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Abstract: A rigorous study of the dispersion relations of weakly amplified and weakly propagating transverse fluctuations 

with wave vectors (
 

�

k �

�

B ) parallel to the uniform background magnetic field  

�

B  in an anisotropic bi-Maxwellian 

magnetized pair plasma is presented. Earlier work, based on the weakly-amplified limit, is extended to the case of weakly 

propagating solutions, which includes in particular aperiodic fluctuations, by the appropriate Taylor expansion of the 

plasma dispersion function. It is shown that six different transverse right-handed (RH) and left-handed (LH) polarized 

modes can be excited whose dispersion relations and instability threshold conditions are derived. The existence and 

instability conditions are derived in terms of the combined temperature anisotropy 
 
A = T

�
/T

�
, the parallel plasma beta 

 
�

�
= 8�nekBT�

/ B2  and the electron plasma frequency phase speed w =� p,e / (kc) . The pair Alfven and cyclotron 

instabilities are the only two weakly amplified solutions, whereas the four weakly propagating solutions are the mirror, 

firehose, cool magnetized Weibel and cyctronic fluctuations, respectively. The four weakly propagating solutions are 

aperiodic with vanishing real phase speeds R = 0  if the plasma positrons and electrons have the same temperature 

anisotropy. The mirror and cool magnetized Weibel fluctuations reduce to the known hot and cool Weibel instabilities in 

the limit of an unmagnetized plasma. 
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1. INTRODUCTION 

 The explanation of the thermalization of cosmic 

collision-free plasmas and their near energy density 

equipartition with electromagnetic plasma turbulence are two 

challenging fundamental problems of plasma astrophysics. 

Thermalization by elastic two-body Coulomb collisions is 

orders of magnitudes too slow as compared to interactions 

with electric and magnetic fields because of the low-density 

of cosmic plasmas. The plasma parameter g = �ee /� p,e  is 

the ratio of the electron-electron Coulomb collision 

frequency �ee  to the electron plasma frequency � p,e , which 

characterizes interactions with the electromagnetic 

turbulence. In all cosmic plasmas, including the solar wind, 

the interstellar and intergalactic medium and clusters of 

galaxies, the plasma parameter is smaller than 10�10  (see e.g. 

table 8.1 in [1]), indicating that elastic collisions are not 

effective in establishing a local thermodynamic equilibrium. 

These cosmic plasmas can be regarded as effectively 

collision-free on the shortest time and length scales. 

Alternative thermalization mechanisms have to be examined 

such as energy diffusion by second-order Fermi interactions 

of charged particles with electromagnetic turbulence which 

are an intrinsic property of any sufficiently agitated  
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magnetized plasma [2, 3]. Observations in the solar wind 

plasma and in our own Galaxy support this hypothesis 

because they have established, that the energy densities of 

the solar wind plasma and the interstellar plasma are of the 

same order as the energy density of the ambient magnetic 

fields, cosmic rays and photon fields, and that the magnetic 

fields contain a dominating turbulent fraction. A full kinetic 

theory of the mutual particle-field interactions is required 

[4]. Equipartition conditions for the magnetic field energy 

density and the kinetic energy density of plasma particles in 

astrophysical sources are also often invoked for convenience 

[5] in order to analyze cosmic synchrotron intensities. 

Observationally, for a variety of nonthermal sources the 

equipartition concept is supported by magnetic field 

estimates as e.g. in the Coma cluster of galaxies [6] and 

radio-quiet active galactic nuclei [7]. 

 From a theoretical point of view, there is no simple 

explanation of such partition. An upper limit on the magnetic 

field strength can be derived by applying Chandrasekhar’s 

[8] general result, derived from the virial theorem, that for 

the existence of a stable equilibrium in the radiating source it 

is necessary that the total magnetic field energy of the 

system does not exceed the system’s gravitational potential 

energy. Such a magnetic field upper limit corresponds to 

lower limits on the system’s parallel and perpendicular 

plasma betas, 
 
�

�
= 8�nkBT

�

/ B2  and �
�
= 8�nkBT� / B

2
, 

respectively, as bi-Maxwellian plasma distributions with 

different temperatures along and perpendicular to the  
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magnetic field are the most likely distributions of cosmic 

plasmas, as observations of the solar wind plasma indicate. 

The solar wind plasma is the only cosmic plasma where 

detailed in-situ satellite observations of plasma properties are 

available [9]. Ten years of Wind/SWE data [10] have 

demonstrated that the proton and electron temperature 

anisotropies 
 
A = T

�
/T

�
 are bounded by ion cyclotron, 

mirror and firehose instabilities [11] at large values of the 

parallel plasma beta 
 
�

�
= 8�nkBT�

/ B2 � 1 . In the parameter 

plane defined by the temperature anisotropy 
 
A = T

�
/T

�
 and 

the parallel plasma beta 
 
�

�
, stable plasma configuration are 

only possible within a rhomb-like configuration around 

 
�
�
� 1 , whose limits are defined by the threshold conditions 

for the ion cyclotron, mirror and firehose instabilities. If a 

plasma would start with parameter values outside this 

rhomb-like configuration, it immediately would generate 

fluctuations via the ion cyclotron, mirror and firehose 

instabilities, which quickly relax the plasma distribution into 

the stable regime within the rhomb-configuration. 

 In order to understand the confinement limits also at 

small values of the parallel plasma beta 
 
�

�
< 1  we analyze 

here rigorously the full linear dispersion relation in a 

collisionless homogenous plasma with anisotropic ( A � 1 ) 

bi-Maxwellian particle velocity distributions for 

electromagnetic fluctuations with wave vectors ( 
�

k �
�

B = 0 ) 

parallel to the uniform background magnetic field  
�

B . We 

extend earlier work [12, 13], who have studied weakly 

(
 
| � |��R ) damped and weakly amplified wave solutions, to 

the case of weakly propagating (
 
�R � � ) solutions which 

includes in particular aperiodic fluctuations with �R = 0 . 

�R  and �  here refer to real and imaginary part of the 

complex frquency � =�R + i� . 

 We start our investigation for equal mass thermal 

plasmas such as electron-positron pair plasmas which 

enormously facilitates the theoretical analysis due to the 

equality of the values of the electron and positron plasma 

and gyrofrequencies. However, a study of equal mass 

plasmas more than purely academic, as such plasmas [14] 

are relevant for the emission regions in active galactic nuclei 

[15], gamma-ray bursts [16, 17] and accreting magnetic 

degenerate dwarfs [18]. In future work we will investigate 

the case of electron-proton plasmas where more fluctuation 

modes result from the different mass ratio 

� = mp / me =1836 . In our studies we also adopt 

nonrelativistic plasma temperatures which is appropriate 

especially for the solar wind case. 

2. DISPERSION RELATIONS 

2.1. Basic Equations 

 For a nonzero background magnetic field strength the 

nonrelativistic dispersion relations for right-handed (RH) and 

left-handed (LH) polarized fluctuations with wave vectors 

0=Bk
��

�  in a thermal pair plasma are [19] 

 

DRH (k,� ) =�
2
� k2c2 +� p,e

2

a=p,e
�

�

2ku� ,�
Z
� +�a

2ku� ,�

�

�
	




�
� +

1

2
1� Aa( )Z '

� +�a

2ku� ,�

�

�
	




�
�




�

�

�

�

�

�

�

= 0   (1) 

and 

 

DLH (k,� ) =�
2
� k2c2 +� p,e

2

a=p,e
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2ku� ,�
Z
� ��a

2ku� ,�
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� +

1

2
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�
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�

�

= 0,   (2) 

respectively, where we sum over a positron (p)-electron (e) 

pair plasma and where 
 
k =| k

�
| . � p,e  denotes the electron 

plasma frequency, 
 
ua,� = (kBTa,� / ma )

1/2
 is the parallel 

thermal velocity of component a , and 
 
Aa = Ta,� /Ta,�  is the 

temperature anisotropy of component a , where the 

directional subscripts refer to directions relative to the 

background magnetic field. The dispersion relations (1) and 

(2) allow for different values of the positron and electron 

parallel temperatures and temperature anisotropies. 

Z(x)  and Z ' (x)  denote the plasma dispersion function [20] 

and its derivative 

Z(x) = � �1/2

��

�

� dt
e� t

2

t � x
           (3) 

with the well-known propertes 

 Z ' (x) = �2 1+ xZ(x)[ ],            (4) 

and 

Z(�x) = 2� 1/2ie� x
2
� Z(x), Z ' (�x) = 4� 1/2ixe� x

2
+ Z ' (x)   (5) 

 We will frequently use the asymptotic expansions 

 

Z(x) � i� 1/2e� x
2
�2x 1�

2x2

3

�

�
�

�

�
	 , | x |�1          (6) 

and 

 

Z(x) � i�� 1/2e� x
2
�
1

x
1+

1

2x2
+
3

4x4
�

�
�

�



	
, | x |� 1         (7) 

where � = 0  if �(x) > 0 , � =1  if �(x) = 0  and � = 2  if 

�(x) < 0 . 

2.1.1. Validity of Linear Dispersion Relation 

 With the proper analytic continuation of the plasma 

dispersion function the dispersion relations (1) and (2) are 

valid in the whole complex frequency plane. However, the 

unstable solutions of the dispersion relations with positive 

� > 0  growth rates only hold during the linear phase of the 

instability, because the dispersion relations are derived from 

the linearized Vlasov equations under the assumption that 

the fluctuations in the electromagnetic fields 
 
(|�
�

E |, |�
�

B |)  

and in the particle distribution function � f  and the 

electromagnetic fields are small compared to the unperturbed 

uniform magnetic field B  and distribution function f0  taken 

here as bi-Maxwellians. In this case nonlinear terms in 
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fluctuating quantities are negligible small compared to linear 

terms. 

 For any instability the fluctuating distribution function is 
given by its Fourier-transform 

� f (t) = �dkM (k)e
i�R (k )t e

� R (k )t           (8) 

 Of particular interest in the instabilities investigated 

below, is the maximum growth rate � max  at the wavenumber 

kmax , which allows us to approximate the fluctuating 

distribution function (8)) from above as 

� f (t) � e
�maxt

�dkM 0 (k)e
i�R (k )t           (9) 

Parseval's theorem then yields 

 |� f (t) |� e
�maxt |� f (0) |,         (10) 

indicating that the fluctuating distribution function 

exponentially increases with time from its initial ( t = 0 ) 

negligible value � f (0) . 

