then 

problem (4) is solvable. 

 Obviously, solvability of VI (4) (or (9)) implies the solv-

ability of the auction equilibrium problem (1)-(3) with the 

corresponding feasible set. The uniqueness may be derived 

under the strict monotonicity of the mapping  V . Besides, 

there are many other existence and uniqueness theorems for 

VIs, including the unbounded case (see e.g. [11,12] and ref-

erences therein), which can be also applied to the above 

problem. 

 Being based on these results, we can utilize numerous 

iterative algorithms for VIs (see [13,12,9]) both for computa-

tion of a solution of auction market problems and for model-

ing dynamic auction market processes and investigating their 

stability. 

2. Constrained Spatial Auction Markets with Price Map-

pings 

 We now consider a system of  n  markets of a homogene-

ous commodity, which are joined by links (transmission 

lines) in a network. We denote by 
 
I

k
 and 

 
J

k
 respectively, 

the index sets of sellers and buyers of the  k -th local market 

associated with the  k -th node. It is supposed that the  i -th 

seller chooses his offer value 
i
x  within the segment 

  
[

i
,

i
]  with 

  i
0  for 

 
i I

k
 and his price 

 
g

i
, whereas 

the 
 
j -th buyer chooses his bid value 

 
y

j
 within the segment 

  
[ j, j

]  with 
  j 0  and his price 

 
h

j
 for 

 
j J

k
. We 

also suppose that the behavior of participants of the  k -th 

local market is the same as in the previous case. That is, 

given the volume vectors 
  
x

(k )
= (x

i
)

i I
k

 and 
  
y

(k )
= ( y

j
)

j J
k

, 

their price reaction is a set 
  
W

(k )
(x

(k )
, y

(k )
) , hence 

  
w

(k )
W

(k )
(x

(k )
, y

(k )
) w

(k )
= (g

i
)

i I
k

,(h
j
)

j J
k

,  

i.e., it again involves prices of sellers and buyers of this mar-

ket, thus defining the multi-valued mapping 

   
(x

(k )
, y

(k )
) W

(k )
(x

(k )
, y

(k )
) . We define the sets of offer/bid 

bounds for the  k -th auction 

  

X
(k )

=
i I

k

[ i, i
], Y

(k )
=

j J
k

[ j, j
].  

 Due to the auction principle, the solutions 

  
(x

(k )
, y

(k )
) X

(k )
Y

(k )
 must satisfy the auction market con-

ditions: 

  
w

(k )
= (g

i
)

i I
k

,(h
j
)

j J
k

W
(k )

(x
(k )
, y

(k )
)        (10) 

such that 

  

g
i

p
k

if x
i
= i,

= p
k

if x
i

( i, i
),

p
k

if x
i
=

i
,

i I
k
;        (11) 

and 

  

h
j

p
k

if y
j
= j,

= p
k

if y
j

( j, j
),

p
k

if y
j
=

j
,

j J
k
;        (12) 

where 
 
p

k
 is the (unknown) auction clearing price of the  k -

th market. Also, the solutions must satisfy the market bal-

ance equation: 

  i I
k

x
i

j J
k

y
j

u
k
= 0          (13) 

where 
 
u

k
 is the (unknown) value of external (with respect to 

the  k -th market) demand and these values give the total bal-

ance equation for the system: 

  k=1

n

u
k
= 0.           (14) 

 However, we have also to take into account the condi-

tions of the graph associated with the system of distributed 

markets. We denote by  A  the set of all the arcs joining the 

nodes attributed to markets. Let af  denote the commodity 

flow for arc 
  
a = (k, l)  and let 

  
[

ab ,
ab ]  be the segment of 

feasible upper capacity bounds for this arc. Given the flow 

vector 
  
f = ( f

a
)

a A
, we can define the cost 

  
c

a
= c

a
( f )  of 

shipment on one unit of the commodity along arc  a A .  
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Next, for a given node  k , we denote by 
 
A

k

+
 and 

 
A

k
 the sets 

of incoming and outgoing arcs at  k . Note that 
 
I

k
 and 

 
J

k
 

can be empty for some k  and this case corresponds to an 

intermediate node. 

