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Abstract: The application of conventional hydraulic fracture treatment is not ideal in coalbed methane reservoirs, which influences
the industry development in China, thus, the present technique should be improved. From two aspects of net pressure and stress
sensibility of permeability, it is analyzed and considered that permeability around hydraulic fractures is damaged severely, so this is
the main flaw of conventional hydraulic fracturing in CBM. It is proposed to shear natural fractures by fracturing treatment, which
are  plentiful  in  coalbed  methane  reservoirs,  and  the  mechanical  condition  to  generate  sheared  fractures  is  presented,  in  the
meanwhile, it is verified that the permeability of sheared fractures is much larger than coal matrix permeability. When the angle
between natural and hydraulic fractures is small in coalbed methane reservoirs, the natural fractures will shear easily at low net
pressure, so network fractures can be formed. In comparison with conventional hydraulic fracturing, this new methodology can make
natural fractures shear at low net pressure to form transverse network fractures, hence, the stimulated reservoir volume is larger, and
damage to coal permeability is avoided. This new technique is advantageous in both stimulated reservoir volume and permeability
improvement, and it is more adaptable for coalbed methane reservoirs, thus, it has a wide application prospect and significant value.
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1. INTRODUCTION

For several decades, coalbed methane (CBM) reservoirs have been developed commercially in U.S., and hydraulic
fracturing has been used to accelerate removal of methane from coal seams of underground mines [1]. Along with the
success of developing CBM in U.S., more and more CBM reservoirs are developed in different countries. Since 1994,
CBM has been in production from 6 main coal seams in Bowen basin of Australia, which covers an area of about 1600
km2,  and the permeability ranging from tens to a few hundred 10-3μm2  of the majority wells [2,  3].  In China, CBM
development began at 1990’s,  but the production results are not ideal compared with other areas of the world. The
permeability of CBM reservoirs is very low, mostly in the range of 10-6-10-3μm2, and the reservoirs have to be fractured
hydraulically before production [4 - 6] . The average production of single well is lower than 1000 m3 per day, which has
a large gap from expected production and restricts the CBM industry development in China [7 - 9].

Hydraulic  fracturing  has  been  a  key  technology  in  developing  CBM  resources  worldwide,  but  the  appropriate
technology  will  depend  on  the  characteristics  of  the  reservoir  and  the  well  operations.  Since  CBM  reservoirs  are
complex, naturally fractured, dual-porosity systems, hydraulic fracturing in coal is more complex than in conventional
reservoirs.  It  is  important  to  focus  on  how  to  adequately  connect  the  natural  fracture  system  to  the  wellbore  and
maximize the stimulated reservoir volume [10]. CBM production data and stimulation experience have demonstrated
that the linkage of the induced  shydraulic  fracture  to a  conductive  natural  fracture set  is of  key  importance to  well
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performance [11]. Although the hydraulic fracturing technique is effective in sand reservoirs, it is not able to work well
in CBM reservoir, therefore, the conventional fracturing method should be improved to increase the stimulation results
soundly based on CBM characteristics [12, 13].

In this paper, the permeability damage around hydraulic fractures is analyzed by correlations about net pressure and
permeability  stress  sensibility,  and  it  is  regarded  as  the  main  flaw  of  conventional  hydraulic  fracturing  in  CBM
reservoirs. There are plentiful natural fractures in CBM reservoirs, it is necessary to open and connect them with each
other, hence, shearing these fractures to form complex fracture network is proposed, and the mechanical condition to
generate sheared fractures is discussed. Finally, comparing the production yield per year of surface development with
the underground mines in China, it is verified that the technology used in underground mines to produce CBM can
generate fracture network, and it brings new insights for surface development of CBM.

2. REASONS FOR LOW PRODUCTION OF CBM IN CHINA

2.1. Different Reservoir Characteristics

Comparing the parameters in Table 1 [14], we can see that the average permeability of Qinshui basin is lower than
other CBM basins, which resulted in the lower production. The geologic condition governs the producing ability of
CBM reservoirs, and cannot be changed manly. What we can do is to make full use of the characteristics on the limited
basis.

Table 1. The comparison of CBM characteristics in different countries.

