
60 The Open Pacing, Electrophysiology & Therapy Journal, 2010, 3, 60-65

 1876-536X/10 2010 Bentham Open

Open Access

Biological Modelling Using CellML and MATLAB

Adam Reeve
1
, Alan Garny

2
, Andrew K. Miller

1
 and Randall D. Britten

1,*

1
Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand

2
Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK

Abstract: CellML is an XML-based file format for describing mathematical models, with the aim of simplifying the

creation, exchange and reuse of models. There are a number of software tools for modelling biological processes that can

read and write CellML files. In this paper, we describe the ability of the OpenCell modelling environment to export

CellML files to a number of different programming languages. We give an example of how OpenCell can be used

together with MATLAB, a popular language for mathematical modelling, in cardiac cellular electrophysiology.

Limitations and areas for future improvement in code export from OpenCell are also addressed.

Keywords: CellML, MATLAB, export, conversion, modelling, electrophysiology.

INTRODUCTION

 The aim of the CellML project is to improve the process
of constructing mathematical models by making it easier to
access, reuse and customise previously published models and
to build new models. CellML is an open file format for
describing mathematical models, based on the eXtensible
Markup Language (XML) [1] and MathML [2]. It is able to
describe a broad range of mathematical models; the CellML
model repository (http://models.cellml.org/) currently
includes electrophysiological, biochemical pathway,
mechanical and other model types [3]. There is a modular
structure to CellML models that allows reusing and building
on previously constructed models [4]. CellML files can be
edited with either a text editor, or with a specialised CellML
editing tool. One popular CellML tool is OpenCell
(http://www.opencellproject.org/), which was previously
known as the Physiome CellML Environment (PCEnv).
Features from the Cellular Open Resource (COR) tool [5]
are being merged into the PCEnv code and PCEnv has been
renamed to reflect this combining of tools. Some of these
features have been added to the OpenCell code, and this
process is currently ongoing. For a thorough list of tools that
use CellML, see Garny et al. [6].

 OpenCell is a Free and Open Source cross-platform
software package released under the Mozilla Public License.
The OpenCell code is written in JavaScript and utilises
Mozilla technologies including XUL and XPCOM. For
reading, manipulating and solving CellML models, OpenCell
uses the CellML Application Programming Interface (API;
http://www.cellml.org/tools/api/).

 The CellML API allows rapid construction of CellML
based tools without having to replicate previously developed
functionality. It consists of a core interface that is required

*Address correspondence to this author at the Auckland Bioengineering

Institute, The University of Auckland, Auckland, New Zealand; Tel: +64 9

373 7599; Fax: +64 9 367 7157; E-mail: r.britten@auckland.ac.nz

by all applications working with CellML models, and a
number of optional services that can be enabled when
building the API. These services have a wide range of
functions including validating, annotating and solving
CellML models. A detailed description of the CellML API is
provided by Miller et al. [7].

Code Export from CellML

 The ability to generate programming code from a
CellML file has a number of useful applications. People have
different preferred computational environments, and the
ability to download code generated from a CellML file
allows the use of their preferred environment but also
provides all the benefits of using CellML. Models in the
CellML repository have a curation status that indicates
whether a model accurately reproduces the results from the
published paper it is based on, and will also list other
problems such as unit inconsistencies if they exist. If a
model is obtained from the CellML repository and has been
curated and validated, users can be confident that the model
will function as intended without having to manually write
and test code using the published paper [3].

 Although OpenCell is a fully featured modelling
environment that allows models to be constructed, solved
and plotted, users may find that they require the use of tools
available in another modelling or programming environment.
In this situation, to be able to generate code from a CellML
model is also important.

