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Abstract: The usual full-field/scattered-field formulation is generalized to include a planar dielectric interface passing 

through the space. In this case, the source condition surrounding the central full-field region emits and captures waves 

consistent with scattering from a planar dielectric interface. Thus the wave in the outer scattered-field region represents 

just the part of the scattered wave that is due to non-planar dielectric or conductor geometry. The formulation is exact to 

machine precision, regardless of wavelength being smaller or larger than the simulation domain, and includes the exact 

second-order correction to the nominal scattering coefficients due to finite-difference truncation error. The method works 

even in the case of total internal reflection at the dielectric interface, that is, with the transmitted side exhibiting 

exponential decay rather than a propagating wave. A simple variation allows the dielectric to be a plasma, with correct 

scattering, regardless of whether the plasma is under-dense or over-dense. Possible applications for this facility range 

from RCS-type computations at hydrological or atmospheric interfaces, to geometry characterization or damage 

assessment of surfaces, to general boundary conditions for simulations of intermediate size EM phenomenon, e.g., L~ , to 

finally, an algorithm test-bed for the subject of cut-cell dielectric in the finite-difference representation. 
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1. INTRODUCTION 

 The principle motivation for this work was the desire for 
an electromagnetic wave source condition in a simulation 
that is on-the-order-of, or smaller than a wavelength. 
Generally speaking, the simulation region constitutes a 
magnified view of a portion of a larger physics problem 
containing several wavelengths, and qualitative propagating 
wave behavior. Because the simulation size is smaller than a 
wavelength, periodic boundaries cannot be used, and also 
due to the ultimate desire to include charged particles and 
non-linear physics, a Floquet-type boundary is also not ideal, 
as this would require complex-value fields, particle weights, 
and a means of interpreting the non-linear products of such. 

 One suggestion for treating this difficult source problem 
is to use a seldom-realized property of the full-
field/scattered-field technique [1]. This approach is primarily 
used to look at scattering of an RF wave from an object, in a 
simulation domain many wavelengths across. However, the 
full-field/scattered-field source condition contains no 
restriction on wavelength, and indeed, works equally well for 
wavelengths larger than the simulation domain. It is this 
property we wished to take advantage of in this work. Fig. 
(1) shows how microscopic scale simulation with the full-
field/scattered-field technique is possible. 

 The “EM-microscope” simulation contains yet one more 
important feature. We wished to get a magnified view of the 
physical behavior in the vicinity of a dielectric interface. The 
interface could be between two solid dielectrics, between 
dielectric and vacuum, or between dielectric and plasma. 
Thus, we required the full-field/scattered-field technique to  
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be generalized to include scattering from a planar dielectric 
interface contained within the problem. 

 In this paper, we do not report on the microscopic RF 
simulations themselves, but rather the generalization of the 
full-field/scattered-field technique to include the feature of a 
dielectric interface. It is recognized that this capability likely 
reaches beyond its original purpose, and constitutes an 
important simulation result in its own right, applicable to 
several different areas, including traditional scattering type 
simulations, and the general problem of simulating arbitrary 
geometry dielectrics, and meta-materials. 

 Our implementation of the full-field/scattered-field 
technique follows that of Reference [1], using a Yee-cell / 
leap-frog differencing strategy [2]. However, in order to treat 
the dielectric interface within the confines of the technique, 
the source conditions must emit/reabsorb not only the 
incident wave but also the reflected and transmitted wave 
due to the interface. This augmentation is the key result of 
this paper. Successful use of the technique requires that the 
propagation characteristics of the incident, transmitted, and 
reflected waves must be known exactly, for the finite-
difference implementation, not just for the analogous 
continuum problem. The dispersive corrections for light in a 
discrete simulation are indeed well known, and used 
effectively here. However, in addition, there are 
discretization corrections to the scattering coefficients at a 
dielectric interface which must also be introduced, and these 
corrections are derived in this paper, and demonstrated in 
simulation. 

 This paper illustrates the use of a simple analytic 
treatment for a cold-unmagnetized-plasma as one of the 
dielectric components, following a technique from Reference 
[3]. This treatment includes an internal field variable, the 
plasma current in this case, and serves as an example on how 
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meta-materials in general, with internal resonances or other 
physical attributes, can be model using the FDTD approach. 

 Finally, the fact that the full-field/scattered-field 
technique utilizes an exact solution for the discrete problem, 
rather than relying on convergence analysis, makes it an 
interesting and novel tool for the study of how dielectric 
interfaces behave in an FDTD simulation. For example in 
this work it was seen how the loss of continuity, due to 
discreteness, can counter the anticipated loss in well-
centering at the interface plane, resulting in a second-order 
accurate solution, even when one is not necessarily expected. 

 We note that in this paper, the symbol for the dielectric, 
, represents the absolute permittivity, with units of 

Farads/meter. Thus, / 0 denotes the relative permittivity. 

2. FULL-FIELD/SCATTERED-FIELD TECHNIQUE 

 The full-field/scattered-field technique is well described 
and documented elsewhere, for example Reference [1]. The 

full-field/scattered-field technique is perhaps most easily 
understood in 1-D. Any localized source, either electric or 
magnetic current, will propagate a wave equally in both 
directions. However, if two closely spaced localized sources, 
of appropriate phase shift, are used, the result of 
superposition can be a single wave propagating in only one 
direction from the source-pair. One may then place another 
source-pair some distance from the first, to emit a similar 
uni-direction wave that exactly cancels the first, as it passes 
by, resulting in a wave which appears to be emitted at one 
source-pair, then travels in one direction towards the second 
source-pair, and then appears to be re-absorbed. This process 
is illustrated in Fig. (2). 

 Obviously, in order for this to happen, one must have 
exact a priori knowledge of the propagating wave’s 
frequency, wavenumber, amplitude, and phase, in order to 
achieve the desired illusion of re-absorption. This explains 
the emphasis of the following sections where we shall seek 

            (a)                   (b)         (c) 

 

Fig. (1). Illustration of this paper’s evolution of the full-field/scattered-field technique. (a) typical simulation where the source condition 

emits and reabsorbs the incident plane wave, so that it does not appear in the scattered-field region, (b) generalization to include dielectric 

interface and transmitted and reflected waves, and (c) demonstration of case where simulation dimensions are shorter than a wavelength, e.g., 

an EM microscopic simulation. 

 

Fig. (2). Use of localized sources to produce a full-field/scattered-field simulation. Top shows a single localized source which propagates 

equally to the left and right (blue line). Middle shows how the superposition of two such closely spaced sources (blue and red lines) can 

produce a net wave (dotted line) appearing to propagate in only one direction. And bottom shows how two such source-pairs can appear to 

produce a uni-directional wave that is emitted at one source-pair and reabsorbed at a second source-pair. 
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the exact wavenumber, and scattering coefficients in the 
discrete version of Maxwell. 