CBM field Ro

(%)
Depth

(m)
Average

permeability
/mD

Methane
content /m3/ton

Sorption
saturation

(%)

Thickness
(m)

Formation
pressure

/MPa

Gas production
/m3d

Water
production

/ m3d
San Juan
(USA)

0.9-
1.2

100-
1000 >5 12 3-12 0.9-8.9 30 000 0-40

Alberta
(Canada)

0.5-
2.0

200-
700 10-500 1-5 70-97 4-10 1.8-6.3 3000 2

Bowen
(Australia) 1.5 100-

600 0.1-10 0.98-5.88 90-100 5-12 0.9-5.4 6000-30 000 30

Qinshui
(China) 2-4 300-

800 0.02-0.58 13-22 75-90 3.2-
8.6 1.8-4.8 1200 3

Coal is anisotropic and dual porosity water saturated reservoir mainly containing methane. Most of the methane
molecules in coal seam are present in adsorbed state as a layer of gaseous molecules on the coal surface, and only a
minor amount is available in a free state. Methane is produced by reduction in overall pressure of the reservoir, which is
achieved by dewatering,and desorbed methane flows through the cleat system into wellbore (Fig. 1).

Fig. (1). Methane desorption process [15].

Gas production from CBM reservoirs is  governed by complex interaction of single-phase gas diffusion through
micro-pore system and two-phase gas and water flow through cleat/fracture system that is coupled through diffusion
process [15]. The whole production period includes 4 key points: dewatering to lower pressure, desorption, diffusion
and flowing in fractures (Fig. 2).
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Fig. (2). Methane gas producing period [15].

The gas producing rate depends on the slowest one among the 4 key processes. Because most methane is adsorbed
on coal surfaces, and formation water exists in natural cleats, so, the methane is difficult to desorb freely, which results
in  the  speed  of  desorption  and  diffusion  of  methane  in  coal  matrix  is  the  lowest.  At  this  condition,  the  process  of
desorption and diffusion will determine the CBM production rate.

From above analysis, how to increase the speed of methane desorption and diffusion becomes the key to raise CBM
production of single well. There are two ways to increase production, one is to raise the flowing rate, which actually is
the lowest speed among desorption, diffusion, and flowing in natural fractures, and the other is to increase flowing
drainage volume.

2.2. Permeability Damage of Hydraulic Fracturing

In coal seam, the vast majority of the gas is stored in coal matrix, which practically has no permeability. The flow to
production well, however, occurs through the coal’s natural fracture system, which stores relatively small amount of
gas.  In  order  to  achieve  commercially  viable  gas  production  rate,  interventions  are  necessary  to  be  taken  in  CBM
reservoirs. Hydraulic fracturing technique is therefor used in CBM, but it is a double-edged sword. On one hand, the
conventional hydraulic fracturing can increase the gas flowing speed by creating man-made fractures. On the other
hand, it cannot increase desorption and diffusion speed, which is the key factor to raise production, and it will also
damage the coal matrix permeability.

For CBM reservoirs, the elastic modulus is lower (compared with sand), and Poisson’s ratio is larger, which result
in coal rock be fractured easily. The fractures formed in CBM are wider and shorter, and the stimulation result is not as
good  as  in  sand  reservoirs.  During  the  process  of  fracturing  treatment,  especially  when  a  large  amount  of  sand  is
pumped into fractures,  the reservoir  around the fractures will  be stressed severely,  and the coal  permeability is  too
sensitive to stress, so the coal permeability will be reduced extremely.

Based on the theory of linear elastic mechanics, the fracture width is proportional to net pressure in the fracture.

(1)

The coal permeability is sensitive to stress, and the relationship concluded by a lot of experiments is as follows [16].

(2)

According to Table 2 [17], assume Young’s modulus of coal is 5000 MPa, Poisson’s ratio is 0.25, fracture height is
25  m,  the  initial  permeability  is  0.46  ×  10-3μm2,  the  pore  compressibility  coefficient  0.16  MPa-1.  The  fracture  net
pressure and permeability can be calculated by equation (1), (2) with different fracture width.

From Fig. (3), if net pressure increases from 1.0MPa to 5.5MPa, the fracture width will increase from 2.0 mm to 20
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mm. In Fig. (4), when the fracture width increases from 2.0 mm to 20 mm, the matrix permeability will decrease from
0.45 × 10-3μm2 to 0.05 × 10-3 μm2, thus the damage around fracture is very severe. Since the coal rock is soft and the
elastic modulus is low, the fracture width is normally more than 20 mm generated in fracturing treatment. The damage
will  be more severe,  especially when more sands are pumped to prop the fractures  fully.  Because the permeability
damage is difficult to recover during gas producing period, so it is the main reason that stimulation effect is not ideal in
CBM.