 Previous versions of OpenCell provided the option of
exporting code to the C programming language, and recently
the ability to export code to MATLAB and Python has been
added. Users can now also provide their own XML-based
language definition files to add support for new languages or
customise the export to an already supported language. A
simplified example of a language definition file for
MATLAB is given in Listing 1. The functionality for
exporting models is implemented using the CeLEDS
Exporter service in the CellML API [7]. Because this service

Biological Modelling Using CellML and MATLAB The Open Pacing, Electrophysiology & Therapy Journal, 2010, Volume 3 61

is designed to be able to export code for a number of
different types of models to nearly any programming
language, there are constraints on the structure of the
generated code, and the code generated is often not as clean
and simple as if it had been written by hand. An alternative
for the user would be to do custom software development
using the CellML API to work directly with the relevant
CellML models; however, this requires a significant
investment of time. Code export offers a more easily
accessible alternative. Furthermore, the addition of
customisable export also provides an advantage in that users
can tailor the code export to their specific requirements. To
illustrate the export of a CellML model to MATLAB
(Version 7.9, The MathWorks Inc., Natick, Massachusetts),
the following simple differential algebraic equation (DAE)
will be considered:

dy

dt
= y

d = y c

where y(0) = 1 and c = 2.

 Apart from the variable of integration (in this example, t),
all variables in the exported code are stored in one of the
STATES, RATES, ALGEBRAIC or CONSTANTS arrays,
where each array corresponds to different types of variables.
In this example, y is a state variable as it has a rate of change
specified, and dy/dt is the rate variable that corresponds to
the state variable y. c is a constant as it does not depend on
the other variables, and d is an algebraic variable as it
depends directly on the values of y and c rather than being
defined by a differential equation.

 The generated code consists of five main functions. The
first function is the primary M-file function. This calls the
initConsts function to initialize constants and state
variables then calls ode15s, a MATLAB ordinary
differential equation (ODE) solver, to solve for the state
variables, which uses the computeRates function to
determine the rates of change of state variables. Following
this, any decoupled algebraic variables are solved for by
calling the computeAlgebraic function and finally a
plot is produced of the solution.

 In this example the initConsts function initialises the
value of the state variable y, STATES(:,1), to 1, and specifies
the value of the constant c, CONSTANTS(:,1), as 2:

function [STATES, CONSTANTS] = initConsts()

 CONSTANTS = []; STATES = [];

 STATES(:,1) = 1;

 CONSTANTS(:,1) = 2;

end

 The computeRates function is called by the ODE
solver and is passed the value of the variable of integration
and the values of all state variables and constants. It returns
an array containing the calculated rates. Rate variables may
depend on algebraic variables, in which case the algebraic
variable will be required to be computed within this function.

In this example the rate of change of y, RATES(:,1), is
calculated:

function RATES = computeRates(VOI,

 STATES, CONSTANTS)

 STATES = STATES'; RATES = [];

 ALGEBRAIC = [0];

 RATES(:,1) = - STATES(:,1);

 RATES = RATES';

end

 The ODE solver returns a two-dimensional array of state
variables. The columns of this array correspond to different
state variables, and each row corresponds to a point in the
integration domain. The computeAlgebraic function
uses the state variables calculated over the entire integration
domain to determine any remaining algebraic variables using
element-wise vector operations from MATLAB. Algebraic
variables previously calculated within computeRates
must also be recalculated to obtain their values at the correct
points in time. In the example code the algebraic variable d,
ALGEBRAIC(:,1), is specified:

function ALGEBRAIC =

 computeAlgebraic(CONSTANTS,

 STATES, VOI)

 ALGEBRAIC = zeros(length(VOI),1);

 ALGEBRAIC(:,1) =

STATES(:,1).*CONSTANTS(:,1);

end

 All variable names are defined using a specified string.
For the state variables in this example, the string is
“STATES(:,%)”, where the % is replaced by an array index.
The same naming convention is used throughout the code, so
in the initConsts and computeRates functions, state,
rate and algebraic variables are accessed by specifying a
column of the STATES, RATES or ALGEBRAIC array.
However, within these functions, the arrays are simply a row
vector, so the operations are only performed on scalar values.
This naming scheme is a limitation of the current code
export and it would be preferable to access variables by their
name rather than through an array index. In order to identify
the array indices for different variables the exported code
generates arrays of strings in the createLegends
function, which is also used to generate a legend for the
plotted solution. These arrays are named LEGEND_STATES,
LEGEND_ALGEBRAIC, and so on. The value of each item
in the LEGEND_STATES array will be a string containing
the name of the corresponding variable in the STATES array.