3. ANALYSIS OF PLANE WAVE SCATTERING IN 
FINITE DIFFERENCE 

 This section derives the usual forms for scattering 
coefficients in continuum, and also their subtly different 
discrete analogues, using a formalism that shares a common 
waveform between the continuum and discrete versions of 
the same problem. An important point is that whereas field 
continuity alone is sufficient to derive the scattering 
coefficients for a continuum, this concept of continuity 
partly breaks-down for the discrete analogue. Instead, one 
we introduce the quadratic conservation theorems, either 
continuum, or discrete, in order to complete the analysis. 

3.1. Continuum Plane-Wave 

 For a continuum with dielectric , the plane wave 
solution to Maxwell’s equations is well known, and is 
analytic, with notation as follows. Assume a plane wave 
characterized by real frequency, , possibly complex electric 
field polarization vector, eE, and possibly complex 
wavenumber, k, such that eE k=0. The magnitude of the 
wavenumber, k k, is constrained by the dispersion relation. 

 The electric field polarization direction, eE, has the 
generality of a two-dimensional space, normal to k. 
Introduce the dielectric interface’s normal vector, ex, and 
employ it to separate the two polarization directions. One of 
these polarization directions will be in the plane of the 
dielectric interface, e.g., define e|| in the direction of ex k, 
and the other normal to that, e.g., in the direction of e|| k. 
The analysis now proceeds separately for each of the two 
polarization scenarios, one called TE, in which eE=e|| and the 
other, called TM, in which eE is parallel to e|| k. (For the 
case of exact normal incidence, e.g., ex k=0, take e||=eE, that 
is, exact normal incidence is treated within the TE scenario.) 
Thus, an arbitrary polarization state should be considered to 
be a superposition of these two states, with possibly complex 
valued superposition coefficients. The electric and magnetic 
fields, for a plane wave can thus be written 

E(x,t) = Real{ [ TE  e|| + TM (e|| k)] ( (x,t)) }      (1a) 

 B(x,t) = Real{ [ TE (k e||) + TM ( μ0 ) e||] ( (x,t)) } 

where the dispersion relation, complex waveform, and wave-
front-phase are 

k k = 
2
μ0 

(s) = e
is
 U(s)          (1b) 

(x,t) = k (x x0)  t 

and where x0 is some point well removed from the 
simulation domain in the –kincident direction, and U(s) is some 
suitable smooth turn-on function, which is zero for s 0, and 
goes to unity after s exceeds a reasonable number of 
oscillation cycles. 

 The cycle-averaged Poynting flow, P=μ0
1
E B, for this 

plane wave is 

P(x,t) =  μ0
1
 | ( (x,t))|

2
 (| TE |

2
 + μ0 | TM|

2
)  Real{k}      (2) 

 

 

3.2. Discrete Plane Wave 

 Assume the Yee-cell spatial discretization of electric and 
magnetic fields, and leap-frog temporal discretization. There 
is a similar exact plane-wave solution for this discrete 
Maxwell problem, assuming that the time is well past the 
turn-on-transient. As with the continuum case, assume a real 
frequency, , a complex electric field polarization direction, 
eE, and complex wavenumber, k, satisfying the continuum 
dispersion relation, k k=

2
μ0. The fields are given exactly 

as before, except that the waveform, ( (x,t)), is evaluated 
at the appropriate discrete position and times of the Yee-cell 
/ leap-frog system, and this waveform is a function of a 
“finite-difference” wave-front-phase, 

(x,t) = k (x x0)  t         (3a) 

which is based upon, k, a “finite-difference-wavenumber”. 
(Finite-difference quantities are indicated with a double-
strike-through.) This quantity, k, is slightly modified from k, 
in each mesh direction, ex, ey, and ez, by the mesh sizes, x, 
y, and z, and the finite time-step, t, that is, specifically, 

k ex  (2/ x) sin
1
( (  k ex x) sinc(   t) )            (3b) 

and similar for k ey and k ez, where the sinc-function is 
defined as usual, e.g., sinc(s) sin(s)/s. This difference means 
that the actual direction of propagation of the wave fronts is 
not precisely along k, nor is the speed exactly ( μ0) , but 
rather something close to these, assuming reasonable spatial 
resolution of the wavelength. 

 The Poynting flow in a Yee-cell leap-frog finite-
difference EM simulation is an oft-misunderstood quantity, 
as an exact form, and its connection to continuum Poynting 
flux can be difficult to interpret, especially since components 
of E and B, are never at the same spatial location and time. 
However, in pure mathematical terms, the Yee-cell/leap-frog 
Maxwell system is in the general category of difference 
equations, and thus exhibits a volume-integrated quadratic 
conservation theorem of its own right, independent of its 
continuum analogue. This conservation theorem, which is 
detailed in Reference [4], contains a highly useful version of 
finite-difference Poynting flux. For example, if the Poynting-
integration volume has a full-grid y-z plane as its bounding 
surface, then the flux, centered at the half-time-steps, 
through a cell-face, consists of the average of the 16 possible 
combinations of Ey Bz and Ez By, which have E components 
surrounding the cell-face, half a time-step before or after, 
and corresponding B components half a cell above or below 
the plane. The result is that the time-averaged finite-
difference Poynting flow of the plane wave is 

P(x,t) ex  =   μ0
1
 | ( (x,t))|

2
 cos(   t)   

     cos(  k ex x) (| TE |
2
 + μ0 | TM|

2
)  k ex         (4) 

=   μ0
1
 | ( (x,t))|

2
 (| TE |

2
 + μ0 | TM|

2
)  

      ( t/ x) 
2
 sin(k ex x) / tan(   t) 

where some algebra has been performed to get the second 
line purely in terms of k, instead of a mixture of k and k. 
The “cos( k ex x)” factor in the first line is the critical new 
aspect for the discrete problem, as this factor introduces an 
additional dependence on incident vs transmitted 
wavenumber, which has no analogue in a continuum. 
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3.3. Continuum Scattering Coefficients 

 Let the dielectrics on the incident/transmitted side be inc 
and trn. Require that the incident wave is propagating, e.g., 
that kinc, is pure real. Then the reflected and transmitted 
wavenumbers are 

kref = kinc  [1  – exex]  kinc  [exex] 

ktrn = kinc  [1 – exex] + kinc  [exex] ((ek ex)
2
 + ( trn/ inc)  1)  / (ek ex)    (5) 

     = kinc  [1 – exex] + i kinc  [exex] (1  (ek ex)
2
  ( trn/ inc))  / (ek ex) 

