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1. INTRODUCTION

Calculus of Variations offers a powerful technique for
the solution of various important problems appearing in
dynamics of rigid bodies, optimization of orbits, theory of
vibrations and many areas of science and engineering. The
subject of calculus of variation primarily concerns with
finding optimal value of a definite integral involving a
certain function subject to fixed point boundary conditions.
Mond and Hanson [5] were the first to represent the problem
of calculus of variation as a mathematical programming
problem in infinite dimensional space. Since that time many
researches contributed to this subject extensively. For
somewhat comprehensive list of references, one may consult
Husain and Jabeen [1] and Husain and Rumana [2]. The
treatment in [1] has been for the real valued objective
function while in [2] for vector valued function.

In this research, we consider a vector valued function for
the primal problem and its minimality in the Pareto sense.
Both equality and inequality constraints are considered in the
formulations. In establishing duality results we consider two
types of dual problems to the primal problem. The first one
has vector valued objective whereas the second set of results
are based on the duality relations between an auxiliary
problems and its associated dual as defined in Mond and
Hanson [7]. Duality theorems, unlike in case of classical
mathematical programming, are not based on optimality
criteria but on certain types of convexity and generalized
convexity requirements. Finally multiobjective variational
problems with natural boundary values rather than fixed end
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points are mentioned and the analogs of our results in
nonlinear programming are pointed out.

2. PRE-REQUISITES

In the treatment of the following problem (VP), by
minimality we mean Pareto minimality. Now consider the
following multiobjective variational problem involving
higher order derivatives.

(VP) Minimize

Uf‘ (txx2)de, ... [ f7 (t,x,x,)’c’)dt]

I

Subject to
x(a)=0=ux(b) (1)
i(a)=0=1x(b) 2)
g(t.x,5,%)<0 , tel (3)
h(t,x,x,%)=0 , tel Q)

where (i) for I=[a,b]c R, f:IXR"XR'XR'—>R,
g:IXR'XR'XR" > R" and h:IXR'XR"'XR"— R"
are continuously differentiable functions, and

(i) X designates the space of piecewise smooth function

x:1— R" having its first and second order derivatives
X and X respectively equipped with the norm.

Jxll= Il +IDx] +[[D%] .

where the differentiation operator D is given by

w=Dx o x(t)= jw(s)ds

a
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d . S
Thus D= Z except at discontinuities.
t

We denote the set of feasible solutions of the problem
(VP)by K,, i.e,

x(a)=0

b), glt,x,x,%¥)<0, tel
- renf €102 seatizo e

i(a)=0=1%(b), h(t,x,%,%)=0, tel

The following convention for inequalities for vectors in
R" given in Mangasarian [3] will be used throughout the
development of the theory:

If x,y € R" ,then

x2ye x>y, i=1,..n
X2ye x>y, and x#y
x>y x >y,i=1,..,n.

Definition 2.1: A feasible solution of the problem (VP)
ie., X € K, is said to be Pareto minimum if there exists no

xekK , such that

Pareto maximality can be defined in the same way except
that the inequality in the above definition is reversed.

In the subsequent analysis the following result plays a
significant role.

PROPOSITION 2.1: Suppose A >0 , A€ R”such that
Let x(t) € K, is an optimal solution of the problem,

(P): Min [A"f(t,x.%,%)dr

x(t)eKp

Then X(¢) is an optimal solution of (MP) in the Pareto
sense.