 In the previous example, the algebraic variable d was
decoupled from the DAE system, and could be solved for
separately once the state variable y had been determined at
all points in the time domain. OpenCell also has
experimental support for solving index-1 differential
algebraic equations where the algebraic variables are coupled
with the state variables. An example of such a system is
given below, which has the analytic solution y = e

t
 and c = d

= y/2:

62 The Open Pacing, Electrophysiology & Therapy Journal, 2010, Volume 3 Reeve et al.

dy

dt
= c + d

dc

dt
=
y

2

c d =
y2

4

where y(0) = 1 and c(0) = 0.5 and d(0) = 0.5.

 In MATLAB the recommended method for solving this
system is to use a mass matrix, with the equations in the
form M·y' = f(t,y), where M is a matrix multiplying the
vector of rates, y'. The above example can be solved using
the following MATLAB code:

function [t,y] = solveDAE()

 M = [1, 0, 0; 0, 1, 0; 0, 0, 0];

 y0 = [1; 0.5; 0.5];

 tspan = [0, 1];

 options = odeset('Mass',M);

 [t,y] = ode15s(@f,tspan,y0,options);

 function r = f(t, Y)

 y = Y(1); c = Y(2); d = Y(3);

 r = [c + d;

 y/2;

 (y^2)/4 – c*d];

 end

end

 When generating MATLAB code from a CellML model
using OpenCell, the structure of the generated code is similar
to that for solving an ODE, however within the
computeRates and computeAlgebraic functions, a
rootfind function is called to solve for the algebraic
variable d. There may be more than one rootfind function
required for a model, so they are numbered. The
computeRates and rootfind_0 functions for the
above example are given below:

function RATES = computeRates(VOI,

 STATES, CONSTANTS)

 STATES = STATES'; RATES = [];

 ALGEBRAIC = [0];

 RATES(:,2) = STATES(:,1)./2.0;

 ALGEBRAIC = rootfind_0(VOI,

 CONSTANTS, STATES, ALGEBRAIC);

 RATES(:,1) =

 STATES(:,2)+ALGEBRAIC(:,1);

 RATES = RATES';

end

function ALGEBRAIC = rootfind_0(VOI,

 CONSTANTS, STATES, ALGEBRAIC_IN)

 ALGEBRAIC = ALGEBRAIC_IN;

 global initialGuess;

 if (length(initialGuess) ~= 1),

initialGuess = ones(1,1) * 0.1;, end

 residualfn =

 @(algebraicCandidate)residualSN_0

 (algebraicCandidate,

 ALGEBRAIC, VOI, CONSTANTS, STATES);

 ALGEBRAIC(:,1) =

fsolve(residualfn, initialGuess, options);

 initialGuess = ALGEBRAIC(:,1);

 end

end

function resid =

 residualSN_0(algebraicCandidate,

 ALGEBRAIC, VOI, CONSTANTS,

 STATES)

 ALGEBRAIC(:,1) = algebraicCandidate;

 resid =

(STATES(:,2).*ALGEBRAIC(:,1))-

((STATES(:,1).*STATES(:,1))./4.0);

end

 The rootfind_0 function, in this example, has been
simplified to account for only scalar values of the algebraic
variables. In the actual exported code the same function is
also called from calculateAlgebraic using algebraic
variables defined at all integration points. rootfind_0
calls MATLAB's fsolve to solve a nonlinear system of
equations which is defined in the residualSN_0 function.

Cardiac Cell Modelling Example

 MATLAB is currently a popular tool for cardiac
modelling, and even if OpenCell or another CellML based
modelling environment is not used, modellers should publish
a complete description of their models in a standard format
such as CellML to ensure that others have access to their
models.

 Modellers using MATLAB, or another environment,
should consider adding OpenCell to their suite of tools, since
it provides an excellent environment for cardiac modelling.
The CellML model repository already contains a large
number of cardiac models. Fig. (1) shows OpenCell editing
one such model, Luo and Rudy's 1991 model of the
ventricular cardiac action potential [8]. The figure also
illustrates the code export menu that is available when right
clicking on the model name.