 Total internal reflection occurs if taking the square-root 
of a negative number in the first form for ktrn, in which case, 
the alternate complex-form should be used. The incident, 
reflected and transmitted wave front phases, the latter 
possibly being complex-valued, are 

inc(x,t) = kinc (x x0)  t 

ref(x,t) = kref (x x0)  t + (kref kinc) [exex] (xs x0)         (6) 

trn(x,t) = ktrn (x x0)  t + (ktrn kinc) [exex] (xs x0) 

where xs is any point on the dielectric interface. These three 
phases are designed to be equal in value for all points on the 
dielectric interface so that when field-continuity is imposed 
there, the waveform part of the field, 

 ( inc(xs,t)) = ( ref(xs,t)) = ( trn(xs,t))         (7) 

is simply a common factor. Finally, introduce unit step 
functions, Sinc(x), Sref(x)=Sinc(x), and Strn(x), which are unity 
on their designated half-space, zero on the opposite half-
space, and in order to properly construct the waveforms, 
have value of  exactly on the interface. 

3.3.1. TE Scattering in Continuum 

 In the TE case, refer back to Equation (1) for the 
waveforms, set TM=0 for all waves, set TE=1 for the 
incident wave, and seek TE= TE for the reflected wave and, 

TE= TE for the transmitted wave. The solution over the 
entire spatial domain will then be of the form 

Eanalytic(x,t) = Real{  e|| ( inc(x,t)) Sinc(x) 

 + TE  e|| ( ref(x,t)) Sref(x) 

 + TE  e|| ( trn(x,t)) Strn(x) } 

Banalytic(x,t) = Real{ (kinc e||) ( inc(x,t)) Sinc(x)        (8) 

 + TE (kref e||) ( ref(x,t)) Sref(x) 

 + TE (ktrn e||) ( trn(x,t)) Strn(x) } 

 Two conditions are required to constrain the values of  
and , the reflection and transmission coefficients. In the 
usual derivation, continuity of the in-plane E and B 
components provides the constraints, e.g., taking the dot-
product of E with e|| and B with (ex e||), will give 

1 + TE = TE            (9) 

(kinc ex) + TE (kref ex) = TE (ktrn ex) 

 Note that (k e||) (ex e||)=(k ex) for each of the plane 
waves. Also note that (kref ex)= (kinc ex). The well known 
solution of the above equations is 

TE = (kinc ex  ktrn ex) / ( kinc ex + ktrn ex)       (10) 

TE = 2 kinc ex / ( kinc ex + ktrn ex) 

 The interesting scenario of total internal reflection results 
when ktrn ex is pure imaginary. In that case, the coefficients 
are complex-valued, with | TE|=1, as it must. 

 By contrast, consider the case of real ktrn ex, and the 
criterion that Equation (2), time-averaged Poynting flux, in 
the ex direction, must be conserved. This leads to the 
following condition, 

kinc ex  | TE|
2
 kinc ex = | TE|

2
 ktrn ex        (11) 

where the common factor of /μ0 has been removed, and 
of course, | ( (x,t))|

2
=1 for real k. We see that this equation 

is indeed satisfied with the above coefficients. This is an 
important observation for later work in the discrete problem, 
as it hints that Poynting conservation might serve as an 
alternate constraint to field continuity, for determining the 
scattering coefficients. 

3.3.2. TM Scattering in Continuum 

 In the TM case, refer back to Equation (1) for the 
waveforms, set TE=0 for all waves, set TM=1 for the 
incident wave, and seek TM= TM for the reflected wave and, 

TM= TM for the transmitted wave. The solution over the 
entire spatial domain will then be of the form 

Eanalytic(x,t) = Real{ (e|| kinc) (tinc(x,t)) Sinc(x) 

 + TM (e|| kref) (tref(x,t)) Sref(x) 

 + TM (e|| ktrn) (ttrn(x,t)) Strn(x) } 

Banalytic(x,t) = Real{ ( μ0 inc) e|| (tinc(x,t)) Sinc(x)      (12) 

 + TM ( μ0 ref) e|| (tref(x,t)) Sref(x) 

 + TM ( μ0 trn) e|| (ttrn(x,t)) Strn(x) } 

 As before, in-plane electric and magnetic field continuity 
provide the conditions 

(kinc ex) + TM (kref ex) = TM (ktrn ex)       (13) 

 inc + inc TM = trn TM 

which has the well-known result, 

TM = ( trn kinc ex  inc ktrn ex) / ( trn kinc ex + inc ktrn ex)   (14) 

TM = 2 inc kinc ex / ( trn kinc ex + inc ktrn ex) 

 Again, note that the Poynting conservation theorem, for 
real ktrn, this time for the TM-mode, 

inc kinc ex  | TM|
2
 inc kinc ex = | TM|

2
 trn ktrn ex      (15) 

is satisfied for the above scattering coefficients. 

3.4. Discrete Scattering Coefficients 

 The interface lies on a full grid-plane, normal to the 
coordinate direction ex. This means that, for the Yee-cell 
spatial discretization, the in-plane electric field components, 
Ey and Ez, lie exactly on said interface, and so the analysis 
can continue to impose electric field continuity. However, 
the in-plane magnetic field components, By and Bz, do not 
exist on the interface in the Yee-cell arrangement, but rather 
are half a cell above or below it. Thus, magnetic field 
continuity no longer has any requisite meaning. To make up 
for the loss of this criterion, introduce conservation of finite-
difference Poynting flux, Equation (4), as the second 
criterion. Before proceeding, define some useful factors, 

pinc  cos(  kinc ex x) 
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pref  cos(  kref ex x) = pinc        (16) 

ptrn  cos(  ktrn ex x) 

 An important observation is that these p_factors 
constitute a second-order-in-cell-size departure from unity, 
since cos(s) 1 s

2
 for small s. 

3.4.1. TE Scattering in Discrete Maxwell 

 As before, with eE=e|| for all three waves, the electric 
field continuity constraint still applies, but now the finite-
difference Poynting flux constraint is applied, giving 

1 + TE = TE          (17) 

pinc kinc ex  | TE|
2
 pinc kinc ex = | TE|

2
 ptrn Real{ktrn ex} 

 The solution is 

TE = (pinc kinc ex  ptrn ktrn ex) / (pinc kinc ex + ptrn ktrn ex)   (18) 

TE = 2 pinc kinc ex / (pinc kinc ex + ptrn ktrn ex) 

 These are the exact reflection coefficients for the discrete 
problem. They are identical to the continuum scattering 
coefficients except for the p_factors. And since, these 
contain 2

nd
-order departures from unity, it follows 

immediately that discrete Maxwell is 2
nd

 order accurate 
when the dielectric interface is exactly on a full-grid plane. 