Proof: Assume X(¢)is not a Pareto optimal of (MP).
Then there exists an X(¢) € K, such that

jf" (t,)%,)é,jé)dtgjf" (6,3,%,%)dt, i=1,2,...,p.
1 1

jff'(t,)%,fc,}?)dmj‘ff(r,)‘c,)‘c,j‘é)dt e
1

I

Hence

J./le(t,)%,fc,}?)dKIle(t,i,f,j?)dt .
1 1

This contradicts the assumption that X minimizes

J‘ﬂ,Tf(t,x,x,)'c')dt overK,.
1
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In the subsequent sections some duality results by
introducing two types of duals to (VP) will be established.
3. MOND-WEIR TYPE MULTIOBJECTIVE DUALITY
Consider the following Mond-Weir [4] dual to (VP)
(M-WD): Maximize

Uf‘ (twii)dr, ... [ f" (t,u,u,b'i)dt]

I

Subject to
u(a)=0=u(p), (5)
i(a)=0=1u(b), (6)

AT f (tustiyii)+ y(e) g, (bou,ia,id) + 2(0) by (00,00,
=D(A 1, (tsustisii)+ (1) g, (e, i0) + 2 (0)  (1,00,,0)|

. ﬂﬁ;(t,u,u,a)w(t)’gl.,.(t,u,u,u')+ 0 rel
z(t) by (t,u,,ii)

J(y()" gttty +2(e)" h(e,uiii))de 20 (8)

A>0 , AeR’, y(1)>0 , tel )

Let Kp be the set of the feasible solutions of (M-WD).
Theorem 3.1: Suppose

(A): X(t)e K,
(A2): (Au,y(t).2(2)) e K,

(A3): J‘),Tf(t, --».)dt is pseudo-convex
1

(As): j{y(t)T g(t,.,.,.)+z(t)T h(t,.,.,.)}dt is quasiconvex.
1

Then [ A7 f(t,x,%,%)dt 2 [ A7 f (t,u,u,ii)dr
1 1

Proof: Since y(1)>0 , rel, g(r,x,x,%)<0 , rel
t

and h(t,x,)'c,)'c')zo , tel,wehave

J(y() glex.5)+2(e) (e,x,5,5) )ar <O (10)

1
Combining this inequality with (8)
We have,

[y(e) g(t.x.5.)+2(t) h(e,x,2.5)d
<[y ()" g(tusitsit) + 2(t)" n(r,u i) ) e

By the hypothesis (Ay), this yields
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0> [(x_u)’ (v(0) &, (o) + 2 (e)' B, (20,10,

= [(x=u) (y(0)" &, (cw.tisid)+ 2(e)' , (¢,,10,00))

t=b

+(x - u)T (y(t)T 8. (t,u,b't,ii) + z(t)T h, (t,u,u,ii))r:a

—[Ce=u) D(y(e)" g (tousttii) + 2(e)" y (r,00,,) ) e

I

t=b

+(x—a) ( (6) g, (o) + 2(0)" b (100,00
jx u

1

t=a
D(y(1)" g (tuwstisid) + z(e)' hy (¢,,11,00) )t
(By integration by parts)

= JCe=w) [(y() &, (t0,t00) 4 2(0) , (1,00 10,))

=D(y(e) g, (twisii) + 2(1) y (1,0,00)) |

—(x=u)" D(y(1)" g (t.uw,tisii)+2(e) y (r.0,i0))

+j(x ~u)' D? (y(t)T g, (tuiii)+z(1) b

1=a

(tuuu;)

(By integration by parts)
Using (7), we have,

0<j xX—u {/’LT tou,u u) DA ¥, (t,u,d,ii)
+D /”LTﬁi(t,u,u,u)}dt

0< [{(x—u) A" f, (i) + (i =) A7 f, (r.u.ii.id) e

t=b

—(x—u)" AT £, (t,u,11,5i) )

= (=) DA" f, (t,uiii) | + (i = ) DAT £, (1,11

t=b

[{Ge=w) 27 £, (twstisii)+ (k=) A7 £, (1u.11.i7)
+(i—it) DATf, (t.u.11.id) | dr 20

Thus, by integration by parts using the boundary
conditions, we have,

j{(x—u)T /’L’l'fu (t,u,lft,ii)-i—(x—

I

) A" f, (tuii)
+(—it) AT, (i) e 20

This, because of the hypothesis (A;) implies,
JA f (i, 2)de 2 [ AT f (1,,0,00)
1 1

Theorem 3.2: Assume
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(B): ¥(t1)eK
(B): (A (1),5(1),2(1)) €K,
B: (1) g
|

yeress) F z(t)T h(t,.,.,.) )dt is quasi-convex

B: [ATf(

yeses ) dt is pseudoconvex

(Bs): ji’ 1,%,%,%)d =jZ 1,00,000i ) di
1 1

Then x(¢)is an optimal solution of (VP) and
(/l,ﬁ( t),5(t),z (¢ )) is an optimal solution of the problem
(M-WD).