 One situation where a user of OpenCell may wish to
export their model to MATLAB is to make use of the signal
processing tools available in MATLAB. In a hypothetical
example, a user may wish to model the effect of measuring
the cardiac action potential by convolving the voltage signal
from the Luo and Rudy model with the impulse response of
a system representing the measurement apparatus used. To
accomplish this using OpenCell and MATLAB is
straightforward. Right clicking on the model in the left hand
side model pane of OpenCell brings up a menu which
contains an export option and allows selecting from a range
of programming languages. Selecting MATLAB generates
MATLAB code which can then be saved to a file.

Biological Modelling Using CellML and MATLAB The Open Pacing, Electrophysiology & Therapy Journal, 2010, Volume 3 63

 By default, the MATLAB code will return a variable of
integration (VOI) array with irregular spacing as the solver
dynamically adjusts the step size. In order to define variables
with regular spacing in time, a line in the exported code,
“tspan = [04000];” was changed to “tspan =
[0:1:4000];”.

 Switching to MATLAB, the exported code can then be
run which will return four arrays, VOI, STATES,
ALGEBRAIC and CONSTANTS. By examining the
LEGEND_STATES array from the exported MATLAB code
it can be seen that the first index of the STATES array is the
membrane voltage. Ideally, there would be a simpler way to
identify variables without having to read the exported code.
A fifth-order Butterworth filter was constructed using
MATLAB's butter function and was applied to the
voltage signal using the filter function. The MATLAB
code used is given below, where fs is the sampling
frequency in Hz, fc is the cut-off frequency in Hz, b and a
are the filter coefficients, order is the filter order, Vm is the
membrane voltage calculated from the model and Vmf is the
filtered membrane voltage. The frequency and phase
response of the filter are shown in Fig. (2A), and the
membrane voltage signal before and after filtering is shown
in Fig. (2B).

[VOI, STATES, ALGEBRAIC, CONSTANTS] =

luo_rudy();

Vm = STATES(:,1);

% Design filter

fs = 1000;

fc = 10;

order = 5;

[b,a] = butter(order,2*fc/fs);

Vmf = filter(b, a, Vm);

freqz(b,a,[],fs)

figure; plot(VOI, [Vm Vmf])

DISCUSSION

 The main limitations of code export from OpenCell have
already been illustrated. The naming of variables within the
code is one issue which needs to be improved, and the way
the code is generated limits the structure of the exported
code and can prevent the use of preferred solution methods,
as seen in the MATLAB example of an index-1 DAE where
it would be preferable to use MATLAB’s mass matrix
method. These are two areas which will be focussed on in
future releases of the CellML API and OpenCell. A possible
solution to the problem of variable naming is defining
variable names as the corresponding array index. Rather than
accessing the membrane voltage using “STATES(:,1)”,
we would first define “membrane_voltage = 1” and
similarly for all other variables, then use
“STATES(:,membrane_voltage)” to access the value
of the membrane voltage.

CONCLUSION

 The use of CellML facilitates simpler model
development and exchange; however, modellers may prefer
to use a different environment for model construction or may
wish to take advantage of features available in another
environment rather than use a dedicated CellML based
application such as OpenCell. In these situations, the code
export tool in OpenCell allows generation of code in
MATLAB or another programming language, as well as
providing the ability for users to customise the code export
for their own needs.

Fig. (1). A screenshot of OpenCell editing Luo and Rudy's 1991 model of the cardiac action potential. A list of variables is shown in the

middle panel and plots of variables against time are shown in the right panel. To the left is the menu for exporting a model to C, Python or

MATLAB code, which has been opened by right clicking on the model name.

64 The Open Pacing, Electrophysiology & Therapy Journal, 2010, Volume 3 Reeve et al.

Fig. (2). Filtering of the cardiac action potential. (A) shows the magnitude and phase response of the fifth-order Bessel function used to filter

the membrane voltage signal, and (B) shows the modelled cardiac action potential before and after filtering.