3.4.2. TM Scattering in Discrete Maxwell 

 In this case, eH=e|| for all three waves. The same electric 
field continuity constraint as in continuum still applies, as 
does now the finite-difference Poynting criterion, 

(kinc ex) + TM (kref ex) = TM (ktrn ex)       (19) 

inc pinc kinc ex  | TM|
2
 inc pinc kinc ex = 

    | TM|
2
 trn ptrn Real{ktrn ex} 

 The solution is 

TM = ( trn ptrn kinc ex  inc pinc ktrn ex) / 

    ( trn ptrn kinc ex + inc pinc ktrn ex)        (20) 

TM = 2 inc pinc kinc ex / ( trn ptrn kinc ex + inc pinc ktrn ex) 

 Again, this is identical to the continuum case, with 2
nd

-
order correction due to the p factors. 

4. IMPLEMENTATION OF FULL-FIELD/SCAT-
TERED-FIELD FORMULATION 

 A description of full-field/scattered-field implementation 
is well described and documented elsewhere, for example 
Reference [1]. In this section, we show the rather trivial 
generalization for the multiple waves due to scattering from 
the dielectric interface. 

 A key feature of this technique is that the sources are 
effectively currents, e.g., they add to the existing fields, 
rather than setting the field values directly. Thus any other 
waves, which might be present, simply pass through the 
locations of the sources unaltered. This gives rise to the full-
field (between the source-pairs)/scatter-field (outside the 
source-pairs) formalism. 

 Another key property is that with Yee-cell/leap-frog 
discretization, the technique can be essentially perfect to 
machine precision, even in 2D and 3D, in particular, 
avoiding deleterious corner effects. In order for this to occur, 

the source-pairs must be half-a-cell apart, e.g., be adjacent E-
plane and H-plane components. Our implementation has 
followed figure 6.2 in Reference [1], with the inner source 
consisting of adjoining E-planes, and the outer source 
consisting of the surrounding B-planes. Thus, each E-field 
component has a surrounding B-field component, and these 
constitute a source-pair, as shown in Fig. (3). The analysis 
proceeds for each pair individually, with the only subtlety 
being that E-components on the edge of the box have B-
components in two directions, instead of just one. This is 
interpreted to be two separate source-pairs, and the resulting 
two co-located electric sources simply add together. 

 

Fig. (3). Illustration of source pair in 3D. The full-field/scattered-

field approach can be made to be perfect, to machine precision, for 

Yee-cell/leap-frog discretization of Maxwell’s equations, when the 

two sources are adjacent E and B components, separated by half-a-

cell. The magnetic source, Jm, in particular, represents an artificial 

magnetic current term in Faraday’s Law. 

 The algorithm proceeds as follows. Seek the electric and 
magnetic currents, Je, and Jm, e.g., the source-pair, in the 
finite-difference (FD) discrete version of the Maxwell 
equations with sources, e.g., 

t,FD B =  Jm  FD E         (21) 

t,FD E = 
1
Je + ( μ0)

1
 FD B 

 These are: 

Jm
n
 = (±) Eanalytic(xE,t

 n
) / E B        (22) 

Je
n+

 = (±) μ0
1
 Banalytic(xB,t

 n+
) / E B 

where E B is the grid size, e.g, x, y, or z, in the direction 
running from the E-component to the B-component, and 
where xE and xB are the positions of the source-pair 
components in the Yee-cell centering scheme, where Eanalytic 
and Banalytic, are the analytic discrete representation 
waveforms given previously in Equations (8) and (12). 

 Note that in discrete Maxwell, the magnetic current is at 
the full-time step, and the electric current is at the half-time-
step, and that the waveforms are evaluated at the 
corresponding time. However, the magnetic waveform is 
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evaluated at the electric coordinate’s position, half a cell 
away, and vice-versa for the electric current. This introduces 
the proper phase shift to get wave cancellation in one 
direction. The plus-or-minus signs are chosen so that the 
source-pairs emit or absorb radiation in the proper direction 
and sign. It is easy to see that if the discrete-E component 
matches Eanalytic, then the sign of Jm should be chosen so that 
it cancels the analogous quantity from the E term, in 
order to make the source-pair’s discrete-B component 
maintain a zero value. And similarly, if the discrete-B 
component is zero, then the sign of Je must provide the 
analogous missing quantity from the B term. 

5. DISCRETE IMPLEMENTATION AT THE 
SURFACE 

 The interface plane between the dielectrics presents a 
special problem for a finite-difference implementation, due 
to the ambiguity in what to use for permittivity at the 
interface plane, ave,||. This section serves to resolve this 
issue. Specifically, this permittivity is used to update the in-
plane electric field components, Ey and Ez, in the discrete 
Ampere’s law, as in 

Ey
n+1

  Ey
n
 = ( t/ x) (Bz,inc&ref

n+
 Bz,trn

 n+
) / (μ0 ave,||)      (23) 

where Bz,inc&ref and Bz,trn are the magnetic fields half a cell 
below and above the interface plane. Also note that at the 
intersection of the dielectric interface and the full-field box, 
the same ave,||

1
 multiplies the electric source, Je, from the 

source-pair, in Equation (21). The proper treatment of 
dielectric interfaces is an active area of research, see for 
examples Reference [5], however ours is a very simple 
geometry of a planar interface lying exactly on a grid line. It 
will be shown that this simplicity allows for an exact analytic 
result, even in the discrete case. 

 In general, one might expect that the 2
nd

-order accuracy 
of the Yee-cell will break down for the B operation which 
spans the interface, because ex k is not continuous across the 
interface, and so the finite-difference “derivative” is no 
longer well-centered. And furthermore this poorly-centered 
difference, which involves the transmitted wave on one side 
and the incident/reflected waves on the other, might be 
expected to produce an invalid electric field at the interface 
that does not match the analytic field. However, these 
expectations are overly pessimistic. In fact, the entire system 
remains 2

nd
-order accurate, even spanning the dielectric 

interface. A key point is that, in the discrete case, in-plane 
magnetic continuity at the interface has been relaxed. This 
means that the magnetic fields have limits, if extrapolated to 
the interface-plane, which do not match, from one side to the 
next. The discontinuity is inherent with the introduction of 
the p_factors in the formulae of the scattering coefficients, 
Equations (18) and (20). We shall see that, remarkably, this 
discontinuity in magnetic field exactly counters the lack of 
well-centering. 