 The linear phase of the instability is defined by 

|� f (t) | / f0 < 1 , which with Eq. (10) corresponds to times 

0 � t � tL , tL = � max
�1 ln

f0
|� f (0) |

�

�
�

	



�

        (11) 

 In this initial time interval 0 � t � tL , the fluctuating 

distribution function is negligible small compared to f0 , and 

the linear dispersion relations (1) and (2) can be used. 

 For later times t > tL , the growing oscillations will 

completely modify the initial configuration f0 , so that the 

original ansatz of small fluctuations in the linearized Vlasov 

equation will become invalid. However, the calculation of 

the imaginary part of the frequency �  of the allowed plasma 

modes provides the important information whether the 

chosen initial state 
 
( f0 ,
�

B0 )  is stable ( � < 0 ) or unstable 

( � > 0 ) to the growth of initially small perturbations. To 

what final configuration an unstable system develops cannot 

be answered by this investigation of linear stability. 

2.1.2. Introduction of Phase Speeds 

 It is convenient to introduce the complex phase speeds 

f =
�

kc
=
�R + i�

kc
= R + iS, R =

�R

kc
, S =

�

kc
,       (12) 

and 

b =�pkc, w =� p,ekc          (13) 

where �p = eB / mec  is the positive positron gyrofrequency, 

and the dimensionless positron and electron temperatures 

 

� p �
2kBTp,�
mec

2

�

�
�

�

�
	

1/2

, �e �
2kBTe,�
mec

2

�

�
�

�

�
	

1/2

       (14) 

 

Throughout this work, in the classification of Swanson [21] 

we discuss high density plasmas with 
 
� p,e ��p , 

corresponding to  w� b  which applies to nearly all 

astrophysical plasmas. These plasmas are dense enough that 

the electron plasma frequency is much larger than the 

electron gyrofrequency, but small enough that elastic 

Coulomb collisions can be neglected: the small values of the 

plasma parameter 
 
g = 3�ee /� p,e <�(10�10 )  in astrophysical 

plasmas calculated in table 8.1 of Schlickeiser [1] indicate 

that the elastic Coulomb collision frequency is more than 10 

orders of magnitude smaller than the electron plasma 

frequency. Thus astrophysical plasmas are effectively 

collision-free on the shortest time and length scales. 

The two dispersion relations (1) and (2) then read 

 0 =
DRH (k, f )
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and 

 0 =
DLH (k, f )

k2c2
= �LH (k, f ) = f 2 �1+  
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where we have used Eq. (4). We immediately notice the 

symmetry 
 
�(�k

�
, f ) = �(k

�
, f )  of both dispersion relations 

allowing to consider only positive values of the wavenumber 

k > 0 . 

 The dispersion relations (15) and (16) can be separated 
into real and imaginary parts 

�(R,S) =��(R,S)+ i��(R,S) = 0        (17) 
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implying the two conditions 

��(R,S) = 0, ��(R,S) = 0         (18) 

For a wide class of initial distribution functions, including 

the bi-Maxwellian distribution, the dispersion relation 

�(R,S)  is a meromorphic function of the complex variable 

f = R + iS . This allows us to Taylor-expand the dispersion 

relation around different ponits in the complex plane. We 

consider two expansions in turn which are referred to as 

weak damping/amplification limit and weak propagation 

limit, respectiverly. 

2.2. Weak Damping/Amplification Limit 

 In the weak damping approximation we equate the real 

and imaginary parts to zero (see Eq. (18)), and make a 

Taylor-expansion around S = 0  to obtain 
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���(R,S)

�S
�

�
�

�

	


S=0

= 0,       (19) 

and 
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���(R,S)

�S
�

�
�

�

	


S=0

= 0,       (20) 

 Since �(R,S)  is a meromorphic function of the complex 

variable f = R + iS , we may use the Cauchy-Riemann 

relations 

���(R,S)

�R
=
�	�(R,S)

�S
,
���(R,S)

�S
= �

�	�(R,S)

�R
      (21) 

Eq. (20) then indicates that �� , to first order in S  is 

 

��(R,S) � ��(R,S = 0) +S
���(R,S = 0)

�R
= 0       (22) 

Likewise, Eq. (19) yields 

��(R,S = 0) � S
�	�(R,S = 0)

�R
= 0        (23) 

which, in combination with Eq. (22), yields to lowest order 

in the small quantity 
 
(S / R)2 �1  that the real part of the 

dispersion relation satisfies 

��(R,S = 0) = 0          (24) 

 Eq. (22) provides the corresponding imaginary part 

S = �
	�(R,S = 0)
���(R,S = 0)

�R

         (25) 

in the weak damping and amplification limit. For 

consistency, the resulting weak damping/amplification 

solutions have to fulfil  | S |� R , which has to be checked 

aposteriori. According to Eq. (11) the weak damping and 

amplification solutions are valid for times 

0 � t �
kmaxc

Smax
ln

f0
|� f (0) |

�

�
�

�

�
	 .         (26) 

 

2.3. Weak Propagation Limit 

 In the weak propagation limit ( | S |� R ) we Taylor-
expand around R = 0  to obtain 
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 The Cauchy-Riemann relations (21) then indicate that to 

first order in R 

��(R = 0,S) +R
���(R = 0,S)

�S
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�
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= 0,        (29) 

and 

	�(R = 0,S) �R
���(R = 0,S)

�S
�

�
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�
�
= 0        (30) 

 Inserting Eq. (30) into Eq. (29), we find that to lowest 

order in the small quantity 
 
(R/ | S |)2 �1  the real part of the 

dispersion relation satisfies 

��(R = 0,S) = 0          (31) 

whereas Eq. (30) provides the corresponding real part 

R =
��(R = 0,S)
���(R = 0,S)

�S

         (32) 

in the weak propagation limit. For consistency, the resulting 

weak propagation solutions have to fulfil  R�| S | , which 

has to be checked aposteriori. According to Eq. (11) the 

weakly propagating solutions are valid for times 

0 � t �
kmaxc

Smax
ln

f0
|� f (0) |

�

�
�

�

�
	 .         (33) 

2.4. Kinetic and Non-Kinetic Regimes 

 In terms of the complex phase speed f = R + iS  the real 

and imaginary parts of the two dispersion relations (15) and 

(16) read 
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and 
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0 =��LH (R,S) = R
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 In the following we will simplify the analysis by 

considering only equal parallel temperature plasmas 

� p =�e =� . 

 We will analyze Eqs. (34)-(37) in the limits of weak and 
strong damping/amplification for small and large absolute 
values ot the arguments 

| P
±
|=|

R + iS ± b

�
|=

(R ± b)2 + S2

�
,        (38) 

resulting in a separation of the complex phase speed 

( R � S )-plane into different regions with either 
 
| P

±
|� 1  or 

 
| P

±
|�1 , as illustrated in Fig. (1). The condition | P

±
|= 1  

separates these regions and corresponds to 

 (R ± b)2 + S2 =�2 ,          (39) 

which defines circles within the (R � S) -plane with radii � . 

For R  and S  values within the circles the asymptotics (6) of 

the plasma dispersion function. can be applied. Alternatively, 

for R  and S  values outside the circles on has to use the 

asymptotics (7) of the plasma dispersion function. 

The separation condition | P
±
|= 1  depends strongly on the 

ratio b /� . The case 
 b � �  of strong magnetic fields is 

referred to as kinetic regime, whereas the opposite case 

 b ��  is referred to as non-kinetic regime. Because 

b

�
=
1

k�
=
2��

�
          (40) 

where 

 

� =
2kBT�

/ me

�p

,          (41) 

denotes the thermal pair gyroradius, the kinetic regime 

corresponds to small (
 
� � � ) ratios of the pair thermal pair 

gyroradius to the wavelength of the fluctuatiobns. In the non-

kinetic regime, the thermal pair gyrodius is large compared 

to the wavelength. Geometrically, in the kinetic regime the 

positron and electron circles in Fig. (1) do not overlap, 

whereas in the non-kinetic regime they overlap. 

 In the respective limits of large or small absolute values 

of the arguments of the plasma dispersion function both in 

the weak and strong damping/amplification approximation 

we will obtain formal mathematical solutions for R  and S . 

These solutions are only acceptable if they indeed fulfil the 

initially made assumptions on weak or strong damping/ 

amplification which has to be checked a posteriori. Because 

the solutions depend in particular on the kineticity ratio 

(b /�) , it is convenient to introduce the parallel plasma beta 

 

�
�
=
�
2w2

b2
=
8�nekBT�

B2
         (42) 

which expresses the magnetic field strength as 

 

b =
�w

�
�

1/2           (43) 

in terms of the electron plasma frequency ( w ), the parallel 

temperature (� ) and the parallel plasma beta 
 
�

�
. Our 

restriction to only high-density plasmas with � p,e > �p  or 

w > b  then requires to have parallel plasma betas 
 
�

�
> �2

. 

 

Fig. (1). Separation of the complex phase speed plane into regions 

where the absolute value of the argunments of the plasma 

dispersion function | P
±
|=|

R + iS ± b

�
|= (R ± b)2 + S2 /�  is small 

and large compared to unity. Within the concentric circles around 

±b  with radius �  the arguments are small compared to unity; 

outside the circles they are large compared to unity. A value of 

b = 2  is adopted. The intersecting dashed circles refer to the case 

� = 3 > b ; the non-intersecting circles refer to the case � =1 < b . 

 Likewise, the resulting solutions 
 
R(�

�
,w,�)  and 

 
S(�

�
,w,�)  depend on these three basic plasma parameterrs. 

Note that the wavenumber dependence is included in w . 