CODE LISTINGS

Listing 1

 A condensed version of the language definition file for the MATLAB programming language. Mal and CCGS refer to
components of the CellML API that are used for code generation.

<?xmlversion="1.0"encoding="ISO-8859-1"?>
<language
xmlns="http://www.cellml.org/CeLEDS/1.0#"
xmlns:mal="http://www.cellml.org/CeLEDS/MaLaES/1.0#"
xmlns:ccgs="http://www.cellml.org/CeLEDS/CCGS/1.0#">
<title>MATLAB</title>

<mal:dictionary>
<mal:mappingkeyname="abs"precedence="H">abs(#expr1)</mal:mapping>
<mal:mappingkeyname="arccos"precedence="H">acos(#expr1)</mal:mapping>
 ...
 ...
</mal:dictionary>

<ccgs:dictionary>
<ccgs:mappingkeyname="constantPattern">CONSTANTS(:,%)</ccgs:mapping>
<ccgs:mappingkeyname="stateVariableNamePattern">STATES(:,%)</ccgs:mapping>
 ...
 ...
</ccgs:dictionary>

<dictionary>
<mappingkeyname="preStateCount">% There are a total of </mapping>
<mappingkeyname="postStateCount"> entries in each of the rate and state variable arrays.</mapping>
 ...
 ...
</dictionary>

<extrafunctions>
<functionsearchname="arbitrary_log"><![CDATA[% Compute a logarithm to any base
function x = arbitrary_log(a, base)
 x = log(a) ./ log(base);
end
]]></function>
 ...
 ...
</extrafunctions>

</language>

Biological Modelling Using CellML and MATLAB The Open Pacing, Electrophysiology & Therapy Journal, 2010, Volume 3 65

ACKNOWLEDGEMENTS

 The authors would like to thank the Maurice Wilkins
Centre for Molecular Biodiscovery and the VPH NoE
project(#223920; supported by the European Commission,
DG Information Society, through the Seventh Framework
Programme of Information and Communication
Technologies) for financial contributions to the CellML
project.

 AG is funded through the preDiCT and euHeart projects
(#224381 and #224495, respectively) which are also
supported by the European Commission, DG Information
Society, through the Seventh Framework Programme of
Information and Communication Technologies.

 Part of AKM's work was completed in the course of
his PhD research, funded by a NZ Tertiary Education
Commission (TEC) Top Achievers Doctoral Scholarship.

CONFLICT OF INTEREST

 None to declare.

REFERENCES

[1] Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F.

Extensible Markup Language (XML) 1.0 (5th ed). W3C
Recommendation 2008. Available from http://www.w3.org/TR/

REC-xml/
[2] Carlisle D, Ion P, Miner R, Poppelier N. Mathematical markup

language (MathML) version 2.0. W3C Recommendation 2003.
Available from http://www.w3.org/TR/MathML/

[3] Lloyd CM, Lawson JR, Hunter PJ, Nielsen PF. The CellML model
repository. Bioinformatics 2008; 24(18): 2122-3.

[4] Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP,
Hunter PJ. An overview of CellML 1.1, a biological model

description language. Simulation 2003; 79(12): 740-7.
[5] Garny A, Noble D, Hunter PJ, Kohl P. Cellular Open Resource

(COR): current status and future directions. Philos Trans A Math
Phys Eng Sci 2009; 367(1895): 1885-905.

[6] Garny A, Nickerson DP, Cooper J, et al. CellML and associated
tools and techniques. Philos Trans A Math Phys Eng Sci 2008;

366(1878): 3017-43.
[7] Miller A, Marsh J, Reeve A, et al. An overview of the CellML API

and its implementation. (submitted)
[8] Luo CH, Rudy Y. A model of the ventricular cardiac action

potential. Depolarization, repolarization, and their interaction. Circ
Res 1991; 68: 1501-26.

Received: November 30, 2009 Revised: February 28, 2010 Accepted: March 09, 2010

© Reeve et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