Proof: Assume that X is not Pareto-optimal of (VP).
Then there exists an () € K, such that

jf"(t,)%,)?,}?)dts_[fi(t,)‘c,?c,j‘é)dt , forall i
1 1

and [ f/(0.%,%.%)d<[f/(1.%.%%)d for some j,
1<j<p '

Since A >0 , this implies,
jITf(r,£,£,§)dt<fZTf(t

’

By the hypothesis (Bs), this inequality implies,
jZTf(t,)%,f'c,j?)dt<J/Trf(t,ﬁ,ﬁ,17)dt )
? '

VXXX dt

~

This contradicts the conclusion of Theorem 3.1 thus
establishing the Pareto optimality of X (¢)for (VP). Similarly

we can show that (/l,ﬁ(t),y(t),f(t)) is Pareto optimal for
(M-WD).

We state the following theorem without proof as it is
similar to Theorem 3.4 of [6].

Theorem 3.3: Assume,
(C): x(1) ek, ; (/l,ﬁ(r),y(r),z(z))eKD;
(Cy): jITf(t,;—c,f %) dt:j i) dr
©): (o) gl

(Co: [ATF(

yeres) F z(t)T h(t,.,.,.) )dt is convex;
yeres ) dt is quasiconvex.

Then x(t)=1u(t), tel.
4. WOLFE TYPE MULTIOBJECTIVE DUALITY

To establish duality results similar to the preceding ones
but under different convexity and generalized convexity
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assumptions, we formulate the following Wolfe type dual to
the problem (P,) stated in the Preposition 2.1.

We assume that A is known and 1 >0 .
(WCD, ): Maximize:
S f(ex, )+ 3(0) g(e,x,5,8) + 2(1)" h(r,x,2,%) )

Subject to:
x(a)=0=x(b), x(a)=0=x(b) (11)
(A7 £, (i) + y (1) g, (i) + 2 (0) , (10,10
=D(A7f, (rwi i) + y(0)' g, (t,t00) )+ 2(6) (100, )

D (A" f, (tawi) + (1) g, (taeiiii))+2(0)' b, (t,u,ﬂ,ﬁ))
=0,tel

(12)

y(£)20,1el (13)

In the following Lp represents the set of feasible solutions
of (P,) and Lp the set of feasible solutions of (WCD, ).

Theorem 4.1: Assume
() ¥(1)e L, : (7(1).5().2(0) < L,
(Hy) J‘/TTf(t,.,.,.)dt and _[(y(t) ot

are convex.

Then,

IT l, ’.,.. + tT t, ’.’..
i)z f(Tuuu) y(t) gltuani)]
7 +z(t) h(t,u,b't,lli)

\'_'

Proof: By the convexity of J‘/TTf(t,.,.,.)dt, we have
1

[ 27 p (e @)arz [ 27 f(eisii)dr + [ (x =) 271, (1,0, 000)

1 1 1

#(i—a) A f, (i) + (k=) 2" f, (tu,iid) |de - (14)

From the dual constraint (12), we have,

[(x-u) [(,1’ £ (i) +y(0) g, (taiii)+2(e)' b, (1)

—D(/”LTfu (t,u,u,ii)+y(t)T g (t,u,u,b'i)+ Z(I)T h, (l,u,u,ii))
+D (X f (i) + y(0)' g, (i) + 2(e) y (100) ) | =0

This, by integrating by parts and using the boundary
conditions as earlier, implies

JCe=a) [27 (£, (i) + (o) g, (et + 2(e)' , (1,0,.0)