 If 
 
f  is the optimal flow distribution corresponding to 

  
x

(k )
, y

(k )
,u

k
 in (11)-(14), then we have the node balance 

equation 

  a A
k

f
a

a A
k
+

f
a

u
k
= 0, k = 1,…,n;   (15) 

and the flow capacity constraints 

  
f

a
[ ab , ab ], a A.          (16) 

 In principle, relations (10)-(13) for 
  
k = 1,…,n , and (14)-

(16) give a possible formulation of the constrained spatial 

equilibrium problem for a system of auction markets. How-

ever, we can impose the additional equilibrium conditions on 

prices, unit transmission costs, and transmission volumes 

between markets: 

  

c
a
( f ) + p

k
p

l

0 if f
a
= ab ,

= 0 if f
a

( ab , ab ),

0 if f
a
= ab ,

a = (k, l) A.   (17) 

 Then, the basic constrained spatial auction market equi-

librium problem will consist in finding 
  
(x , y ,u , f )  satis-

fying (10)-(13) for 
  
k = 1,…,n , and (14)-(17), where 

  
x = (x

(k )
)

k=1,…,n
, 

  
y = ( y

(k )
)

k=1,…,n
, 

  
u = (u

1
,…,u

n
) . 

 We now present a variational inequality problem, whose 

solutions satisfy the above conditions. Set 

  

X =
k=1

n

X
(k )
,Y =

k=1

n

X
(k )
,F =

a A

[
ab ,

ab ]  

and define the set 

  

D =
(x, y, f )

X Y F

a A
k

f
a

a A
k
+

f
a

i I
k

x
i

j J
k

y
j
=0 k=1,…,n

.       (18) 

 The problem is to find 
  
(x , y , f ) D  such that 

  

w
(k )

= (g
i
)

i I
k

,(h
j
)

j J
k

W
(k )

(x
(k )
, y

(k )
), k = 1,…,n;

k=1

n

i I
k

g
i
(x

i
x

i
)

j J
k

h
j
( y

j
y

j
)

+
a A

c
a
( f )( f

a
f

a
) 0 (x, y, f ) D.

      (19) 

 Observe that the above VI involves only volume vari-

ables and its feasible set is clearly convex and closed. Also, 

instead of the separate balance equations (13) and (15), we 

utilize in (18) the material balance equation between external 

and internal flows at each market. 

 First we give the necessary and sufficient conditions of 

optimality for problem (18)-(19). 

 Proposition 1. (i) If 
  
(x , y , f )  is a solution of problem 

(18)-(19), there exist numbers 
 
p

k
, 

  
k = 1,…,n  such that 

  

w
(k )

= (g
i
)

i I
k

,(h
j
)

j J
k

W
(k )

(x
(k )
, y

(k )
), k = 1,…,n;

k=1

n

i I
k

g
i
(x

i
x

i
)

j J
k

h
j
( y

j
y

j
)

+
a A

c
a
( f )( f

a
f

a
)

k=1

n

p
k

i I
k

(x
i

x
i
)

j J
k

( y
j

y
j
)

a A
k

( f
a

f
a

) +
a A

k
+

( f
a

f
a

) 0 (x, y, f ) X Y F

   (20) 

and 

  
a A

k

f
a

a A
k
+

f
a

i I
k

x
i

j J
k

y
j
= 0 k = 1,…,n.       (21) 

 (ii) If elements 
  
(x , y , f , p ) X Y F Rn

 satisfy 

(20)-(21), then 
  
(x , y , f )  solves problem (18)-(19). 

 Proof. If the triplet 
  
(x , y , f )  is a solution of problem 

(18)-(19), it solves the optimization problem: 

  

minimize
k=1

n

i I
k

g
i
x

i
j J

k

h
j
y

j
+

a A

c
a
( f ) f

a
.

(x, y, f ) D

     (22) 

 Then, using the “necessity" part of the suitable Karush-

Kuhn-Tucker theorem (see e.g. [8, Chapter 4, Theorem 2.4] 

or [9, Proposition 1.3.4]), we see that there exist numbers 

 
p

k
, 

  
k = 1,…,n  such that (20)-(21) hold true. 

 Conversely, if elements 
  
(x , y , f , p ) X Y F Rn

 

satisfy (20)-(21, then, by using the “sufficiency" part of the 

same Karush-Kuhn-Tucker theorem, we see that the triplet 

  
(x , y , f )  must solve the optimization problem (22), there-

fore, it solves problem (18)-(19). 