 To verify this assertion, first confine ourselves such that 
the incident half-space is for x<0, so that kx,inc=ex kinc>0. 
Now consider the finite difference FD B operation which 
crosses the interface, for the TE case, e.g., 

x ( FD B)interface,TE      kx,trn TE Exp(i kx,trn x)     

   kx,inc (Exp( i kx,inc x)  TE Exp(i kx,inc x))       (24) 

 Outwardly, it appears that this difference is not well-
centered, due to the different wavenumbers, kx,trn and kx,inc, in 
the arguments of the complex exponentials. However, plug 
in for the values of TE and TE, from Equations (16) and 
(18), and perform manipulations to show that this is 

x ( FD B)interface,TE    

   i TE ( kx,trn sin( kx,trn x) + kx,inc sin( kx,inc x) )      (25) 

 Remarkably, the poorly-centered complex exponentials 
become centered, due to the specific form of the scattering 
coefficients, with the extra p_factors of the discrete 
scattering-coefficients being critical to this algebra. In fact, 
this result is exactly half of the average of two well-centered 
differences, if each side had been analytically continued onto 
the other. Thus, one has 

x ( FD B)interface   = 

    x ( FD B)centered-inc&ref   +    x ( FD B)centered-trn     (26) 

where it is noted that a similar process can be repeated with 
the TM polarization, with similar results. Each of the well-
centered FD B’s will result in the correct analytic value of 
electric field, thanks to the imposition of in-plane electric 
field continuity. So with this knowledge, it is possible to 
produce the exact finite difference equation at the interface 
by adding together the following two well-centered 
equations, 

  { inc t,FD Eanalytic = μ0
1
 ( FD B)centered-inc&ref } 

+  { trn t,FD Eanalytic = μ0
1
 ( FD B)centered-trn }      (27) 

________________________________________ 

 ( inc + trn) t,FD Eanalytic = μ0
1
 ( FD B)interface 

which, due to the relation of Equation (26), results in a single 
equation, utilizing the actual interface difference. In 
comparing this to Equation (23), it is seen that the dielectric 
at the interface must then be the following, 

 ave,||   ( inc + trn)         (28) 

 This result is consistent with a common-sense 
interpretation of the split-dielectric as two capacitances in 
parallel, as one would expect from the in-plane components. 

 We have verified this “exact” average dielectric for the 
interface, and the results are shown in Fig. (4). An 
effectively perfect full-field/scattered-field scenario is 
obtained, Fig. (4a, b), with noise levels around 100dB, 
when using the exact value of Equation (28), which for this 
case is ave,||/ 0=1.50. These noise levels, visible on the log-
scale plot, Fig. (4b), are thought to be remnants of single-
precision round-off error, and show a noise-like spatial 
spectrum. Small changes to the value of ave,|| are seen to 
result in noticeable failure of the full-field/scattered-field 
algorithm. In the example shown in Fig. (4c), a change in 

ave,||/ 0 from 1.50 to 1.51 resulted in a visible signal outside 
the full-field box, of a planar nature, at the level of 60dB of 
the incident wave. 

 As an aside, we note that, when perfecting the 
implementation of the algorithm, it was often useful to look 
at the pattern of the signal in the scattered-field region, since 
its origin and shape often indicate where an error might have 
occurred. For example, in the Fig. (4d), the simulation used 
the correct ave,|| for the source-free Maxwell’s equation, but 
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used an improper ave,|| multiplying the source, Je. The result 
was a scattered signal, notably of a spherically expanding 
nature, rather than plane-wave nature, emanating from the 
points at the juncture of the full-field box with the dielectric 
interface. 

 Finally, it is remarked here, but not discussed in detail, 
that this work was repeated, to treat the situation where the 
dielectric interface passes through the midplane of a cell, 
rather than lying on a grid-plane, as was assumed for all 
prior discussion. In such case, in-plane magnetic continuity 
is imposed, but electric continuity must be abandoned. Exact 
results are again possible, however in that case, the average 
dielectric for the Ex component takes on a value that is 

consistent with capacitance in series, rather than in parallel, 
indeed, exactly as one might have expected from the normal 
electric field component. 

 Similar exact treatment of a dielectric interface that cuts 
through a cell at arbitrary coordinate is discussed in the 
Appendix. For such a situation, there are two planes which 
require a non-trivial permittivity, and two curl-differences 
which cross the interface, and thus risk being poorly-
centered. Furthermore, such a situation has neither magnetic 
nor electric continuity, so constraints such as imposing the 
relationship of Equations (27) are employed in the 
derivation. It is shown mathematically that, by continuing to 
use the parallel and series capacitance analogy for the 

   

 

Fig. (4). Contour plots of Ez field in TM case, for optimum and non-optimum values of ave,||. When the optimum value is used, plots (a) and 

(b), the field in the outer scattered-wave region is -100 dB down from the full-field, and shows random structure typical of floating-point 

round-off error. However, in plot (c) if a non-optimum ave,|| is used in Ampere’s Law, 0.51 inc+0.49 trn in this case, the log plot clearly shows 

escaping reflected and transmitted waves of about a -60 dB amplitude. If instead, in plot (d), a non-optimum ave,|| is used in just the source 

term, 2 inc trn/( inc+ trn) in this case, the untrapped waves, appear to emanate from the juncture of the full-field box and the interface. 
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permittivity of electric field components which split the 
interface, 2

nd
-order accurate scattering coefficients result, 

even for arbitrary coordinate of the interface. This is an 
important result in the efforts to accurately model more 
general dielectric discontinuity conditions, as it provides 
limiting constraints on the even more difficult problem of 
treating a dielectric interface that crosses as arbitrary angle, 
as well as position, in a 2

nd
-order manner. Clearly, an 

important extension of this present work, if it were possible, 
would be to treat such an arbitrary crossing interface within 
the numerically exact constraints of the full-field/scattered-
field approach. It is felt strongly that this is a topic worthy of 
future work. 

6. DEMONSTRATIONS 

 This section describes simulations done to explore the 
full range of capabilities of the augmented full-
field/scattered-field technique with dielectric interface. One 
important new situation, with no prior analogue in previous 
full-field/scattered-field implementations, is total internal 
reflection, where the transmitted-wave must be “re-absorbed’ 
by the source-pairs, despite being evanescent, rather than 
propagating. A more traditional situation is the placement of 
a perfectly electrically conducting (PEC) material within the 
box, with resultant scattering from the object. Similarly, a 
non-planar dielectric interface can be studied from the point 
of view of what is the effective scattering, vis-à-vis a perfect 
planar interface. Finally, a case where the dielectric is non-
passive, in this case a plasma, is shown. A plasma can be 
considered as a type of “meta-material” capable of relative 
permittivity less than unity, and so this provides a hint how 
such materials can be treated in general. 