3. WEAKLY DAMPED AND AMPLIFIED 
SOLUTIONS 

 For weakly damped or amplified fluctuations Eqs. (34)- 
(37) read 

0 =��RH (R,S = 0) = R
2
�1�

w2

2
4 + Ap�Z

' R + b

�

�

�
�

	



� + Ae�Z

' R � b

�

�

�
�

	



�

�



�

�

�
�  

+
w2b

�
�Z

R � b

�

�

�
�

�

	

 ��Z

R + b

�

�

�
�

�

	



�

�



�

�
� ,        (44) 
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	�RH (R,S = 0) = �
w2

2
Ap	Z

' R + b

�

�

�
�

	



� + Ae	Z

' R � b

�

�

�
�

	



�

�



�

�

�
�

+
w2b

�
	Z

R � b

�

�

�
�

	



� � 	Z

R + b

�

�

�
�

	



�

�



�

�

�
�

(45)

 

and 

0 =��LH (R,S = 0) = R
2
�1�

w2

2
4 + Ap�Z

' R � b

�

�

�
�

	



� + Ae�Z

' R + b

�

�

�
�

	



�

�



�

�

�
�  

+
w2b

�
�Z

R � b

�

�

�
�

�

	

 ��Z

R + b

�

�

�
�

�

	



�

�



�

�
� ,        (46) 

	�LH (R,S = 0) = �
w2

2
Ap	Z

' R � b

�

�

�
�

	



� + Ae	Z

' R + b

�

�

�
�

	



�

�



�

�

�
�

+
w2b

�
	Z

R � b

�

�

�
�

	



� � 	Z

R + b

�

�

�
�

	



�

�



�

�

�
� , (47)

 

which have to be investigated for positive values of R � 0 . 

 As noted before, these dispersion relations can be further 
reduced with the asymptotic expansions (6) and (7), 
depending on the absolute values of the arguments 

X1 =
| R + b |

�
, X2 =

| R � b |

�
        (48) 

of the plasma dispersion function and its derivative being 

small or large compared to unity. Expressed in terms of the 

plasma beta (43) the conditions X1,2 = 1  correspond to 

 
R1 =� 1� w�

�

�1/2
( )          (49) 

for X1 = 1 , which is automatically fulfilled for 
 
�

�
� w2

. 

Likewise, we obtain for X2 = 1  in the case R < b  that 

 
R2(R < b) =� w�

�

�1/2
�1( )         (50) 

and 

 
R3(R > b) =� 1+ w�

�

�1/2
( )         (51) 

for R > b . As illustrated in Fig. (2) the three curves 

 
R1(�

�
),R2(�

�
)  and 

 
R3(�

�
)  define dividing lines in the 

 
(R,�

�
) -solution plane that separate the regions where X1,2  

are larger or smaller than unity. For orientation we also plot 

the 
 
b(�

�
) -dependence (43) that indicates the location of the 

pair cyclotron phase speed b  in this diagram. 

 As indicated in Fig. (2) four different regions can be 
identified: 

(1) The region WI well below the curve R2, where both 

 
X1,2 � 1 . In this region the real phase speeds have to 

smaller than 
 R� b ��  while the plasma beta is 

restricted to values of 
 
�
2
�
�
� w2

, where the lower 

limt results from the high-density limit  b � w . 

(2) The region WII well above the curve R3 at all plasma 

betas 
 
�
�
� �

2
, where also both 

 
X1,2 �1 . 

(3) The region WIII well below the curve R3 at all 

plasma betas and well above the curve R2 (for 

 
�

�
< w2

) and R1 (for 
 
�

�
> w2

). In this region 

 
X1 � 1  but 

 
X2 �1 . 

(4) The region WIV at plasma betas 
 
�

�
> w2

 below the 

curve R1, where both 
 
X1,2 �1 . 

 

Fig. (2). Separation of the 
 
R � �

�
-parameter plane into four 

different regions depending on the values of X1,2  being small or 

large compared to unity. X1,2  are the arguments of the plasma 

dispersion function in the weak damping/amplification limit. For 

orientation the dashed curve shows the 
 
b(�

�
) -dependence ((43)) 

that indicates the location of the pair cyclotron phase speed b  in 
this diagram. 

 The regions WIII and WIV need not to be discussed 

because it is well known [22, 23] that solutions with either or 

both 
 
X1,2 �1  have  | S |� R , so that the weak damping 

approximation cannot be applied here. 

 Pair Alfven and cyclotron wave solutions in anisotropic 
bi-Maxwellian electron-positron plasmas were investigating 
before by Gary and Karimabadi [13] by numerically solving 
the linear dispersion relation for fixed values of the 
temperature anisotropy and the plasma beta, with no 
restriction on the wave propagation direction, so they also 
include the case of parallel propagation considered here. 
Here we concentrate on the analytical derivation of the 
existence and instability conditions of parallel propagating 
pair Alfven and cyclotron waves. 

3.1. Imaginary Part of Weak Damping/Amplification 
Dispersion Relation 

Before considering the regions WI and WII in more detail 
we note that both asymptotic expansions (6) and (7) yield the 
same imaginary part of the dispersion relation 

0 = ��RH ,LH (R,S = 0) = �
1/2w2 b

�
Ap

R

b
±1


�
�

�

�
�
e
�(R±b
�
)2
+ Ae

R

b
�1


�
�

�

�
�
e
�(R�b
�
)2
+ e

�(R�b
�
)2

� e
�(R+b
�
)2�

�

	

	




�

�

�

 

= � 1/2w2 b

�
Ap,e �1�
�

	


e
�(R+b

�
)2
+ 1� Ae,p�
�

	


e
�(R�b

�
)2
+
R

b
Ap,ee

�(R+b
�
)2

+ Ae,pe
�(R�b

�
)2�

�

�

�

	




�

�

�




�

�

�

�

�

�
,
 (52) 
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irrespective of the values of 1,2X . For the same positron and 

electron anisotropy ( Ap = Ae = A0 ) we obtain 

0 = ��RH ,LH (R,S = 0,A0 )

= �2� 1/2
b

�
w2e

�
R2+b2

�
2
cosh

2bR

�
2

�

�
	




�
�

(A0 �1) tanh
2bR

�
2

�

�
	




�
� �

A0R

b



�
�

�

�
�

        (53) 

3.2 Regions WI and WII: Pair Alfven Waves, Cyclotron 

Waves and Electromagnetic Light 

 In the regions WI and WII both 
 
X1,2 � 1 , so that with 

 

�Z
R ± b

�

�



�

�

�
� � �

�

R ± b
1+

�
2

2(R ± b)2
�

�
�

	



� ,       (54) 

and 

 

�Z '
R ± b

�

�

�
�




�
� � +

�
2

(R ± b)2
1+

3�2

2(R ± b)2
�

�
�




�
� ,        (55) 

we obtain for the real parts of the dispersion relations (44) 

and (46) to lowest order in 
 �

2
�1  

 

0 =��RH ,LH (R,S = 0)

= R2 �1+ w2 2R2

b2 � R2
+
b2�2 (b2 + 3R2 )

(b2 � R2 )3
�

Ap�
2

2(R ± b)2
�

Ae�
2

2(R � b)2
�

�

�

	

�




 (56) 

In different limits the solutions of Eq. (56) describe pair 
Alfven waves, pair cyclotron waves and electromagnertic 
light. We consider each case in the next subsections. 

3.3. Pair Alfven Waves at Phase Speeds  R� R2 < b  for 

 
�
2
� �

�
< w2

 

For phase speeds  R� b  the dispersion relation (56) 

simplifies to 

0 =��RH ,LH (R,S = 0) = R
2 1+

2w2

b2
�

�
�

	



�

�1+ w2 �
2

b2

1�
Ap + Ae
2

�

�
�

	



�

±(Ap � Ae )
R

b
+ 6 �

3(Ap + Ae )

2

�

�
�

	



�

R2

b2

�




�

�

�

�

�

�

�

�

�

�

�

�

 

 

= R2 1+
2w2

b2
1+

3(2 � A)�2

2

�



�




�
�

�



�




�
�
± �

�
(Ap � Ae )

R

b
� 1+ A �1( )�

�
�
�




  

 

� 1+
c2

Ve
2

�

�
�

	



�
R2 ± �

�
(Ap � Ae )

R

b
� 1+ A �1( )�

�
�
�

�
�

      (57) 

where we introduce the pair Alfven speed 

2

b2
w2 =

8�nemec
2

B2
=
c2

Ve
2 ,          (58) 

the parallel pair plasma beta (42) and the combined plasma 
temperature anisotropy 

A =
Ap + Ae
2

            (59) 

 For high-density plasmas 
 
Ve � c , the dispersion relation 

(57) yields the LH and RH polarized pair Alfven modes with 

the same 

 

R �
b

2w
1+ (A �1)�

�

=�
1+ (A �1)�

�

2�
�

=
Ve
c

1+ (A �1)�
�
,

       (60) 

which either can propagate forward and backward. Note that 

the condition  R� b  requires  w� 2
�1/2

. Moreover, these 

four pair Alfven modes only exist for temperature 

anisotropies such that 
 
1+ (A �1)�

�
� 0  corresponding to 

 

A > 1�
1

�
�

�

�
�

�

�
	           (61) 

which includes the isotropic ( Ap = Ae = A =1 ) plasma 

temperature case. For small plasma betas (
 
�

�
� 1 ) the 

condition (61) is always fulfilled whereas for large plasma 

betas (
 
�

�
> 1 ) the combined anisotropy A  has to be larger 

than 
 
1� �

�

�1
. 