(i) (A7, (1,
(i) (AT, (1,

i) + (1) g, (t0,10,)+2(0) b (0,00))

i)+ 3 (1) g, (o, 0)+ 2(0) Iy (00,0) ) | e = 0
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Using this, in (14) we have
j/l ft,x,x,% dt>le (¢,u,11,ii) dt

—j[x u ( t gu(t,u,ll,ii)+z(t)Thu(t,u,u,ij))

By the hypothesis (H,), this implies
jZTf(t,x,x,x)dt ZJZTf(t,u,u,u)dt
g(t,u,1t,ii +z(t) h(t,u,u,zl))dt

+0)
J( g(t,x,%, x)+z(t) h(t,x,)'c,)'c'))dt,

Since x € L, , this implies
ITf(r 1, i u)
J/”L £,x,%,%) gj g
1

I

This proves the theorem.

The following theorem gives a situation in which a
Pareto optimal solution of (VP) exists.

Theorem 4.2. Suppose
(F): X(1)e Ly, (@(1).5(2).2 (1)) € Ly
(F2): [A7f (1t )des and [(y(e) g(t,n,.

are convex,

(F3):

Then X(¢) and (y(t),f(t),
(P,) and (WCD, ). Hence X(t)i
of (VP).

The last part of the conclusion follows from Proposition
2.1.

(t)) are optimal solutions of

\_/:|

is a Pareto optimal solution

=|

Proof: Suppose X(t)does not minimize (P) then there

exist, x"(¢) € L, such that

j/TT 1,57 (1),% (1), 5 dt<j)f 1,%,%,%)dt

= [T f (i i)+ y(e) g(ra.iiii)+z(e) h(eiii.ii))de
1

This contradicts the conclusion of Theorem 4.1. Hence
¥ (¢) minimizes (P,) .
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We can similarly prove that (¥(r),z(¢),i(¢)) maximizes (Integrating by parts)
(WCD,). [ZT F(0%5%,5)+5 () g(t,)_c,)?,)'_é)]d
t
X

Theorem 4.3 Assume

(Gi): X(t)e Ly, (¥(t).2(t).u(t)) e Ly; (T (i) 45 (1) g, (i)
i
(Go): ! (-1) +Z(¢)" b, (¢,02,70,i1 )
jﬂ 1,5,5,%)di = j f(;’u’u’u)ﬂ(t) g i) dt o (AT (i) + 3 (1) g, (000,007
+z(t)" h(t.u,ii i) ~(x-m) D ’ . dt
) . +z(¢)" ha, (¢,i,i0,i)
G): J(A7 £ (1 )43 (1) 81+ 2(0) 1) )dr s b
o (A (i) + 3 () g, (.00
convex —(x—u) D ,
+z(¢)" h, (., i)
Then N t=a
J‘y t)_cy_c;_c di=0 .tel +j.()_c—17)T D? AL t,u,u,u)+y(t) gu(t,u,u,u "
) +Z(¢) by (¢, )

Proof: By hypotheses (G) and (Gs), we have (Using boundary conditions and Integrating by parts)

i [er(t,ﬁ,ﬁ,i_i).+3;(t)T g(t,ﬁ,ﬁ,i‘i)]dt [,1 f(6.3.%35)+5() g(t,)?,)?,}_é)]dt

, _D{),Tfu(t,ﬁ,ﬁ,ﬁ)+§(t)r g, (1., ﬁ)]
(F-a) [% (1, i)+ 5 (1) g, (1,007 u>] A2 (1)’ ha, (1.70.2.77)
+2(1)" b, (1.1.00, i) . AT £, (it i) + 5 () g, (10,10, 9
(E-i) [Wf. (r.wit,ii)+y (1) g, (r.0 u,ii)ﬂdt 2 () b, (1.0
+Z(¢) b, (¢.0,10,10)

(Using (13))
J. . ATf (v i)+ 5 (e) g, (.0,00,17 ) This implies
) o +2(0) b, (.7, j(y(r)Tg(t,)‘c,)?,j‘é)+2(t)rh(t,)?,)?,j‘é))dtgo (15)