 In all simulation figures shown in this paper, we have 
used x=1 cm, and y=1.25 cm, and / 0’s between -0.5 and 
4.0, to insure that results are not dependent on unit aspect 
ratio grid, for example. This corresponds to anywhere from 6 
to 20 cells per wavelength. At these moderate resolution 
levels, the discrete Maxwell corrections to light propagation 
are sufficient that quite noticeable phase error would occur 
from using continuum light dispersion, rather than the 
discrete version of such. 

6.1. Total Internal Reflection 

 Total internal reflection occurs when the incident ky
2
+kz

2
 

 
2
μ0 trn. In this case, all of the derivations in this paper 

carry forward even if kx,trn is imaginary, rather than real. For 
example, in Equation (3b), simply use the relation that 
sin

1
(i )=isinh

1
( ), and in Equation (16), use the relation 

that cos(i ) = cosh( ). The result is that in Equation (3a), the 
phase functions, (x,t), will be complex valued, and the 
waveforms, ( (x,t)), will thus contain exponential rather 
than sinusoidal behavior. However, if properly substituted 
into the source-pair relations, the exponentially decaying 
wave is properly “re-absorbed” in the full-field/scattered-
field technique. 

 This is illustrated by the simulations depicted in Fig. (5), 
where the angle of incidence is varied to either side of the 
critical angle. The incident wave propagates in a dielectric 
medium with / 0=3, which transitions to air, / 0=1 at the 
interface. In Fig. (5a), the angle-of-incidence is slightly 
above the critical angle, and the transmitted wave profile has 

a positive curvature, indicative of an evanescent wave. The 
result is total reflection, and so the waveform on the incident 
side is now a standing wave pattern, rather than propagating 
plane waves. In Fig. (5c), the angle-of-incidence is slightly 
below the crucial angle, and the transmitted wave has 
negative curvature, indicative of a propagating wave. 
Propagation at the critical angle is shown in Fig. (5b). Here 
the transmitted wave profile is flat, presumably out to 
infinity. In practice, it can take a long simulation time to fill 
in such a flat field profile, since the group velocity in the x-
direction is essentially zero. 

6.2. Structures within the Full-Field Box 

 The traditional application of the full-field/scattered-field 
technique is to look at the scattered wave of an object placed 
within the full-field box. A near-field-to-far-field 
transformation of this scattered wave is frequently done, as 
described in Reference [1]. The augmentation of the 
technique to include a dielectric interface allows one to look 
at the scattered wave, independent of the known reflective 
quality of the overarching interface between the dielectrics. 
One situation which immediately comes to mind would be to 
determine the scattering from an object floating on the 
surface of a liquid. 

 Another interesting scenario is to determine the forward 
radiation due to an object close to a dielectric interface 
operating under total internal reflection. This situation is 
shown in Fig. (6). In such a case, radiation can “tunnel” to 
the object in proximity, and then due to the object shape, can 
radiate in a forward direction, even though, in the absence of 
the object, there would be total reflection. 

 A related scenario involves analysis of scattering due to 
imperfections of the dielectric interface. Fig. (7) shows a 
simulation where the dielectric interface contains a “notch”. 
The radiation pattern from this notch represents the 
“incremental” scattering, and includes a 28 dB forward 
scattered wave and a 47 dB backscattered wave visible in 
the scattered-field region. Further analysis along these lines 
might provide scattering characterizations of surface 
smoothness, damage, or other inherent imperfection. 

6.3. Plasma and Meta-Materials 

 A further generalization of the full-field/scatter-field 
simulation is possible to allow for dielectrics of permittivity 
less than one, / 0<1, and in fact, even having negative 
values. Materials with such dielectrics are generally known 
as meta-materials. In addition, plasmas also have effective 
dielectrics which may be less than unity. Specifically, an un-
magnetized plasma has dielectric 

/ 0 = 1 – p
2
/

2    
      (29) 

where p is the plasma frequency, which is proportional to 
the square-root of density. If the density is high enough that 

p
2
>

2
, then  is indeed negative, and any wave propagating 

into such an over-dense plasma is reflected, regardless of 
angle of incidence. This formula may be reversed, so that 
given a desired dielectric, one can compute the plasma 
density which would result in that value of , 

p
2
 = ne

2
/m 0 = 

2
 (1  / 0)        (30) 

 A plasma dielectric model is implemented in our FDTD 
simulation using a leap-frog scheme. A new plasma-electric-
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current field, Jplasma, is introduced, which co-exists with the 
electric field on the Yee-cell arrangement, but is half-
centered on the time-steps. The update equation for this field 
is simply the finite-difference version of 

 t Jplasma = p
2

0 E         (31) 

and this current is added into Ampere’s Law in the normal 
manner. This implementation has the benefit that no 
reduction in time step is necessary, despite the fact that the 
phase velocity of light has increased due to / 0<1. However, 
there is a new stability criterion, p t<2, which is easily met 

for all but the most extremely negative dielectrics. And in 
addition, the startup transient will excite a small amount of 
pure plasma oscillation, at a frequency near p, which 
radiates away rather slowly. Thus, simulations with this 
plasma model tend to require somewhat longer time-scales to 
arrive at the analytic CW state. 

 Fig. (8) shows two simulations using the plasma 
dielectric model. The first simulation is under-dense, with 

plasma/ 0=0.5, but with an angle that results in total internal 
reflection. Note how the evanescent longitudinal electric 
field on the plasma side, Ex,plasma ~ Ex,inc( inc/ plasma), is 

        (a) total internal reflection  (b) at critical angle    (c) transmitted wave 

 

Fig. (5). The full-field/scattered-field algorithm works equally well in the case of total internal reflection, e.g., when the transmitted wave is 

exponentially decaying. Here, inc/ 0=3 and trn/ 0=1, with three different incident angles, ek=(0.8062,0.5916), (0.8165,0.5774), and 

(0.8367,0.5477), corresponding to situations of total internal reflection, propagation at the critical angle, and a barely propagating transmitted 

wave. The field profiles through the dotted lines are shown. 

 

Fig. (6). Full-field/scattered-field simulation with and without a scatterer. The nominal simulation, on the left, is one of total internal 

reflection. A perfectly conducting quasi-spherical object is added (in gray), centered on the dielectric interface. This introduces a spherical 

scattered wave which is evident in the scattered-field region. Of note is that the scattered wave is propagating, rather than evanescent, on the 

transmitted side. 
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enhanced by the smallness of plasma. The second simulation 
is over-dense, with plasma/ 0= 0.5, which insures a very 
short-scale decay of the field on the plasma side. 