Eq. (57) also provides 

 

���RH ,LH (R,S = 0)

�R
= 2(1+

c2

Ve
2 )R ±

�
�
(Ap � Ae )

b
� 2

c2Ve
2

R
,  (62) 

so that for all four modes according to Eqs. (25) and (52) the 
growth/damping rate is 

SRH ,LH = �
Ve
2

2c2R
��RH ,LH (R,S = 0) =  

 

�
�
1/2b3

4�R

Ap

R

b
±1�



�

�

�


e
�(
R±b

�
)2

+Ae
R

b
�1�



�

�

�


e
�(
R�b

�
)2

+ e
�(
R�b

�
)2

� e
�(
R+b

�
)2

�




�

�

�

�

�

�

�

�

�

�

      (63) 

For isotropic ( Ap = Ae =1 ) plasma temperatures all four 

Alfven modes are damped with the rate 

SRH ,LH (Ap = Ae =1) = �
�
1/2b2

2�
e
�
R2+b2

�
2
cosh

2bR

�
2

�



�

	



�       (64) 

For the same positron and electron anisotropy 

( Ap = Ae = A0 ) the growth/damping rate (63) reads 

SRH ,LH (Ap = Ae = A0 ) =
�
1/2b3

2�R
e
�
R2+b2

�
2
cosh

2bR

�
2

�



�

�

�
�

(A0 �1) tanh
2bR

�
2

�



�

�

�
� �

A0R

b
�



�

�

�



      (65) 
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 We immediately see that for A0 � 1  this rate is always 

negative. In order to drive the pair Alfven modes unstable 

values with A0 > 1  are required such that 

(A0 �1) tanh
2bR

�
2

�

�
�

�

�
	 >

A0R

b
,         (66) 

3.3.1. Pair Alfven Wave Instability Condition 

 The tanh� function is well approximated by 

 

tanh(x) �
x

1+ x
          (67) 

yielding for condition (66) 

 

A0 �1

A0
>

�
�

2w2 +
R

b
         (68) 

 Insertion of the solution (60) yields for the instability 
condition 

 

A0 �1

A0
>

�
�

2w2 +
1+ (A0 �1)��

2w2 ,         (69) 

which defines a quadratic inequality for 
 
�

�
 in terms of A0 . 

Scaling 
 
�

�
= 2w2B  with B < (1 / 2)  the condition (69) reads 

A0 �1

A0
� B >

1

2w2 + (A0 �1)B         (70) 

 Because the right hand side of this inequality is positive, 

we derive as first constraint that B < (A0 �1) / A0  or 

 

�
�
< 2w2 A0 �1

A0
,           (71) 

corresponding to the condition 

 

A0 >
2w2

2w2
� �

�

          (72) 

and 
 
�

�
< 2w2

. The solution of inequality (70) with the 

requirement ((71)) is 

 

B =
�

�

2w2 >
A0 �1

A0

A0 + 2

2
�

A0 + 2

2
�

�
�




�
�

2

�1+ (
A0

A0 �1
)2

1

2w2

�

�

�

�




�

�

�

,   (73) 

In order for this to be positive we need as second condition 

that A0 / (A0 �1) < 2
1/2w  or 

A0 >
2w

2w �1
,           (74) 

restricting the plasma frequency phase speeds to values 

w > 1 / 2 . Pair Alfven waves can only be driven unstable 

at wavenumbers smaller than k < 2� p,e / c . 

 

Fig. (3). Anisotropy diagram for pair Alfven waves. Stable regions 

are marked by "s", unstable regions are marked by"u". The pair 

Alfven wave instability occurs for values of A >1  for anisotropies 

A  and parallel plasma beta values 
 
�

�
 located between the left and 

right curve. A value of w =10  is adopted. 

 The three instability conditions (72), (73) and (74) are 

illustrated in Fig. (3). Pair Alfven wave instability is possible 

for anisotropies A and parallel plasma beta values 
 
�

�
 located 

between the left and right curve: 

(1) for plasma betas 
 
�

�
� 2w  it is required that 

A0 > 2w / ( 2w �1)  and that 

 

 

�
�
> 2w2 A0 �1

A0

A0 + 2

2
�

A0 + 2

2
�

�
�




�
�

2

�1+ (
A0

A0 �1
)2

1

2w2

�

�

�

�




�

�

�

(75) 

(2) for plasma betas 
 
2w < �

�
< 2w2

 the instability 

condition is 

 

 

2w2 A0 �1

A0

A0 + 2

2
�

A0 + 2

2
�

�
�




�
�

2

�1+ (
A0

A0 �1
)2

1

2w2

�

�

�

�




�

�

�

< �
�
< 2w2 A0 �1

A0

      (76) 

No instability occurs in high-beta plasmas 
 
�

�
> 2w2

 and pair 

plasma frequency phase speeds w < 1 / 2 . 

 Because of condition (74) the requirement (73) with 

g = 2w > 1  can be well approximated by 

 

B =
�

�

g2
�

A0 �1

A0 (A0 + 2
) 1�

A0
2

g2 (A0 �1)
2

�



�

�

�



=

g2 �1

g2
A0 �

g

g �1

�



�

�

�
� A0 �

g

g +1

�



�

�

�
�

A0 (A0 + 2)(A0 �1)

       (77) 
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which for large values of 
 
A0 � 1  yields 

 
A0 > (2w

2
�1) / �

�
. 

For values of A0  close to 2w / ( 2w �1)  we approximate 

the right-hand side of constraint ((77)) further to 

 

�
�
> (g2 �1)

A0 �
g

g �1

�

�
�

�

�
	

2(A0 �1)
         (78) 

yielding 

 

A0 >
g(g +1) � 2�

�

g2 �1� 2�
�

,          (79) 

which is also shown in Fig. (3). In Table 1 we summarize the 
properties of the unstable weakly amplified pair Alfven 
mode. 

3.4. Pair Cyclotron Waves 

 Now dropping the assumption  R� b  and scaling 

R = bx , we obtain for the dispersion relation (56) for equal 

positron and electron anisosotropies ( Ap = Ae = A0 ) 

 

0 =��RH ,LH (x,S = 0) = b
2x2 �1+

2w2x2

1� x2

+�
�

1+ 3x2

(1� x2 )3
�
A0 (1+ x

2 )

(1� x2 )2
�

�
�

	

�



       (80) 

The conditions 
 
X1,2 � 1  demand that 

 
�
�
� 2w2

 and 

 

x � 1�
�

�

1/2

w
          (81) 

In a high-density plasma  b � w  and with  x � 3  the 

dispersion relation (80) simplifies to 

 

0 =��RH ,LH (x,S = 0) � �1+
2w2x2

1� x2
+

�
�

(1� x2 )3
3x2 +1� A0�
�

�
�

  (82) 

For small plasma beta 
 
�

�
< 1  we obtain the solution 

 

x �
1

1+ 2w2
          (83) 

which for large  2w
2
� 1  reduces to the four pair Alfven 

wave solutions (60). In the opposite case  w� 2
�1/2

 the 

solution (83) yields the four pair cyclotron waves with the 

dispersion relation 

 
R = bx � b 1� w2

�
�

�
�

         (84) 

 The constraint (81) demands 
 
�

�
� w6

 which is fulfilled 

for small values of w  because 
 
�

�
� w2

. 

Eq. (82) for small plasma beta 
 
�

�
< 1  also provides 

 

���RH ,LH (R,S = 0)

�R
�

4w2x

b(1� x2 )2
> 0,        (85) 

so that with Eqs. (25) and (53) the growth/damping rate 
reads 

SRH ,LH (Ap = Ae = A0 ) =
�
1/2

2

b2

�

(1� x2 )2

x
e
�
b2 (1+x2 )

�
2

cosh
2b2x

�
2

�

�
�

�

	


(A0 �1) tanh

2b2x

�
2

�

�
�

�

	


� A0x

�

�




�

�

�

      (86) 

For A0 � 1 , including the case of isotropic distribution 

functions, this rate is always negative. In order to drive the 

pair cyclotron waves unstable possible values with A0 > 1  

are required such that 

(A0 �1) tanh
2bR

�
2

�

�
�

�

�
	 >

A0R

b
,         (87) 

Approximating the �tanh function by Eq. (67) yields 

Table 1. Properties of Weakly Amplified Pair Alfven Waves 

 

Real phase speed range 
 
R � b = w� / �

�

1/2  

Parallel plasma beta range  
 
�
2
� �

�
� 2w2  

Dispersion relation  

 

R =
Ve
c

1+ (A �1)�
�

 

Existence condition  

 

A > 1�
1

�
�

 and 

 

w �
1

2
 

Instability conditions: w >
1

2
 

for 
 
�

�
� 2w  A0 >

2w

2w �1
 and 

 

�
�
> 2w2 A0 �1

A0

A0 + 2

2
�

A0 + 2

2
�

�
�




�
�

2

�1+ (
A

A0 �1
)2

1

2w2

�

�

�

�




�

�

�
  

for 
 
2w < �

�
� 2w2  

 

�
�
> 2w2 A0 �1

A0

A0 + 2

2
�

A0 + 2

2
�

�
�

�

	



2

�1+ (
A

A0 �1
)2

1

2w2

�

�










�

�

�

�

�

< �
�
� 2w2 A0 �1

A0
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A0 �1

A0
>

�
�

2w2 +
R

b
=

�
�

2w2 +1� w
2
        (88) 

upon insertion of the solution (84) for  w� 2
�1/2

. We obtain 

 

A0 >
1

w2 1� (
�

�

2w4 )
�

�
�

�

�
	

         (89) 

Only for large values of the anisotropy (
 
A0 � (2w

2 )�1 � 1 ) 

pair cyclotron waves can be excited at small plasma betas 

 
�
�
< 2w4

�1  provided  w � 2
�1/2

. In Table 2 we summarize 

the properties of the unstable weakly amplified pair 

cyclotron wave mode. 