Table 2. The mechanic parameters of rocks.

Rock type Young’s modulus/GPa Poisson’s ratio Rock type Young’s modulus/GPa Poisson’s ratio
mud stone 2.84 0.28 tight sandstone 7.02 0.21

coal 0.4-0.8 0.22-0.33 limestone 6.74 0.23
fine sandstone 5.82 0.25

Fig. (3). Effect of different fracture width on net pressure.

Fig. (4). Effect of different fracture width on coal permeability around fracture.

3. NEW HYDRAULIC FRACTURING METHODOLOG

3.1. Mechanical Analysis of Network Fracturing

The coal  matrix  permeability  is  low,  but  the  natural  fractures,  such  as  butt  and  face  cleats,  are  plenty  in  CBM
reservoirs. How to make use of these natural fractures is an important issue. The conventional fracturing technique just
considers how to open fractures, but do not focus on how to shear existing natural fractures and connect them with each
other. For CBM reservoirs, the natural fractures should be treated properly. The micro-seismic monitoring results have
shown that  sheared and complex fractures  are  generated during fracturing treatments  in  CBM reservoirs  [18 -  21].
Therefore, the mechanical condition for shearing fractures will be analyzed to provide foundation for network fracturing
in CBM.
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3.2. Mechanical Requirements for Shearing Fractures

During the treatment of hydraulic fracturing, the vertical fracture always propagates perpendicular to the minimum
horizontal in situ stress. The direction of natural fractures is in an angle with the maximum horizontal stress (Fig. 5).
When hydraulic fracture is near to natural fracture, the pressure of hydraulic fracture is higher, in the meaning while,
the permeability of natural fracture is larger than the coal matrix’s, so the fracturing fluid will enter into the natural
fracture  firstly,  and  lead  to  pressure  increasing  continuously.  The  natural  fractures  are  close  under  initial  reservoir
condition, when more and more fracturing fluid flow into them, the pressure will raise rapidly, which results in the
shearing of natural fractures before opening.

Fig. (5). Relationship between natural and main fractures [22].

The shearing force acted on the natural fracture can be calculated as follows [22].

(3)

The above equation can be transformed as follows.

(4)

When the angle between natural and hydraulic fracture is determined, the force to shear natural fracture can be
satisfied under known fracture net pressure.

(5)

Hence, the fracture net pressure should satisfy the equation as follows.

(6)

When friction factor is 0.6, and fracture net pressure is 0.7 MPa, the critical stress difference can be calculated under
different  angles.  If  treatment  net  pressure  surpasses  this  value,  the  natural  fracture  will  shear  and  slide.  The  angle
between natural and hydraulic fracture impacts the critical net pressure greatly (Fig. 6). When the angle is larger than
60o, the critical net pressure will increase quickly. Under this condition, although the treating pressure raises much, it is
difficult to shear the natural fracture. The direction of natural fractures is important for shearing, and it requires that the
angle between natural and hydraulic fracture should be clarified before designing a proper treatment schedule.

The natural fractures will be opened if the fracturing net pressure is higher than the critical pressure and fracture
closure pressure. In order to shear the natural fractures to generate fracture network, the fracturing net pressure should
be controlled lower  than the critical  pressure  during hydraulic  fracturing treatment.  After  the  network extends to  a
certain scope, the treatment pressure can be increased above the critical pressure to form a long main fracture, which
connects the natural face and butt cleats to generate networks. Ideally, the fracture networks will stimulate the CBM
reservoir  fully  and  provide  flowing  drainage  volume  as  large  as  possible  [23  -  30].  Under  lower  net  pressure,  the
damage  around  fractures  can  be  avoided,  and  fracture  networks  can  increase  drainage  volume obviously,  thus,  the

 

(𝜎1 − 𝜎3)(𝑠𝑖𝑛2𝛼 + 𝜇𝑓𝑐𝑜𝑠2𝛼) − 𝜇𝑓(𝜎1 + 𝜎3 − 2𝑃𝑓) = 2𝜏0      
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methane producing rate will be raised greatly [31 - 35].

Fig. (6). Effect of angles between natural and main fractures on critical stress difference.

3.3. Permeability of Sheared Fractures

Assume that there are not proppants in sheared fractures, so the permeability can be calculated as follows.