1
But since y(1)>0 ,g(t,)_c,)_'c,)'_c')SO and h(t,)?,)?,j_é)=0 Jtel
e yield,

- D[fo,; (lﬁﬁ,i—i)f(f)r g, (1111t Hdl [(7() g(e.3.%.5)+2(e) h(.7.5.5))dr <0 (16)

I

i=b Combining (15) and (16), we have

J30) 8(r.7.%.%)+2(e) h(e,%.%.%))dr =0

t=a 1

— T _ = 2
(1) g,.,.(t,u,u,u ]dt This, because of h(t,)?,)?,)?)=0 ,tel, gives
=

)_ci)_cdt 0.

\.l—.
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This, together with i(t)T g(t,)?,)?,}_é)go, t eI, implies
(1) g(t.%.%.%)=0,rel

Theorem 4.4. Suppose
Ry): (y(t),f(t) ,u(t)) eL, andit(t)eL,;
(Ro): ¥ (t)" g(t.u,iw,it)=0 ,1el;
(Ry): jITf(t,.,.,.)dz and

1

J(y(t)T g(t,.,.,.)+2(t)T h(t,.,.,.))dt are convex;
1

Then (¢)is an optimal solution of (P,) and hence of
(VP).

Proof: If ii(t)is the only feasible solution of (P,), the
conclusion is self evident. So, assume that X(¢)is another
feasible solution of (P,). Then by the hypotheses (R;) and
(R3), we have

(Using boundary conditions (11)
= [ A7 f (e..iait)de + [ (% —) [ A" f (t.0,10.ii)
1 1

=D(A" f, (@it ii))+ D* (A" f, (t,ﬁ,ﬁ,i?))]dt
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Thus, by integrating by parts and using boundary
conditions, as earlier, we get

(Using hypothesis (A1), (Az) andx e L,).
This implies that & minimizes J./Trf(l,)_c,f,)’_c')dt overL,
. )

Remark: In Theorem 4.4, we assume that a part of
feasible solution of ( WCD,) is a feasible solution of (P,). It
is a natural question if there is any set of appropriate
conditions under which this assumption is true. The
following theorem gives one such set of conditions.

Theorem 4.5. Assume
(Qn): x(t)e L, and (¥(1).2(r),u(r)) € Ly

(Q):

functions;

Qs): [(g(tu(r)ule).ii()+h(tu(r),i(r).i(r)))de =0

g(t, .,.,.) and h(t, . .,.) are differentiable convex

(Qq): (x- u)T 2. (t,b_t,ﬁ,i_i)+ (k- u)T (gu (t,ﬁ,ﬁ,i?))

+(& i) g, (1,0.00,0)20 L tel

Then ueL,.

Proof: By the convexity of g(t,.,.,.) andh(t,.,.,.), we
have
g(t,x,)'c,)'c')gg(t,u,u,ﬁ)+(x—u)T 8. (t,u,u,ii) (17)
+(x—a) g, (t,u,i)+ (5 —ii) g, (t,u,1,ii) 20
h(t,x,5,%) 2R (tu0i,0) + (x—u)' b, (¢,u,0,60) s
+(k—a) hy (tutiii)+ (% — i) hy (1,00,0,6) 20
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Using (13) and (14) together with the hypotheses (Q,),
(Q-) and (Qs), we have

g(tu,u,ii)<0, tel (19)
and
h(tu,i,i)<0, tel (20)

By (15) and (16), we have
g(t.u(r).a(t),ii () +n(tu(r)i(r).ii(t)<0 ,tel  (21)
The hypothesis (Q,) with (17) implies
g(t.u(r).a(t),ii () +n(t,u(r)i(r).ii(t)=0 ,tel (22)
But g (z,u,u,ii)< 0 , € 1. Hence by (22) we have
h(t,u,u,ii)20 , tel. (23)
The inequalities (20) and (21) imply
h(t,u,u,ii)=0, tel. (24)
The relations (19) and (24) imply that ﬁ(t) €L,