Table 2. Properties of Weakly Amplified Pair Cyclotron 

Wave Mode 

 

Real phase speed range 
 
R � b(1� (�

�

1/2 / w))  

Parallel plasma beta range 
 
�
2
� �

�
� 2w2  

Dispersion relation R = b(1� w2 )  

Existence condition 

 

w �
1

2
 

Instability conditions:  

 

w �
1

2
 

for 
 
�

�
� 2w4  

 

A0 >
1

w2 1� (
�

�

2w4 )
�

�
�

�

�
	

 

 

3.5. Region WII: Electromagnetic Light at Large 
Frequencies 

 R� b +�  

 For large frequencies 
 R� b +�  the dispersion relation 

(56) reduces to 

 

0 =��RH ,LH (R,S = 0) � R
2
� (1+ 2w2 )

�2w2 b
2

R2
1+
�
2 (Ap + Ae )

4b2
�

�

�

	




�

       (90) 

and 

 

0 = ��RH ,LH (R,S = 0) � �
1/2w2 R

�
(Ap + Ae )e

�R2 /�2 ,          (91) 

so that for both polarisations to lowest order in (b / R)2  we 

obtain the dispersion relation of electromagnetic light 

  R
2
� 1+ 2w2

          (92) 

with the same damping rate 

S = �� 1/2w2 A

�
e�R

2 /�2          (93) 

4. WEAKLY PROPAGATING SOLUTIONS 

 For weakly propagating fluctuations with positive S > 0  

Eq. (34)-(37) read 

0 =��RH (R = 0,S) = �S
2
�1�

w2

2
4 + Ap�Z

' iS + b

� p

�

�
�

�



� + Ae�Z

' iS � b

�e

�

�
�

�



�

�




�

�

�

�

�

�

 

+w2b
1

�e

�Z
iS � b

�e

�

�
�

�

	


�
1

� p

�Z
iS + b

� p

�

�
�

�

	



�

�







�

�

�

�

,        (94) 

0 = 	�RH (R = 0,S) = �
w2

2
Ap	Z

' iS + b

� p

�

�
�

�



� + Ae	Z

' iS � b

�e

�

�
�

�



�

�




�

�

�

�

�

�

 

+w2b
1

�e

�Z
iS � b

�e

�

�
�

�

	


�
1

� p

�Z
iS + b

� p

�

�
�

�

	



�

�







�

�

�

�

,        (95) 

and 

0 =��LH (R = 0,S) = �S
2
�1�

w2

2
4 + Ap�Z

' iS � b

� p

�

�
�

�



� + Ae�Z

' iS + b

�e

�

�
�

�



�

�




�

�

�

�

�

�

 

+w2b
1

� p

�Z
iS � b

� p

�

�
�

�

	

 �

1

�e

�Z
iS + b

�e

�

�
�

�

	



�

�







�

�

�

�

,        (96) 

0 = 	�LH (R = 0,S) = �
w2

2
Ap	Z

' iS � b

� p

�

�
�

�



� + Ae	Z

' iS + b

�e

�

�
�

�



�

�




�

�

�

�

�

�

 

+w2b
1

� p

�Z
iS � b

� p

�

�
�

�

	

 �

1

�e

�Z
iS + b

�e

�

�
�

�

	



�

�







�

�

�

�

       (97) 

The absolute value of the arguments of the plasma dispersion 

function for equal parallel plasma temperatures 

�e =� p =�  is given by 

Y =|
iS ± b

�
|=

S2 + b2

�
         (98) 

Expressed in terms of the plasma beta (43) the condition 

Y =1  corresponds to 

 
S1(�

�
) =� 1� w2

�
�

�1
         (99) 

in the case of a finite magnetic field ( b � 0 ), whereas for 

unmagnetized plasmas S1(b = 0) =� . 

As illustrated in Fig. (4) the curve 
 
S1(�

�
)  for finite magnetic 

field strengths divides the 
 
(S,�

�
) -solution plane into the two 

regions SI, where  Y � 1 , and SII, where  Y �1 . For 

orientation we also plot the 
 
b(�

�
) -dependence (43) that 

indicates the location of the pair cyclotron phase speed b  in 

this diagram. In the unmagnetized ( b = 0 ) case, the region 

SI with  Y � 1  corresponds to values of 
 S � � , whereas 

region SII with  Y �1  corresponds to values of 
 S �� . 

Viewed as a function of the parallel plasma beta, the region 

SI applies to all plasma beta values provided S > � , 

whereas it is limited to values 
 
�

�
< w2

 for S < � . 
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Fig. (4). Separation of the 
 
S � �

�
-parameter plane into two different 

regions depending on the values of Y(S) being small or large 

compared to unity. S is the argument of the plasma dispersion 

function in the weak propagation limit. For orientation the dashed 

curve shows the 
 
b(�

�
) -dependence (43) that indicates the location 

of the pair cyclotron phase speed b in this diagram. 

 In the large argument case  Y � 1  for region SI we use 

expansion (7) for growing solutions S > 0 , implying � = 0 , 

to obtain to second order in 
 ��1  

 

Z
iS ± b

�

�

�
�




�
� �
�b�

b2 + S

2

1+
�
2 (b2 � 3S2 )

2(b2 + S2 )2
�

�
�




�
�  

+i
�S

b2 + S2
1+

�
2 (3b2 � S2 )

2(b2 + S2 )2
�

�
�




�
	       (100) 

and 

 

Z '
iS ± b

�

�

�
�

�

�
	 � (

�
2b2 � S2

(b2 + S2 )2
) � i

�
2bS

2(b2 + S2 )2
     (101) 

 Likewise, in the small argument case  Y �1  appropriate 

for region SII we use expansion ((6)) to obtain 

 

Z
iS ± b

�

�

�
�

�

	

 � �

2b

�
1�

2(b2 � 3S2 )

3�2

�

�



�

�
� ± �

1/2 sin
2bS

�
2

�

�
�

�

	

 e

S2�b2

�
2

 

+i � 1/2 cos
2bS

�
2

�

�
�

�

	

 e

+
S2�b2

�
2

�
2S

�
1+

2(S2 � 3b2 )

3�2

�

�



�

�
�

�

�

�

�

�

	






    (102) 

and 

 

Z '
iS ± b

�

�

�
�

�

	

 � �2 1+

2(S2 � b2 )

�
2

�

�



�

�
� +

2� 1/2

�
e
+
S2�b2

�
2

S cos
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�
2

�

�
�

�

	

 + b sin

2bS

�
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�
�
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�
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�

�
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±i
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2 �
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�
e
+
S2�b2

�
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S sin
2bS

�
2

�

�
�
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 + b cos

2bS

�
2

�

�
�
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�
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�

�
�

�

�

�

�

�

	






  (103) 

4.1. The Weibel Instability in the Unmagnetized Case 

b = 0  

 It is instructive to start with the unmagnetized case b = 0  

considered first by Weibel [24]. 

4.1.1. Hot Weibel Mode in Region SI with 
 S � �  

 Here the expansions (100) and (101) apply yielding with 

b = 0  that 

 

Z
iS

�

�

�
�




�
� � i

�

S
1�

�
2

2S2
�

�
�




�
�        (104) 

is purely imaginary, whereas 

 

Z '
iS

�

�

�
�

�

�
	 � �

�
2

S2
        (105) 

is purely real, i.e. �Z '
iS

�

�

�
�

�

�
	 = 0 . According to Eqs. (32), 

(95) and (97) any growing solution then is aperiodic with 
R = 0 . The RH and LH polarized dispersion relations (94)

and (96) in this case agree and are 

��RH ,LH (R = 0,S) = �S
2
� (1+ 2w2 ) +

A�2w2

S2
= 0,     (106) 

where we use the combined plasma temperature anisotropy 

(59). Because 
 ��1  the high-temperature hot Weibel 

solution of Eq. (106) is 

 

S2 =
1+ 2w2

2
1+

4A�2w2

(1+ 2w2 )2
�1

�

�

�

�




�

	

	

�
A�2w2

1+ 2w2 ,     (107) 

subject to the condition 
 S
2
� �

2  which requires that the 

combined anisotropy 

 

A�
1+ 2w2

w2 = 2 +
1

w2        (108) 

is much larger than 2 at small wavenumber values. For 

vanishing temperature anisotropies 1=== AAA ep  the 

condition (108) cannot be fulfilled. The corresponding 

growth rate for large enough A  

�
2 = S2k2c2 =

wp,e
2 A�2k2c2

2(k2c2 + 2wp
2 , e)

      (109) 

increases linearly ( � �| k | ) at small wavenumber values. 

For given A the condition (108) cannot be fulfilled at 

w�2 =
k2c2

� p,e
2 > (A � 2),        (110) 

so that the maximum growth rate is 

� max = A � 2�� p,e        (111) 

4.1.2. Cool Weibel Mode in Region SII with 
 S ��  

 The small argument asymptotics (103) yields for b = 0  

that 
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Z '
iS

�

�

�
�

�

	

 � 2�

1/2 S

�
e
S2

�
2
� 2 � 4

S2

�
2 � �2 + 2�

1/2 S

�
    (112) 

is purely real, i.e. �Z '
iS

�

�

�
�

�

�
	 = 0 . According to Eq. (32) any 

growing solution then is aperiodic with R = 0 . The RH and 

LH polarized dispersion relations (94) and (96) in this case 

agree and lead to 

S2 +1+ 2(1� A)w2
+ 2� 1/2w2A

S

�
= 0      (113) 

No real solutions for S exist for A � 1 , including the 

isotropic plasma case. For anisotropies A > 1  we find the 

cool-Weibel solution 

 

S � �
2(A �1)w2

�1

2� 1/2Aw2        (114) 

if 2(A �1)w2 > 1 , which requires that 

A > 1+
1

2w2 =
1+ 2w2

2w2        (115) 

which is weaker than condition (108). Apparently, in an 
unmagnetized plasma the low-temperature Weibel solution 
(114) can be realized under the condition (115). 

4.2. Region SI with  Y � S1  for Finite Magnetic Fields 

b � 0  

 With the large argument asymptotics (100) and (101) we 
obtain for the dispersion relations (94)-(97) 

0 =��RH (R = 0,S) =��LH (R = 0,S) = �S
2
�1� 2w2

 

+w2 2b2

b2 + S2
�
�
2 (Ap + Ae )(b

2
� S2 )

2(b2 + S2 )2
+
�
2b2 (b2 � 3S2 )

(S2 + b2 )3
�

�
�

�

�
	  

= � S2 +1+ 2w2 S2

b2 + S2
�

�
�




�
	 + w

2
�
2 A(S4 � b4 ) + b4 � 3b2S2

(S2 + b2 )3
�

�
�




�
	     (116) 

and 

0 = 	�RH (R = 0,S) = �	�LH (R = 0,S) =
w2
�
2 (Ap � Ae )bS

(b2 + S2 )2
 (117) 

We note that only for different positron and electron 

temperature anisotropies ( ep AA � ) the imaginary part 

(117) is non-vanishing. According to Eq. (32) in a 

magnetized plasma we therefore obtain non-zero real parts 

for Ap � Ae . For equal ( Ap = Ae ) anisotropies the weakly 

propagating fluctuations in a magnetized plasma will be 

purely aperiodic. 