 Now we can establish the basic equivalence result. 

 Theorem 2. (i) If 
  
(x , y , f )  is a solution to (18)-(19), 

then there exist numbers 
 
p

k
 and 

  
u

k
, k = 1,…,n  such that 

(10)-(13) for 
  
k = 1,…,n , and (14)-(17) hold true. 

 (ii) If elements 
  
(x , y , f , p ,u ) X Y F Rn Rn

 

satisfy (10)-(13) for 
  
k = 1,…,n , and (14)-(17), then 

  
(x , y , f )  solves problem (18)-(19). 

 Proof. Due to Proposition 1 we see that it is sufficient to 

show that for given elements 
  
(x , y , f , p ) X Y F Rn  

the conditions (10)-(13) for 
  
k = 1,…,n , and (14)-(17) are 

equivalent to (20)-(21). So, let first the conditions (20)-(21) 

hold true for some elements 
  
(x , y , f , p ) X Y F Rn . 
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Then (10) clearly holds. Determine the numbers 
k
u , 

  
k = 1,…,n  from (15), then (21) gives (13). Moreover, sum-

ming (15) over 
  
k = 1,…,n  gives 

  
k=1

n

u
k
=

k=1

n

a A
k

f
a

a A
k
+

f
a

= 0  

since the right-hand side expression involves twice the flow 

value for each arc  a  with opposite signs. Hence, (14) also 

holds. Next, we see that (20) is equivalent to the following 

set of partial variational inequalities: 

  

(g
i

p
k
)(x

i
x

i
) 0 x

i
[ i, i

], i I
k
, k = 1,…,n;

( p
k

h
j
)( y

j
y

j
) 0 y

j
[ j, j

], j J
k
, k = 1,…,n;

(c
a
( f ) + p

k
p

l
)( f

a
f

a
) 0 f

a
[ ab , ab ], a = (k, l) A.

  (23) 

 However, these relations are equivalent to (11), (12), and 

(17), respectively. Therefore, assertion (i) is true. 

 Conversely, let elements 
  
(x , y , f , p ,u ) X Y F Rn Rn  

satisfy (10)-(13) for 
  
k = 1,…,n , and (14)-(17). Then we have 

  
(x , y , f ) X Y F  and (13), (15) yield (21). Besides, it 

was mentioned that (11), (12), and (17) are equivalent to 

(23), which, in turn, is equivalent to (20). Therefore, asser-

tion (ii) is also true. The proof is complete. 

 Thus, one can find easily a solution of the spatial auction 

problem (10)-(17) from the solution of VI (18)-(19). The 

sense of problem (18)-(19) is also clear: Find the feasible 

triplet 
  
(x , y , f ) D  such that it minimizes the total dis-

economies in the system for the corresponding offer/bid 

prices 
 
g  and  h  and for the corresponding shipment costs 

  
c = c( f ) . Observe that we do not impose any conditions on 

the mappings 
  
W

(k )
, i.e. on functions 

 
g,h , and  c , but it 

would be reasonable to suppose that they have non-negative 

values and that the function  c  is continuous. For instance if 

0c , then problem (18)-(19) reflects the maximization of 

pure auction markets profit. 

 Observe that for any solution of problem (10)-(17) ob-

tained from VI (18)-(19) the auction clearing prices 

  
p

k
, k = 1,…,n  are Lagrange multipliers for the node balance 

constraints from (20). 

 Being based on Theorem 2, we can derive existence and 

uniqueness results for the spatial auction market equilibrium 

problem problem from the theory of variational inequalities. 

To this end, let us define the mapping 
   
(x

(k )
, y

(k )
)  

  
V

(k )
(x

(k )
, y

(k )
)  by the formula: 

  

v(k ) V
(k )

(x
(k )
, y

(k )
) v(k )

= ( iv )
i I

k

,( jv )
j J

k

,

( iv )
i I

k

,( jv )
j J

k

W
(k )

(x
(k )
, y

(k )
),

 

and set 

  

V (x, y) =
k=1

n

V
(k )

(x
(k )
, y

(k )
)  

(cf. (8)). Then problem (18)-(19) becomes the standard VI 

with the underlying mapping 
   
(x, y, f ) V (x, y),c( f )( )  and 

feasible set  D  (cf. (9)). 