 More advanced plasma dielectric models, including 
implicit schemes that are not subject to the p t stability 
criterion, and magnetized plasmas that result in tensor 

dielectrics with additional internal resonances and cutoffs, 
are discussed in Reference [3]. Meta-materials will, in 
general, have some internal oscillation modes in analogy to 
the plasma oscillation, that allows for an effective dielectric 
constant less than unity. In some cases, one may simply 
replace the plasma frequency in Equation (31) with the 

 

Fig. (7). Full-field/scattered-field simulation with notch in dielectric interface. Plots are log-scale, and profiles are through the midplane. The 

nominal simulation, on the left, is TE, and has inc/ 0=1 and trn/ 0=1.5, and a noise level around 100 dB. When a notch is introduced in the 

dielectric, a scattered wave is generated that radiates outside the full-field box. This scattered wave represents the “incremental” scattered 

wave due to the presence of the notch. It can be seen that amplitude of the forward scattered wave is approximately -28 dB, whereas the 

backscattered wave amplitude is approximately -47 dB. 

 

Fig. (8). Full-field/scattered-field simulation for a plasma dielectric. If  is less than unity, a plasma/meta-material can be invoked. 

Simulations are TM, and plots are of the longitudinal field, Ex. In the left figure, an under-dense plasma is reflecting due to angle of 

incidence. Note the large field increase which can be achieved on the plasma side, when  is small. In right figure, the plasma is over-dense 

(e.g., has <0), and all signals decay strongly. 
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internal oscillation frequency of the meta-material to get a 
model of the meta-material. In other cases, the meta-material 
current may be magnetic in nature, rather than electric, or 
may have other subtle phasing aspects that require a more 
advanced model. In terms of future work, clearly this entire 
analysis can also be generalized to include non-vacuum 
permeability, μ μ0, in addition to , and also to include loss 
within these materials. 

7. CONCLUSIONS 

 This paper has presented a generalization of the full-
field/scattered-field to include a planar dielectric interface 
within the simulation such that the nominal scattered and 
transmitted field from such an interface is captured at the 
full-field box, in analogous fashion to the incident wave. The 
original impetus driving this capability was the desire to 
have an effective plane-wave electromagnetic source in 
problems where the simulation domain is on the order of, or 
smaller than a single wavelength. Nevertheless, the 
augmentation of the technique is applicable to all of the 
usual full-field/scattered-field applications, including 
scattering-signatures, and meta-material research, and 
examples of such have been provided. 

 The implementation maintains the exact machine-
precision quality of the traditional full-field scattered-field 
approach. This is accomplished with a careful analysis of the 
dielectric interface scattering coefficients in the case of the 
discrete representation. The discrete case scattering 
coefficients are provided as exact analytic expressions. An 
important aspect of this exact treatment is the verification of 
2

nd
-order accuracy for the traditional series/parallel 

capacitance rules of effective permittivity for electric field 
components cut by the interface. 

APPENDIX A. DISCRETE SCATTERING 
COEFFICIENTS FOR ARBITRARY INTERFACE 
LOCATION 

 It is possible to derive the analytic scattering coefficients 
for interface position anywhere along the x-axis, rather than 
requiring the interface to lie exactly on a grid plane. 
Introduce a new parameter, h, which represents the distance 
between the interface and nearest grid plane. A value of h=0 

is the case treated in the main discussion, and in general, h is 
constrained to the values, x  h  x. As was already 
noted in the discussion, the permittivity for the two in-plane 
electric field components whose areas are cut by the 
interface, ave,||, takes on an intermediate value between inc 
and trn. When h 0, another intermediate permittivity, ave, , 
must be introduced for the electric field component normal 
to, and whose length is cut by, the interface. That normal 
field component is to the left of the ave,|| for negative h, and 
to the right of ave,|| for positive h. See Fig. (A1) for an 
illustration where the interface is shown at a negative value 
of h. 

 Permittivity, , has units of capacitance-length-per-area, 
and it is shown in this appendix that straight-forward 
serial/parallel capacitance rules provide the intermediate-
valued permittivity, which do indeed result in 2

nd
-order 

accurate scattering coefficients, regardless of the interface 
location, h. We note that the following is an analytic result 
and thus carries greater certainty than a scaling study 
exhibiting 2

nd
-order accuracy, which is limited by practical 

time-constraint to finite choices over parameter space. 
Specifically, the intermediate-valued dielectrics are taken to 
be 

ave,||  = ( inc + trn) + ( inc  trn) (h/ x) 

ave,
1
  = ±

1
 + ( inc

1
  trn

1
) (h/ x)     (A1a) 

where 

±  = inc, for: x  h < 0 (A1b) 

 = trn, for: 0 < h  x 

 Note that the permittivity, ave, , applies to different Ex 
components, depending on the sign of h, and that it is not 
required, or defined, when h=0 exactly. 

 In the more general case of this Appendix, the derivation 
for the scattering coefficients is more cumbersome because 
neither electric nor magnetic field has a continuity condition 
between inc&ref and trn-sides. But it is clear that any field 
component must take on the proper value associated with the 
side of the interface it is on, in order to correctly participate 
in finite-differences away from the interface. This implies 
that any differencing operation which spans the interface 

 

Fig. (A1). Illustration of dielectric interface a distance, h, from the nearest grid plane. There are no field continuity conditions, instead the 

operations which span the interface must result in the same values as if one-sided fields were analytically continued. 



Full-Field/Scattered-Field Formulation Containing a Dielectric Interface The Open Plasma Physics Journal, 2010, Volume 3    71 

between inc&ref and trn-values, together with its material 
constant, must result in the same field update value, as if the 
proper one-sided fields were analytically continued to the 
other side. The field components involved in these interface-
crossing differences are illustrated in Fig. (A1), for the TE 
and TM cases, for a value of h<0. 

 Some simplification can be made by noting that the 
normal components are not involved in some of the curls, 
which then involve only the interface-crossing difference, 
which is denoted as , 

tE = (μ0 )
1

B  tE||,TM = (μ0 ave,||)
1
 B||,TM     (A2a) 

tB = E  tB||,TE = E||,TE 

 Additional simplification can be made by noting that the 
updates for the normal components, that is Bx for TE, and Ex 
for TM, never involve interface-crossing differences, and 
thus these components always have phase associated with 
the in-plane dual-component that they surround. This allows 
the spatial-finite-difference of normal components to be 
lumped together with the temporal difference of the in-plane 
components as follows, leaving again, just the interface-
crossing difference, 

tE = (μ0 )
1

B  tE||,TE = (
2
/kx,ave,||

2
) B||,TE   (A2b) 

tB = E  tB||,TM = (
2
μ0 ave, /kx,ave,

2
) E||,TM 

where for algebraic convenience, define the following 
quantities 

kx,ave,||
2
   

2
μ0 ave,||  ky

2
  kz

2
 

kx,ave,
2
   

2
μ0 ave,   ky

2
  kz

2
     (A2c) 

kx,±
2
   

2
μ0 ±  ky

2
  kz

2
  = kx,inc

2
, for: x  h < 0 

     = kx,trn
2
, for: 0 < h  x 

A.1. TE 

 Express the TE continuation conditions associated with 
the  operations of Equations (A2) in terms of the 
coefficients of Equation (8), assuming a negative value of h, 
as illustrated in Fig. (A1), 