Scaling 

 
S2 =�2y, b2 =��2 , � = w2 / �

�
      (118) 

the real part (116) becomes 

 

 

 

0 =��RH ,LH (y) = � �
2y +1+ 2w2 y

� + y

�

�
	




�
�

+ w2 A(y2 �� 2 ) � 3�y +� 2

(� + y)3
�

�
	




�
�

    (119) 

which for 
 S � �  holds for all y, whereas for 

 S ��  it holds 

for plasma betas 
 
�
�
� w2

 (see Fig. 4), corresponding to 

� � 1 . Because 
 �

�2
� 1  Eq. (119) for y � ��2

 is 

independent of the plasma temperature reading 

0 =��RH ,LH (y � �
�2 ) � � 1+ 2w2 y

y +�

�

	



�

�



+ w2 2�(� + y)2 + A(y2 �� 2 ) +�(� � 3y)

(� + y)3
�

�
�

�

�
�

    (120) 

Now we scale y =�t , which implies S2 = b2t,  so that the 

dispersion relations (117) and (119) read 

 

0 = 	�RH ,LH (t) = ±��
(Ap � Ae )

t1/2

(1+ t)2
     (121) 

and 

 

0 =��RH ,LH (t) = � 1+
2w2t

1+ t

�

�
�

	

�
� + ��

H (t,A),

H (t,A) =
A(t 2 �1) � 3t +1

(t +1)3

    (122) 

 Eq. (122) provides the relation between the combined 

temperature anisotropy A and the parallel plasma beta to 

drive weakly propagating fluctuations in magnetized plasmas 

in region SI. Evidently, it is a polynomial of fourth order in 

the variable t which in the following we will simplify to 

quadratic polynomials. 

 

Fig. (5). The function H (t,A)  for the three values A = 0.5,1,2  for 

large values of t. 
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The function H (t,A)  is sketched in Figs. (5, 6) for large and 

small values of t for the three values A = 0.5,1, 2 . The 

function H has two zeros at 

t1 =
1

2A
3+ 4A(A �1) + 9�
�



�
� 1,

t2 =
1

2A
3+ 4A(A �1) + 9�
�



�
� (1� A)

     (123) 

 For anisotropies A � 1  not smaller than unity the 

function H starts from a negative value at t = 0 , is negative 

for 0 < t < t1  and exhibits one maximum at values larger 

than t1 . In this case, for large enough parallel plasma beta 

 
�

�
, the dispersion relation (122) then has two solutions at 

large values of t > t1  which we will later identify as mirror 

and pair cyctronic fluctuations. 

 For small anisotropies A < 1  (see Fig. 5 for A = 0.5 ), a 

second maximum of the function H exists at t = 0  with 

Hmax =1� A . In this case a third solution to Eq. (122) close 

to t = 0  exists for large enough 
 
�

�
 which we will later 

identify as firehose fluctuations. 

 

Fig. (6). The function H (t,A)  for the three values A = 0.5,1,2  for 

small values of t. 

For the following analysis it is convenient to substitute 

t = � + (� +1)x,         (124) 

with 

� =
3

2A
�[0,�]         (125) 

The dispersion relation (122) then leads to the equation 

L(x,� ) = f (x,� )         (126) 

with the functions 

 

f (x,� ) =
3�

�

2� (� +1)
h(x,� ), h(x,� ) =

x2 � K 2 (� )

(x +1)3
,     (127) 

where 

K 2 (� ) = 1�
8�

3(� +1)2
> 0,        (128) 

and 

L(x,� ) = 1+ 2w2
x +

�

� +1
x +1

      (129) 

which is slowly varying with x. For small and large values of 

�  the value of K 2
 is close to unity. For � =1  the minimum 

value Kmin
2 = 1 / 3  occurs. 

4.2.1. The Anisotropy Function h(x,� )  

The first and second derivatives of the anisotropy function 
(127) are given by 

dh

dx
=
�x2 + 2x + 3K 2

(1+ x)4
       (130) 

and 

d 2h

dx2
=

2

(x +1)5
x2 � 4x +1� 6K 2
�
�

�
�

      (131) 

yielding a maximum at 

x1 = 1+ 1+ 3K 2 > 1+ 2 = 2.414      (132) 

and a minimum at 

x2 = 1� 1+ 3K 2 < 0        (133) 

For all anisotropies �  the minimum value �0.414 � x2 � 0  

is negative. The maximum value 1x  has its smallest value 

2.414 at � =1 . 

For the maximum value of the function h  at positive values 

of x  we find 

 

hmax (� ) = h(x1,� ) =
2 1+ K 2

+ 1+ 3K 2( )

2 + 1+ 3K 2( )
3 �

1

8
    (134) 

because  K
2
� 1  for small and large � . The maximum value 

of the anisotropy function f  then is 

 

fmax �
3�
�

16� (� +1)
       (135) 

4.2.2. Instability Condition for Solutions at x > K  

According to Eq. (126) solutions can be found if 

fmax (� ) � L(x1,� ),        (136) 

yielding to leading order 

 

3�
�

16� (1+ � )
� 1+ 2w2 ,        (137) 

where we use again  K
2
� 1 . We obtain 
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� �
1

2
1+

3�
�

4(1+ 2w2 )
�1

�

�

�

�

	




�

�

      (138) 

Eq. (141) implies the instability condition 

 

A �
3

1+
3�

�

4(1+ 2w2 )
�1

,         (139) 

with the asymptotics for small and large values of the 
parallel plasma beta 

 

A �
�
�
4

3
(1+ 2w2 )�

�
�

�

�
	 �

8(1+ 2w2 )

�
�

     (140) 

and 

 

A �
�
�
4

3
(1+ 2w2 )�

�
�

�

�
	 �

12(1+ 2w2 )

�
�

     (141) 

4.2.3. Approximate Solutions at Positive x 

 Here we derive approximated solutions to Eq. (126) at 

positive x by assuming again K(� ) = 1  which is well 

fulfilled for small and large values of � . The function f then 

reduces to 

 

f (x,� � 1) =
3�

�

2� (� +1)

x �1

(x +1)2
,       (142) 

whereas the function (129) approaches the constant 

 
L(x � K ) � 1+ 2w2

. We find the two solutions 

x1,2 = D �1± D(D � 4)        (143) 

with 

 

D =
3�

�

4� (� +1)(1+ 2w2 )
       (144) 

 The solutions (143) are real provided that D � 4 , which 

corresponds exactly to the instability condition (137). 

 According to the substitution (124) the two solutions 

(143) imply with S2 = b2t = b2[� + (� +1)x]  as solutions 

 

S1
2 =

3�
�
b2

4� (1+ 2w2 )
1+ 1�

16� (� +1)(1+ 2w2 )

3�
�

�

�

�

�

	




�

�

� b2

=
3�2w2

4� (1+ 2w2 )
1+ 1�

16� (� +1)(1+ 2w2 )

3�
�

�

�

�

�

	




�

�

� b2
   (145) 

and 

 

S2
2 =

3�
�
b2

4� (1+ 2w2 )
1� 1�

16� (� +1)(1+ 2w2 )

3�
�

�

�

�

�

	




�

�

� b2

=
3�2w2

4� (1+ 2w2 )
1� 1�

16� (� +1)(1+ 2w2 )

3�
�

�

�

�

�

	




�

�

� b2
   (146) 

which for S > �  hold for all values of 
 
�

�
, whereas for 

S < �  only for 
 
�

�
< w2

. 

 The instability condition in the form (137) allows the 
approximations 

 

S1
2
�

3�
�
b2

2� (1+ 2w2 )
� b2 (2� + 3) =

A�2w2

(1+ 2w2 )
� 3b2

1

A
+1�

�
�

�



�

=�2w2 A

1+ 2w2 �
3(A +1)

A�
�

�




�

�

�

�

(147) 

and 

 

S2
2
� (1+ 2� )b2 =

3

A
+1�

�
�

�

	

 b

2 =
�
2w2

�
�

3

A
+1�

�
�

�

	

     (148) 

4.2.4. Mirror Fluctuations 

 We first investigate the limit of a vanishing magnetic 

field b� 0  and 
 
�

�
�� . Solution S2

2 = 0  vanishes whereas 

S1
2 (b = 0) =

A�2w2

(1+ 2w2 )
       (149) 

agrees exactly with the earlier derived hot-Weibel solution 
(107). This remarkable consistency justifies the 
approximations made in this subsection. Solution (147) 
evidently is the modification of the Weibel instability for 
finite magnetic fields sometimes referred to as the magnetic 
Weibel instability [25], although the classification as mirror 
instability is more appropriate. In order to exist, besides 
obeying the instability condition (139), it has to be positive 
which sets an upper limit on the magnetic field strength 

b2 <
A2

A +1

�
2w2

3(1+ 2w2 )
       (150) 

This upper limit on b corresponds to a lower limit on the 

plasma beta 

 

�
�
>
3(A +1)

A2
(1+ 2w2 ),        (151) 

which is equivalent to 

 

A >
3(1+ 2w2 )

2�
�

1+ 1+
4�

�

3(1+ 2w2 )

�

�

�

�

�

�

�

�

     (152) 

For 
 
�

�
< 1+ 2w2

 this yields 

 

A �
�
< 1+ 2w2

( ) >
3(1+ 2w2 )

�
�

,       (153) 

in good agreement with the earlier condition (140). 

Alternatively, for 
 
�
�
� 1+ 2w2

 we obtain in agreement with 

the earlier condition (141) 

 

A �
�
� 1+ 2w2

( ) >
3(1+ 2w2 )

�
�

      (154) 
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 To be used for large values of 
 
�

�
> w2

, the solution S1  

also has to fulfil S1
2 > �2

 yielding the additional condition 

 

A >
1+ 2w2

2w2

w2
+ �

�

�
�

1+ 1+
12�

�
w2

(1+ 2w2 )2 (w2
+ �

�
)2

�

�

�

�

�

�

�

�

    (155) 

 The properties of the weakly propagating mirror 
fluctuations are summarized in Table 3. 

4.2.5. Pair Cyctronic Fluctuations 

The newly found weakly propagating solution S2  will be 

referred to as pair cyctronic fluctuations, because the values 

of S2  are close to the cyclotron phase speed. This is best 

seen when we insert the instability condition (139) in Eq. 