 Theorem 3. Suppose that the set  D  is nonempty and 

bounded, 
   
(x, y) V (x, y)  is a  K -mapping on  D , and that 

the mapping 
   
f c( f )  is continuous on  D . Then problem 

(18)-(19) has a solution. 

 In fact, (18)-(19) is then a VI with  K -mapping and non-

empty, convex, and compact feasible set and must have a 

solution; see e.g. [10]. 

 Recall that a mapping 
 
Q  is said to be 

(i) monotone on  X  if for each for each pair of points 

 
x, y X  and for all 

  
q Q(x) , 

  
q Q( y) , we have 

 
  
< q q , x y > 0;  

(ii) strictly monotone on  X  if for all distinct 
 
x, y X  

and for all 
  
q Q(x) , 

  
q Q( y) , we have 

 
  
< q q , x y >> 0.  

 Clearly, strict monotonicity of  V  and  c  yields the 

uniqueness for VI (18)-(19); see e.g. [10, Theorem 4.2]. 

Combining this property with Theorem 3, we obtain also the 

uniqueness and existence result. 

 Theorem 4. Suppose that the set  D  is nonempty and 

bounded, 
   
(x, y) V (x, y)  is a strictly monotone  K -

mapping on  D , and that the mapping 
   
f c( f )  is continu-

ous and strictly monotone on  D . Then problem (18)-(19) 

has a unique solution. 

3. Solution Methods 

 Being based on the above results, we can propose various 

iterative solution methods for problem (18)-(19), hence, for 

the spatial auction market problem (10)-(16); see [13,12,9]. 

Of course, we are interested in methods taking into account 

the essential features of the problem, such as separability of 

constraints. For instance, under the monotonicity assump-

tions on  V  and  c  we can apply the well-known proximal 

point method (see [14]), which consists in generating the 

iteration sequence 
  
{ (xs

, ys
, f s ) }  in conformity with the 

formula: Find 
  
(xs+1

, ys+1
, f s+1) D  such that 

  

w
(k )

s+1
= (g

i

s+1)
i I

k

,( h
j

s+1)
j J

k

W
(k )

(x
(k )

s+1
, y

(k )

s+1), k = 1,…,n;

k=1

n

i I
k

(g
i

s+1
+

s

1(x
i

s+1 x
i

s ))(x
i

x
i

s+1)

j J
k

(h
j

s+1

s

1( y
j

s+1 y
j

s ))( y
j

y
j

s+1)

+
a A

(c
a
( f s+1) +

s

1( f
a

s+1 f
a

s ))( f
a

f
a

s+1) 0

(x, y, f ) D;

      (24) 

where 
  s

> 0  is the stepsize parameter. The preference of 

this method is that (24) has always a unique solution if the 

set  D  is nonempty, i.e. under very mild assumptions. 
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 To illustrate further preferences of the above method, let 

us now consider the simple decomposable case where there 

exist convex differentiable functions 
  
μ

i
: [

i
,

i
] R , 

 
i I

k
, 

  j
: [

j
,

j
] R , 

 
j J

k
, 

  
k = 1,…,n , and 

  a
: [

ab ,
ab ] R ,  a A , such that 

 
  iμ (x

i
) = g

i
(x

i
),

j
( y

j
) = h

j
( y

j
), a( f

a
) = c

a
( f

a
).  

 This means that the price function of each seller/buyer 

can depend only on his offer/bid value and that, the trans-

mission cost for each arc can depend only on its flow value. 

Then VI (18)-(19) becomes equivalent to the convex 

optimization problem: 

  

minimize
k=1

n

i I
k

μ
i
(x

i
)

j J
k

j
( y

j
) +

a A
a
( f

a
).

(x, y, f ) D

 

 In turn, VI (24) is replaced by the auxiliary optimization 

problem: 

  

minimize
k=1

n

i I
k

μ
i
(x

i
) + 0.5

s

1(x
i

x
i

s )2

(x,y, f ) D
j J

k

j
( y

j
) 0.5

s

1( y
j

y
j

s )2

+
a A

a
( f

a
) + 0.5

s

1( f
a

f
a

s )2
.