TM Exp( ikx,trnh)   

   (Exp( ikx,inc( x+h)) + TM Exp(ikx,inc( x+h))) 

   =   (Exp( ikx,inch) + TM Exp(ikx,inch)) 

     (Exp( ikx,inc( x+h)) + TM Exp(ikx,inc( x+h)))      (A3) 

(1/kx,ave,||
2
){kx,trn TM Exp(ikx,trn( x h)) 

     kx,inc (Exp( ikx,inc( x+h))  

       TM  Exp(ikx,inc( x+h)))} 

   =   (1/kx,trn
2
){kx,trn TM  Exp(ikx,trn( x h)) 

        kx,trn TM  Exp( ikx,trn( x+h))} 

 For convenience define phase factors depending on h, 

inc  Exp(i(kx,trn kx,inc)h) 

and   ref  Exp(i(kx,trn+kx,inc)h)     (A4a) 

 And refer to Equation (3b) to define another useful 
p_factor, 

 p   sinc(   t) = sin( kx,inc x) / ( kx,inc x) = 
sin( kx,trn x) / ( kx,trn x)      (A4b) 

 With these definitions, the complex exponentials can be 
expressed algebraically in terms of the ’s, p_factors, k’s and 
x. Solve for the scattering coefficient to get 

TE   =   ( inc/ ref) (ATE  BTE) / (ATE + BTE) 

   =   2 inc kx,inc pinc / (ATE + BTE) 

ATE      kx,inc pinc         (A5) 

BTE      kx,trn ptrn   +   i (kx,inc
2
 + kx,trn

2
  2kx,ave,||

2
) x p  

   =   kx,trn ptrn   +   i (kx,trn
2
  kx,inc

2
) h p  

where in the last form of the BTM quantity, we have 
substituted the permittivity from Equation (A1). Equation 
(A3) of this calculation assumed that x h 0, but the 
calculation can be repeated for 0 h x, with the same 
result as equation (A5), which is thus valid for the entire 
range of h values. Recall that all p_factors are 2

nd
-order, so 

any potential first order error terms will consist of those that 
involve h, which is present in inc, ref, and BTM. But, it is 
easy to see that the lowest order h-terms cancel, such that the 
smallest error terms are 2

nd
-order in h, as well. Therefore, the 

scattering coefficients remain 2
nd

-order accurate, even for 
arbitrary crossing with h 0. Note that the assumed form of 

ave,||, in Equation (A1a) was key to achieving this result. 

A.2. TM 

 Express the TM continuation conditions associated with 
the  operations of Equations (A2) in terms of the 
coefficients of Equation (8), assuming a negative value of h, 
as illustrated in Fig. (A1), 

ave,||
1
{ trn TM Exp(ikx,trn( x h)) 

    inc (Exp( ikx,inc( x+h)) 

       + TM  Exp(ikx,inc( x+h))) } 

   =   trn
1
{ trn TM  Exp(ikx,trn( x h)) 

       trn TM  Exp( ikx,trn( x+h))} 

( ave, /kx,ave,
2

) {kx,trn TM  Exp( ikx,trnh)) 

    kx,inc (Exp( ikx,inc( x+h))  TM Exp(ikx,inc( x+h)))}   (A6) 

   =   ( inc/kx,inc
2

){kx,inc (Exp( ikx,inch)  TM Exp(ikx,inch))  

    kx,inc (Exp( ikx,inc( x+h))  TM  Exp(ikx,inc( x+h)))} 

 Define the following first order quantities, 

  ( ave,  kx,±
2
  ± kx,ave,

2
) x 

 = ( inc kx,trn
2
 – trn kx,inc

2
) h       (A7) 

||  ( ave,||  trn – inc) kx,inc kx,trn x 

 = kx,inc kx,trn ( inc  trn) h 

 The solution to the above equations is similar to the TE 
case, e.g., it can be written as 

TM  = ( inc/ ref) (ATM  BTM) / (ATM + BTM)    (A8a) 

TM   =   2 inc kx,inc pinc / (ATM + BTM) 

 However, now the forms for ATM and BTM differ slightly 
in the higher order terms, for the two cases, x h 0 and 
0 h x. For the case of Equation (A6), this is 

For x  h  0, 

ATM = kx,inc trn ptrn  i p  || 
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     ptrn p
2
 (kx,inc x)  

 +   i  p
3
 ( ave,||/ trn  ) (kx,trn kx,inc x

2
)    (A8b) 

BTM = kx,trn inc pinc + i pinc ptrn p   

 + pinc p
2
 ( ave,||/ trn  ) (kx,trn x)  

 A repetition of the calculation with the interface on the 
opposite side gives 

For 0  h  x, 

ATM = kx,inc trn ptrn  i p  || 

     pinc p
2
 (kx,trn x)  

 + ptrn p
2
 ( ave,||/ inc  ) (kx,inc x)     (A8c) 

 + i  p
3
 ( ave,||/ inc   ) (kx,inc kx,trn x

2
)  

BTM = kx,trn inc pinc + i pinc ptrn p   

 The first order terms are the same, regardless of the sign 
of h, and once again exactly cancel the first order terms in 
the ’s, leaving scattering coefficients which are 2

nd
-order 

accurate, for any value of h. Again, the particular forms for 

ave,|| and ave, , in Equation (A1a), were key to achieving this 
result, as the || term of ATM must combine properly with the 

 term of BTM, in order for the cancelation of first-order 
terms to occur. 

 The result of this Appendix is essentially a proof that: 

• a dielectric interface parallel to one of the grid-planes, 
but cutting through the mesh at arbitrary coordinate 

normal to the interface, can be modeled in a 2
nd

-order 
accurate manner, and 

• the permittivity which provides this 2
nd

-order 
accuracy is that which results from a common sense 
serial/parallel summation of capacitances where the 
dielectric interface cuts through the electric field 
element’s length and areas. 

 Obviously, it would be nice to have some analogous 
proof for situations where the interface is at an arbitrary 
angle to the grid, rather than parallel to one of the grid-
planes. This is a topic for further research. The full-
field/scattered-field approach developed in this paper can 
provide an excellent tool for testing and evaluation of 
possible techniques in this area, including the use of more 
general formulae for the ave’s. Furthermore, Equation (A1a) 
provides known 2

nd
-order accurate limit for these quantities, 

which must be met, when angle returns to parallel. 
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