(7)

If the width of sheared fracture is 10-4 m, porosity is 1%, the permeability of sheared fracture will be 8.33μm2. The
permeability  of  coal  matrix  is  usually  at  the level  of  10-3μm2,  obviously,  the permeability  of  sheared fracture  is  far
higher than the coal permeability, even the fracture width is in the scale of millimeter. When the sheared fracture is
packed or sparsely by proppants, the width will be much larger, so the permeability will raise much. Therefore, the
sheared fractures are important, and if they connect with each other to form fracture network, the production of CBM
wells will rise significantly.

4. CASE HISTORY

The above new fracturing methodology was applied in Qinshui CBM basin. The key of stimulation treatment is to
control pumping pressure lower than fracture pressure at the beginning. When natural fractures are connected to form
network fractures to a certain scale, then pumping pressure is increased to generate main fracture channel. At some
distance around wellbore, network fractures are generated, hence, dewatering and desorbing rate will be raised, and
higher  methane  production  will  be  acquired  eventually.  The  new  fracturing  methodology  was  tested  on  SZ  37-8
methane well, and half a year later, the CBM production was nearly 2000 m3/d. Ultimately, the production kept at 3200
m3/d, which exceeded the average production by a factor of 3.2 (Fig. 7).

Fig. (7). The production curve of SZ 37-8 well.
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In  China,  as  an  effective  increasing  permeability  technology  for  coal  seam  underground,  drilling  hydraulic
fracturing has been widespread applied with good results, which can be confirmed by the production yield statistics
(Fig. 8). The total production yield of CBM is 152 × 108m3 in 2014, and 36 × 108m3 is from the surface development,
116 × 10 8m3 from underground pumping of coal mines. Although underground fracturing is confined to the space and
equipment  ability,it  is  difficult  to  achieve  large  displacement  or  add  proppant  and  crack  is  easy  to  closing,  the
mechanism of increasing coal permeability should be focused on. It shows that natural cracks could open, extend and
connect  to  form  fracture  network  during  this  underground  treatment,  and  it  also  provides  clues  and  new  vision  to
improve conventional fracturing used in CBM reservoirs. On the other hand, it means that the technique to shear the
natural fractures before opening them can be realized and feasible.

Fig. (8). CBM production yield in China.

CONCLUSION

The reasons are explained for lower production of CBM in China. Because most methane is adsorbed on the1.
coal surface, and only a minor amount is free, and the production process includes 4 key points: dewatering to
lower pressure,  desorption, diffusion and flowing in fractures,  so,  gas production depends on the process of
desorption and diffusion. In order to increase gas production, there are two ways: raise the flowing rate and
increase flowing drainage volume.
Hydraulic fracturing is a double-edged sword in CBM reservoirs.  The application of conventional hydraulic2.
fracturing technique is not ideal in CBM, and it is explained by theoretical calculation from the two aspects of
induced stress and permeability sensitivity to stress.
According  to  the  characteristics  that  there  are  plenty  natural  fractures  in  CBM  reservoirs,  a  new  hydraulic3.
fracturing  technique  is  proposed  to  shear  the  natural  fractures  to  generate  fracture  network,  and  this  new
methodology can avoid permeability damage and enlarge drainage volume. 4) The mechanical requirements and
stimulation effect  are  presented in  theory.  If  the  angle  between natural  and hydraulic  fractures  is  small,  the
natural fractures are easier to be sheared under lower net pressure, so network fractures can be formed in CBM
reservoirs.

LIST OF ABBERIVIATIONS

Δσ = Fracture net pressure, MPa

W = Fracture width, mm

ν = Poisson’s ratio

H = Fracture height, m

K 0 = The initial permeability,  ×10-3μm2

K = The permeability after stress changed, ×10-3μm2

Cp = The pore compressibility coefficient, MPa-1

Δσp = The stress difference, MPa
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τ 0 = The shearing force, MPa

μf = Friction factor

σn = Vertical stress on the natural fracture, MPa

σ1,  σ3 = The maximum and minimum horizontal stress, MPa

α = The angle between natural and hydraulic fracture,

P f = The extension pressure, MPa

Pnet = Fracture net pressure,MPa, Pnet = Pf – σ3

Kf = Permeability of sheared fractures,  × 10-3 μm2

øf = Porosity of fractures

Wf = The width of sheared fracture, mm
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