(148) yielding 

 

S2
2
� 1+

3�
�

4(1+ 2w2 )
b2        (156) 

which for region SI, where 
 
�

�
< w2

, is close to S2
2 = b2 . 

For large 
 
�
�
� 1+ 2w2

 the upper limit (156) can also be 

written as 

 

S2
2
�

3

4(1+ 2w2 )
�
�

1/2b2 =
3w2

4(1+ 2w2 )
�
2 w

�
�

1/2 ��
2 ,    (157) 

demonstrating that the pair cyclotron solution S2  does not 

exist at large plasma betas 
 
�
�
� w2

 The properties of the 

weakly propagating pair cyctronic fluctuations are 

summarized in Table 4. 

4.2.6. The Third Solution Near t = 0  for Anisotropies 

� > 3 / 2 : Firehose Fluctuations 

We have remarked before that for anisotropies A0 < 1 , a 

third solution exists close t = 0 . This solution is identified 

as firehose fluctuation. Near t = 0  we approximate Eq. (122) 

as 

 
0 =��RH ,LH (t) � � 1+ 2w2t�

�
�
	
+ �

�
(1� A) � 3(2 � A)t[ ],   (158) 

yielding the solution 

Table 3. Properties of Weakly Propagating Mirror Fluctuations 

 

Imaginary phase speed range 
 S > 0  for 

 
�
2 < �

�
< w2

 and 

 

S > � 1�
w2

�
�

 for 
 
�

�
� w2  

Real phase speed aperiodic R = 0  for Ap = Ae  

Parallel plasma beta range all 
 
�

�
> �2  

Dispersion relation 

 

S1 � �w
A

1+ 2w2 �
3(A +1)

A�
�

�

�

�
�

�




	
	

1/2

 

Existence condition A > 2 +w�2
 for 

 
�

�
> 1+ 2w2  

Instability conditions: 

 

A �
3

1+
3�

�

4(1+ 2w2 )
�1

 

Limit in unmagnetized plasmas ( b = 0 , 
 
�

�
= � ) hot-Weibel mode 

Table 4. Properties of Weakly Propagating Pair Cyctronic Fluctuations 

 

Imaginary phase speed range 
S > 0  for 

 
�
2 < �

�
< w2

 and 

 

S > � 1�
w2

�
�

 for 
 
�

�
> w2  

Real phase speed aperiodic R = 0  for Ap = Ae  

Parallel plasma beta range 
 
�
2 < �

�
< w2  

Dispersion relation 

 

S2 � b
3+ A

A
=
�w

�
�

1/2

3+ A

A
 

Existence condition 
 
�

�
< w2  

Instability conditions: 

 

A �
3

1+
3�
�

4(1+ 2w2 )
�1

�
8(1+ 2w2 )

�
�

 

Limit in unmagnetized plasmas ( b = 0 , 
 
�

�
= � ) not existing 
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t =
�

�
(1� A) �1

2w2
+ 3�

�
(2 � A)

       (159) 

or 

 

S3
2 = b2t = b2

�
�
(1� A) �1

2w2
+ 3�

�
(2 � A)

=�2w2 (1� A) � �
�

�1

2w2
+ 3�

�
(2 � A)

 (160) 

This solution can only exist for parallel plasma betas with 

 
�

�
(1� A) > 1  or 

 

A < 1�
1

�
�

        (161) 

which is only possible for high plasma betas 
 
�

�
> 1 . For 

 
�

�
> w2

 the solution S3  does not exist because the 

requirement S3
2 > �2

 at 
 
�

�
> 1  needs 

 

A >
6�

�
+ w2

2�
�
� w2 > 2,        (162) 

in contradiction to condition (161). These dual conditions 

then require that  w
2
� 1 , so that the solution S3  then exists 

for 
 
1 < �

�
< w2

. The properties of the weakly propagating 

firehose fluctuations are summarized in Table 5. 

4.3. Region SII with  Y � S1  for Finite Magnetic Fields 

b � 0  

 The last case to be considered is region SII for non-zero 

magnetic fields b � 0  existing for 
 S ��  and 

 
�

�
> 2w2

 

(see Fig. 4). The expansions (102) and (103) apply here, 

yielding for the dispersion relations (94)-(97) 

 

0 =��RH ,LH (R = 0,S) = �S
2
�1� 2(1� A) 1�

2w2

�
�

�






�

�

 w

2

�2� 1/2w2 S

�
A + (A � 2)

w2

�
�

�

�

�

�

�

� ,

  (163) 

and 

0 = ��RH ,LH (R = 0,S) =

�
w2

2
Ap,e � Ae,p( )

8bS

�

2

�
2� 1/2

�
e
b2�S2

�
2

S sin
2bS

�
2

�

�
	




�
� + b cos

2bS

�
2

�

�
	




�
�

�

�
	




�
�




�

�

�

�

�

�

�

 

 

�
bw2

�
Ap,e � Ae,p( ) �

1/2
�
4S

�

�

�
�

�



	

      (164) 

 For 
 
�

�
��  the dispersion relation (163) reduces to the 

unmagnetized cool-Weibel dispersion relation (113). Eq. 

(163) also indicates that no real solutions for S exist for 

A � 1 , including the isotropic plasma case. 

 For anisotropies A > 1  we find the low-temperature 

solution 

 

S4 � �
2w2 (A �1)(�

�
� w2 ) � �

�

2� 1/2w2 A�
�
+ (A � 2)w2

�
�

�
	

      (165) 

provided that 

 

A > 1+
�

�

2w2 (�
�
� 2w2 )

       (166) 

which only slightly modifies the unmagnetized condition 

(115) because 
 
�

�
> 2w2

 in region SII. In the case w2 > 1  

this modified low-temperature magnetic Weibel solution is a 

high-beta instability. In the case  w
2
�1  it needs very large 

anisotropy values A � (2w2 )�1  to be excited which are much 

larger than the instability threshold anisotropies needed for 

the high-temperature mirror, firehose and pair cyctronic 

instabilities. 

The solution S4  is aperiodic for equal positron and electron 

( Ap = Ae ) anisotropies. The properties of the weakly 

propagating cool magnetized Weibel fluctuations are 

summarized in Table 6. 

5. RESULTS 

5.1. Dispersion Relations 

 In Fig. (7) we illustrate the dispersion relations of the 

weakly amplified pair Alfven waves R /�  and the weakly 

Table 5. Properties of Weakly Propagating Firehose Fluctuations 

 

Imaginary phase speed range S > 0  for 
 
�
2 < �

�
< w2  

Real phase speed aperiodic R = 0  for Ap = Ae  

Parallel plasma beta range 
 
1 < �

�
< w2  

Dispersion relation 

 

S3 � �w
(1� A) � �

�

�1

2w2
+ 3�

�
(2 � A)

�

�

�
�

�




	
	

1/2

 

Existence condition 
 w

2
� 1  and 

 
1 < �

�
< w2  

Instability conditions: 

 

A < 1�
1

�
�

 

Limit in unmagnetized plasmas ( b = 0 , 
 
�

�
= � ) not existing 
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propagating mirror, CMW (cold magnetized Weibel), 

firehose and cyctronic fluctuations S /�  as a function of 

x = �
�
/ w2

 in a bi-Maxwellian thermal pair plasma. We 

adopt a value of w =10  and anisotropies A = 5  for the 

Alfven, mirror, cyclotron and firehose fluctuations and 

A = 0.2  for the CMW-fluctuations. Note that for large 

values of w  the weakly amplified pair cyclotron waves do 

not exist. As illustrated, not all dispersion relations exist at 

all plasma beta values. In the limit of an unmagnetized 

plasma (
 
�

�
� x�� ) the mirror- and CMW-fluctuations 

approach the dispersion relations of the hot and cool Weibel 

fluctuations. 

Table 6. Properties of Weakly Propagating Cool Magnetized 

Weibel Fluctuations 

 

Imaginary phase speed range S < �  

Real phase speed  aperiodic R = 0  for Ap = Ae  

Parallel plasma beta range  
 
�

�
> 2w2  

Dispersion relation 

 

S4 � �
2w2 (A �1)(�

�
� w2 ) � �

�

2� 1/2w2 A�
�
+ (A � 2)w2

�
�

�
	

 

Existence condition A > 1  

Instability conditions:  

 

A > 1+
�

�

2w2 (�
�
� 2w2 )

 

Limit in unmagnetized 

plasmas ( b = 0 , 
 
�

�
= � ) 

cool-Weibel mode 

 

 

Fig. (7). Dispersion relations of the weakly amplified pair Alfven 

waves R /�  and the weakly propagating mirror, firehose, CMW 

(cold magnetized Weibel) and cyctronic fluctuations S /�  as a 

function of 
 
x = �

�
/w2

 in a bi-Maxwellian thermal pair plasma. A 

value of w =10  and anisotropies A = 5  for the Alfven, mirror, 

cyctronic and firehose fluctuations and A = 0.2  for the CMW-

fluctuations are adopted. The dashed line refers to the condition 

Y =1  from Fig. (4). 

 

 

5.2. Anisotropy Diagrams 

 In order to illustrate the combined restrictions on the 

anisotropy and plasma beta values in an anisotropic bi-

Maxwellian magnetized pair plasma we show in Figs. (8, 9) 

the anisotropy-plasma beta-diagram for a large ( w =10 � 1 ) 

and a small ( w = 0.1�1 ) value of the electron plasma 

frequency phase speed w . Because pair-Alfven and firehose 

fluctuations only exist for values of w > 1  they do not 

restrict the anisotropy and plasma beta values in Fig. (9). 

 In the case  w =10 � 1  shown in Fig. (8) the stable 

region in the anisotropy-plasma beta parameter plane is 

bounded: 

(a) by the pair Alfven wave instability at small plasma 

betas 
 
�

�
< 1  and anisotropies A > 1  larger than unity; 

(b) by the firehose instability at large plasma betas 

 
�

�
> 1  and anisotropies A < 1  smaller than unity; 

(c) by the mirror, CMW and pair cyctronic instability at 

large plasma betas 
 
�

�
> 1  and anisotropies A > 1  

larger than unity. 