5. VARIATIONAL PROBLEMS WITH NATURAL
BOUNDARY VALUES

It is possible to construct variational problems with
natural boundary values rather than the problem with fixed
end point considered in the preceding sections. The problems
of Section 2 can be formulated as follows:

(VP,) : Maximize [jf'(t,x,x,x)dr,....,jf‘(t,x,x,;'e)dtj

Subject to

g(t,x,x,X)£0,tel
h(t,x,x,X)=0,tel

(M-WD), : Maximize(jf’(t,u,u,zi)dt, ........... @i de
1

(A" £, (¢ u i)+ y(0)g, (1.1t i)
+2(0)" h, (¢, u,01,00) = D (AT f, (¢ 1, i)
+y(t)T g, (t,u, i)+ 2(t)” h,(t,u,u,ii))+
D* (A7 £, (e u01,id))+ y(t)" g, (t 1, i)
+z2()" b, (t,u,u,ii))=0,tel,

f(y(t)T gt i)+ z(t) h(t,u,u,ii))dtzo

1

A>0, y(t) >0, tel.

AT fo(t i, i) + y(t) g, (t,u,1h,6i)

+z(t) b, (t,u,u,i)=0,at t=a,t=b (@)
AT fo(tu,ti,ii) + y(t) g, (¢, 1,1k, 6i)

+z(t) h,(t,u,u,ii)=0,att=a,t =b ()

Jwﬂx
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The conditions (o)and (B) are popularly known as

natural boundary conditions in calculus of variation.

Theorems of the section 3 for (VP, ) and (M —WDN)

can easily be proved in view of earlier analysis in this
research. The problems of the Section 4 can be written with
natural boundary values as follows:

For given0 < A€ R”.

(P)y:  Minimize j AT, x, %, %)dt
1

g(t,x,%,X)< 0,tel.
h(t,x,%,%)=0,tel.

[ATf(z,u,u,a)w(r)T g(t,u,ll,ii)]
dt

+2(8)" h(t,u,i,ii)

Subject to

(WCD,),, : Maximize J-
7

(/”tTfu(t,u,u,ij))+y(t)gu(t,u,u,u)

+2(0)" h, (¢ u,11,60) — D (AT f, (¢ ,0,0))+ 9(0) g, (2,u,10,10)

+2(t)" h, (w1, i)+ D* (AT £, (¢ u,01,i0)) + y(t) g, (1, u,10)

+2(0) by (tu,iiii)) = 0,0 € LAY f,(t 0,1, 5i)

+ (1) g, (tyu,u,u)+ 2(t) h, (t,u,ik,ii)= 0,art = a,t = b

AT fo(tu,ti,ii) + y(0) g, (¢ u,u,1)

+Z(t)7hu(t,u,u,ii) =0,att=a,t=>b

A>0,y(t)>0,t €.

6. MULTIOBJECTIVE NONLINEAR PROGRAM-
MING PROBLEMS

If all the functions in the problems(VP), ,(WCD,), , and

(P,)y are independent of t, then these problems reduce to
the following problems:

Minimize (f' ), f>@),..., f*))
Subject to
g0, h(x)=0.
(M —WR,): Maximize (f' (), f*> (), ..., f* ()
Subject to
AT f)+y" g, )+ h, () =0,
v g(u)+ 2" h(u)>0.

For given A >0,A € R” ,we have

(VP), : Minimize A" f(u)
Subject to
20, hw)=0 .
(WCD,), : Maximize A f(u)+y" gu)+ 2" h(u)

Subject to
A f )+ y" g, )+ 2 h,(u)=0,
¥ g+ 2" h(u)>0. y>0.
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Theorems 3.1-3.3 for the pair of Mond-Weir [4] type
dual problems (VF,)and (M —WF,)and Theorems 4.1-4.5

for the pair of Wolf type dual problems (VP,),and
(WCD, ), are simple to be validated, albeit validations of
these theorems are not explicitly mentioned in the literature.
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