      (25) 

 Obviously, the combination of the proximal point and 

dual ascent methods seems now rather suitable. In fact, at the 

 s -th iteration, we can solve (25) via the dual problem 

  

maximize
s
(p),

p R
n

          (26) 

where 

  

s
( p) = min

( x,y, f ) X Y F
k=1

n

i I
k

μ
i
(x

i
) + 0.5

s

1(x
i

x
i

s )2

j J
k

j
( y

j
) 0.5

s

1( y
j

y
j

s )2

+
a A

a
( f

a
) + 0.5

s

1( f
a

f
a

s )2

+
k=1

n

p
k

a A
k

f
a

a A
k
+

f
a

i I
k

x
i

j J
k

y
j

=
k=1

n

i I
k

min
x

i
[

i
,

i
]
μ

i
(x

i
) + 0.5

s

1(x
i

x
i

s )2 p
k
x

i

j J
k

max
y

j
[

j
,

j
]

j
( y

j
) 0.5

s

1( y
j

y
j

s )2 p
k
y

j

+
a=(k ,l ) A

min
f
a

[ ab , ab ] a
( f

a
) + 0.5

s

1( f
a

f
a

s )2
+ ( p

k
p

l
) f

a
.

     (27) 

 Clearly, the computation of the values of  and its gra-

dient can be made componentwise, i.e. (27) is decomposed 

into a set of separable one-dimensional problems. In order to 

solve (26) we can apply a suitable conjugate gradient 

method, which seems more efficient here in comparison with 

the usual gradient one, as in the classical Uzawa method. It 

should be noted that a combined proximal point and dual 

quasi-Newton method for separable optimization problems 

was considered in [15]. Similar dual techniques for more 

general decomposable problems were developed in [16,17]. 

Also, together with the classical proximal point method one 

can utilize somewhat more general schemes; see e.g. [18-20]. 

 The above combined proximal point and dual conjugate 

gradient method for subproblems was implemented for solv-

ing several spatial auction problems. To create the model 

examples we took the data from real electricity market sys-

tems. In these problems, all the prices 
 
g

i
 and 

 
h

j
 were fixed 

and 
  
c

a
0 . In the method, each auxiliary optimization prob-

lem (25) was solved by the dual conjugate gradient method 

within the fixed prescribed accuracy for the norm of 
 s

. 

The norm of violations of conditions (21), (23) was taken as 

error evaluation for the initial problem and its accuracy 0.1 

appeared sufficient for computation. 

 We illustrate the work of the method with two examples. 

The first model contained five auction markets. Each market 

involved one buyer. The numbers of sellers were the follow-

ing: market 1 - 108, market 2 - 63, market 3 - 48, market 4 - 

22, market 5 - 44; see Fig. (1). 

 In the picture,  denotes the excess supply at the mar-

ket, 
 
p  denotes the auction price at the market, these values 

are given in parentheses. Also, the numbers in brackets de-

note the upper bounds for direct and reverse (-) flows, one 

number corresponds to the case of symmetric bounds. The 

given solution was obtained in 22 proximal iterations. 

 The second problem corresponded to the network with 19 

nodes, containing auctions with 106 sellers and 7 buyers; see 

Fig. (2). The solution presented in Fig. (3) was obtained in 

280 proximal iterations. 

 In all the cases, the solution time for the processor Intel 

Pentium 1.73GHz did not exceed one second. Thus, the 

computational results of the method appeared satisfactory for 

application. 

4. Conclusions 

 In the paper, we proposed the variational inequality ap-

proach for modeling both separate and spatial auction mar-

kets where the behavior of participants is very complex and 

mutually dependent. As a result, we can apply the well de-

veloped techniques for investigation and solution of these 

auction market problems. In such a way, we can find both 

the bid and offer volumes and auction clearing prices for 

each separate market. Moreover, this approach allows us to 

easily obtain existence and uniqueness results and develop 

various iterative solution methods. Taking into account pecu-

liarities of the models, in particular, the simple structure of 

constraints, makes these methods rather efficient. Prelimi-

nary results of computations showed rather fast convergence 

to a solution together with very simple implementation. 



Variational Inequalities for Modeling Auction Markets with Price Mappings The Open Operational Research Journal, 2008, Volume 2    35 

 

Fig. (1). Spatial market 1: Data and solution. 

 

 

Fig. (2). Spatial market 2: Data. 
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