 

Fig. (8). Anisotropy diagram for all unstable modes in the case of a 

large ( w =10�1 ) value of the electron plasma frequency phase 

speed w . Stable regions are marked by "s", unstable regions are 

marked by "u". The bi-Maxwellian plasma is stable for values of A 

and 
 
�

�
 in two regions: (a) left from the left full curve where no 

unstable mode can be excited, and (b) above the dotted (firehose) 

curve, below the right full curve (pair Alfven waves), and below the 

dashed (cold magnetized Weibel) and dot-dashed (mirror) curves. 

 Apparently, there is no instability with wavevectors 

parallel to the background magnetic field, at small plasma 

betas 
 
�

�
< 1  and small anisotropies A < 1 , i.e. 

 
T
�
> T

�
. In 

future work, we therefore will investigate instabilities in bi-

Maxwellian pair plasmas with wavevectors perpendicular to 

the background magnetic field where a possible instability 

has been noted before by Hamasaki [26]. 
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 In the case  w = 0.1�1  shown in Fig. (9) the stable 

region in the anisotropy-plasma beta parameter plane is only 

bounded at large anisotropy values A > 1  by the mirror, 

CMW, pair cyclotron and pair cyctronic instabilities because 

pair-Alfven and firehose fluctuations do not exist for  w�1 . 

Again a study of fluctutions with wavevectors perpendicular 

to the background magnetic field is needed here. 

6. SUMMARY AND CONCLUSIONS 

 We rigorously studied the dispersion relations of weakly 

amplified and weakly propagating fluctuations with wave 

vectors 
 

�

k �
�

B0 = 0  in an anisotropic bi-Maxwellian 

magnetized pair plasma. We extended earlier work based on 

the weakly-amplified limit to the case of weakly propagating 

( R� S ) solutions which includes in particular aperiodic 

fluctuations with R = 0  by the appropriate Taylor expansion  

 

 

Fig. (9). Anisotropy diagram for all unstable modes in the case of a 

small ( w = 0.1�1 ) value of the electron plasma frequency phase 

speed w . Pair-Alfven and firehose fluctuations can not be excited 

for  w�1  so that only the pair cyclotron, mirror, CMW and pair 

cyctronic instabilities contribute. Stable regions are marked by "s", 

unstable regions are marked by "u". The bi-Maxwellian plasma is 

stable for values of A and 
 
�

�
 in the region left from the dashed and 

dot-dashed curves which result from the instability threshold of the 
mirror mode. 

of the plasma dispersion function. Our investigation of the 

resulting dispersion relation of right-handed (RH) and left-

handed (LH) polarized fluctuations in the bi-Maxwellian pair 

plasma with equal parallel temperatures has demonstrated 

that six different modes can be excited whose properties are 

summarized in Tables 1-6. 

 The pair Alfven and cyclotron wave instabilities are the 

only weakly amplified solutions, whereas the four weakly 

propagating solutions are mirror, pair cyctronic, firehose and 

cool magnetized Weibel fluctuations, respectively. These 

four weakly propagating solutions are aperiodic with 

vanishing real phase speeds R = 0  if the plasma positrons 

and electrons have the same temperature anisotropy 

Ap = Ae =1 . The mirror and cool magnetized Weibel 

fluctuations reduce to the known hot and cool Weibel 

instabilities in the limit of an unmagnetized plasma 

(
 
�

�
�� ). For the four weakly propagating instabilities, 

existence and instability conditions have been derived in 

terms of the combined temperature anisotropy 

A = (Ap + Ae ) / 2 , the parallel plasma beta 
 
�

�
 and the 

electron plasma frequency phase speed w. For the weakly-

amplified pair Alfven and cyclotron waves we additionally 

adopted equal positron and electron anisotropies 

Ap = Ae = A = A0 . In agreement with Brinca's general 

theorem [27] on the electromagnetic stability of isotropic 

plasma populations none of these modes can be excited for 

isotropic plasma distributions ( A =1 ). 

 In the case of a large electron plasma frequeny phase 

speed 
 
w =� p,e / (kc)� 1  we demonstrated that the stable 

region in the anisotropy-plasma beta parameter plane is 

bounded by the pair Alfven wave instability at small plasma 

betas 
 
�

�
< 1  and anisotropies A > 1  larger than unity, by the 

firehose instability at large plasma betas 
 
�

�
> 1  and 

anisotropies A < 1  smaller than unity, and by the pair 

cyctronic, mirror and CMW instabilities at large plasma 

betas 
 
�

�
> 1  and anisotropies A > 1  larger than unity. No 

instability with wavevectors parallel to the background 

magnetic field has been found at small plasma betas 
 
�

�
< 1  

and small anisotropies A < 1.  

 In the case of a small electron plasma frequeny phase 

speed 
 
w =� p,e / (kc)�1  the stable region in the anisotropy-

plasma beta parameter plane is only bounded at large 

anisotropy values A > 1  by the cyclotron wave, mirror, 

CMW and cyctronic instabilities because pair-Alfven and 

firehose fluctuations do not exist for  w�1.  

ACKNOWLEDGEMENTS 

 I thank Dipl.-Phys. Tomislav Skoda for preparing the 
graphical illustrations and checking the calculations, and Dr. 
Marian Lazar for valuable discussions. I also thank the 
referees for their valuable comments. This work was 
partially supported by the Deutsche Forschungsgemeinschaft 
through grants Schl 201/17-1, Schl 201/19-1 and Schl 
201/21-1 and the research department "Plasmas with 
Complex Interactions" at Ruhr-University Bochum. 

REFERENCES 

[1] Schlickeiser R. Cosmic ray astrophysics. heidelberg: Springer 

2002. 
[2] Parker EN, Tidman DA. Suprathermal particles. Phys Rev 1958; 

111: 1206-11. 
[3] Schlickeiser R. A viable mechanism to establish relativistic thermal 

particle distribution functions in cosmic sources. Astron Astrophys 
1985; 143: 431-4. 

[4] Yoon P. Kinetic theory of hydromagnetic turbulence. I: formal 
results for parallel propagation. Phys Plasmas 2007; 14: 102302-11. 

[5] Beck R, Krause M. Revised equipartition and minimum energy 
formula for magnetic field strength estimates from radio 

synchrotron observations. Astron Nachr 2005; 326: 414-27. 
[6] Schlickeiser R, Siewert A, Thiemann H. The diffuse radio emission 

from the Coma cluster. Astron Astrophys 1967; 182: 21-35. 
[7] Schlickeiser R, Biermann PL, Crusius-Wätzel, A. On a nonthermal 

origin of steep far-infrared turnovers in radio-quiet active galactic 
nuclei. Astron Astrophys 1991; 247: 283-90. 



Linear Theory of Temperature Anisotropy Instabilities The Open Plasma Physics Journal, 2010, Volume 3    19 

[8] Chandrasekhar S. Hydrodynamic and hydromagnetic stability. 

Oxford: Clarendon 1961. 
[9] Bale SD, Kasper JC, Howes GG, Quataert E, Salem C, Sundkvist 

D. Magnetic fluctuation power near proton temperature anisotropy 
instability thresholds in the solar wind. Phys Rev Lett 2009; 103: 

211101-4. 
[10] Kasper JC, Lazarus AJ, Gary SP. Wind/SWE observations of 

firehose constraint on solar wind proton temperature anisotropy. 
Geophys Res Lett 2002; 29: 20-4. 

[11] Hellinger P, Trancicek P, Kasper JC, Lazarus AJ. Solar wind 
proton temperature anisotropy: Linear theory and WIND/SWE 

observations. Geophys Res Lett 2006; 33: L09101-4. 
[12] Gary SP, Karimabadi H. Linear theory of electron temperature 

anisotropy instabilities: Whistler, mirror, and Weibel J. Geophys 
Res 2006; 111: A11224-5. 

[13] Gary SP, Karimabadi H. Fluctuations in electron-positron plasmas: 
Linear theory and implications for turbulence. Phys Plasma 2009; 

161: 42104-7. 
[14] Svensson R. Steady mildly relativistic thermal plasmas - Processes 

and properties. Mon Not R Astron Soc 1984; 209: 175-208. 
[15] Jones TW, Hardee PE. Maxwellian synchrotron sources. Astrophys 

J 1979; 228: 268-78. 
[16] Rees MJ, Cavallo G. A qualitative study of cosmic fireballs and 

gamma-ray bursts. Mon Not R Astron Soc 1978; 183: 359-65. 
[17] Liang EPT. Emission mechanism and source distances of gamma-

ray bursts. Nature 1982; 299: 321-3. 

[18] Lamb DQ, Masters AR. X and UV radiation from accreting 

magnetic degenerate dwarfs. Astrophys J 1979; 234: L117-22. 
[19] Gary SP. Theory of space plasma microinstabilities. Cambridge: 

Cambridge University Press 1993. 
[20] Fried BD, Conte SD. The plasma dispersion function. New York: 

Academic Press 1961. 
[21] Swanson DG. Plasma waves. New York: Academic 1989. 

[22] Davila JM, Scott JS. The scattering of energetic particles by waves 
in a finite beta plasma. Astrophys J 1984; 280: 334-8. 

[23] Achatz U, Dröge W, Schlickeiser R, Wibberenz G. Interplanetary 
transport of solar electrons and protons - Effect of dissipative 

processes in the magnetic field power spectrum. J Geophys Res 
1993; 98: 13261-80. 

[24] Weibel E. Spontaneously growing transverse waves in a plasma 
due to an anisotropic velocity distribution. Phys Rev Lett 1959; 2: 

83-4. 
[25] Lazar M, Schlickeiser R, Poedts S. On the existence of Weibel 

instability in a magnetized plasma I Parallel wave propagation. 
Phys Plasmas 2009; 16: 12106-9. 

[26] Hamasaki S. Stability of electromagnetic waves propagating 
perpendicular to a uniform magnetic induction. Phys Fluids 1968; 

11: 1173-6. 
[27] Brinca AL. On the electromagnetic stability of isotropic 

populations. J Geophys Res 1990; 95: 221-3. 

 
 

Received: September 5, 2009 Revised: November 16, 2009 Accepted: December 1, 2009 

 

© Reinhard Schlickeiser; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) 

which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 

 

 


