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Abstract: A numerical study is performed to assess the influence of thermochemical nonequilibrium on the transport 
coefficients used in Computational Fluid Dynamics (CFD) simulations of hypersonic external flowfields. An quantitative 
assessment is made of transport coefficients from simplified methods of Blottner curve fits and Variable Hard Sphere 
(VHS) model on the numerical solution of a Mach 23 flow past a sphere cone, the RAMC-II test case. The equations 
derived by Kustova [1] in the state kinetic approach for calculating transport coefficients from the Chapman-Enskog 
solution of the Wang-Chang Uhlenbeck equation were used to conduct a parametric study for assessment of the effect of 
the following parameters on the state-specific diffusion coefficients: (1) Widely different population distributions,  
(2) Atomic mass concentration, and (3) Binary atomic to molecular diffusion coefficient ratio. The present study is a first 
step to quantify the relative importance of the parameters considered for a future implementation of the computationally 
expensive state-kinetic transport coefficients in multi-dimensional fluid dynamic flow solvers for flow conditions where 
the more general state kinetic approach becomes necessary. 
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1. INTRODUCTION 

 The design of vehicles for high speed flight, in particular 
the thermal protection system (TPS) in the highly collisional 
aerothermal environment, requires development of reliable 
nonequilibrium models for Computational Fluid Dynamics 
(CFD) solvers. The limitations, development, and use of 
current and future CFD models for species transport of mass, 
momentum, and energy with sources and sinks requires a 
thorough understanding of the physics of nonequilibrium. 
The three so called transport properties of a fluid are the 
coefficients of diffusion, viscosity, and thermal conductivity 
[2,3]. Diffusion is the mass transport through molecular 
exchange and occurs in a fluid because of random molecular 
motion. In a macroscopic sense, mass diffusion in a fluid 
flow occurs due to concentration gradients. In a microscopic 
sense, the transport of molecules through otherwise identical 
molecules as a result of concentration gradient is known as 
self-diffusion. With the idea of momentum transport, 
viscosity can be stated as the property of the fluid which 
relates applied stress to the strain rate, where the coefficient 
of viscosity is directly related to molecular interactions and 
thus may be considered a thermodynamic property. Thermal 
conductivity is associated with the transport of mean thermal 
energy in the flow, where this mean energy consists of 
random translational energy and internal energy of the 
molecules. 
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 The Navier-Stokes equations are generally applicable in 
the study of gaseous systems that are close to the equilibrium 
state. A primary assumption in dealing with polyatomic and 
reacting gases is that the volumetric rate terms are negligible 
compared with those associated with spatial gradients. This 
implies that the inelastic collisions (those associated with 
vibrational energy exchange or dissociation) are relatively 
infrequent and do not significantly influence the transport 
coefficients. In recent years, however, vibrational excitation 
and chemical reactions are treated as source terms in fluid 
dynamic codes, where the sources and sinks necessitate 
modifications of the equations of motion appropriately. In 
the absence of information on the cross-sections involved, 
the use of Blottner curve fits [4] for viscosity, Eucken's 
relation [5] for thermal conductivity and suitable mixing 
rules are often used in CFD codes, whereas a variable hard 
sphere (VHS) model [6] in DSMC provide good estimates 
for transport properties in air. However, with knowledge of 
the collision cross section, it is convenient to use the 
Chapman-Enskog approximation [3] to obtain the transport 
coefficients for use in hypersonic CFD codes. The Chapman-
Enskog approximation is used to find the solution of Wang-
Chang Uhlenbeck equation [7], the transport equation for the 
phase space distribution function, which includes terms for 
internal energy exchanges in the collision integral. 
Considerable work has been carried out on development and 
tabulation of a database for the collision integral, appearing 
in the Sonine polynomial expansion of the Boltzmann 
equation for computing transport coefficients [8-10] for 
aerthermodynamic analysis; the limitation of the work is the 
inability to distinguish the different quantum energy states. 
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This limitation is overcome in the approach given in the 
works of [1, 11-13] that includes the vibrational energy 
states in the collision operator of the transport equation, thus 
providing state to state transport coefficients for calculation 
of the transport properties in a gas flow. A justification for 
this more general state kinetic approach for transport 
coefficients for given sets of flow conditions was provided in 
earlier work, see for example [14,15]. 
 Although the nonequilibrium effects are inherent to the 
transport coefficients of Blottner curve fits, which were 
derived from experimental data, there is no explicit treatment 
of the different thermal energy modes or the degree of 
nonequilibrium in deriving them, and this raises questions on 
the limits of applicability of these curve fits to 
nonequilibrium flow processes. There is also uncertainty in 
the limits of applicability of the VHS model, which is based 
on a power law molecular potential, for flows involving 
strong vibrational nonequilibrium. In the present study, a 
quantitative assessment is made of the relative differences in 
transport coefficients calculated from Blottner curve fits [4] 
and the VHS model [6] in air mixture of a high temperature 
hypersonic flow. Then, using the state kinetic approach of 
Kustova [1], the role of binary and self diffusion is identified 
in a gas mixture. 

2. GOVERNING EQUATIONS 

 Consider a multi-species, reacting gas mixture, whose 
underlying distribution functions corresponding to each 
species c, (quantized) vibrational energy level i and 
(quantized) rotational energy level j are represented as 

  
fcij (x,uc ,t) , where x, uc and t denote the spatial coordinate, 

(microscopic) velocity and time instance respectively. The 
evolution of these distribution functions, based on kinetic 
theory, can be expressed as [1,7,11-13] 

  
∂t fcij + uc ⋅ ∂x fcij = Jcij ,  (1) 

where 
 
Jcij  denotes the full collision operator that accounts 

for interactions not only due to elastic collisions but also due 
to rotational and vibrational energy exchanges and chemical 
reactions. While each of these mechanisms can be associated 
with a characteristic time scale, it was found from 
experimental data (under certain conditions) that there exists 
a separation of time scales according to the relation 

  τ el < τ rot << τ vib < τ react ~θ , where  τ el ,  τ rot ,  τ vib ,  τ react  and 
θ  correspond to mean times characterizing collisions 
resulting in translational, rotational, vibrational energy 
transfer, chemical reactions and macroscopic time scale 
respectively. In other words, as translational and rotational 
energy modes tend to equilibrate much faster in comparison 
to other modes, the collision operator on the r.h.s of Eq. (1) 

can be expressed as 
  
Jcij = 1

ε
Jcij

rapid + Jcij
slow , where 

 
Jcij

rapid ≡ Jcij
el + Jcij

rot  and 
 
Jcij

slow ≡ Jcij
vib + Jcij

react  correspond to 
collision operators of rapid and slow processes and ε  is a 
small parameter denoting the ratio of timescales of fast and 
slow (collisional) processes. Note that the collision operators 

 
Jcij

el , 
 
Jcij

rot , 
 
Jcij

vib  and 
 
Jcij

react  correspond to elastic collisions, 
rotational energy exchanges, vibrational energy exchanges 
and chemical reactions, respectively. While a direct solution 
of Eq. (1) can be very computationally expensive, the 
generalized Chapman-Enskog method can be used to obtain 
approximate solutions. In this approach, the distribution 
functions 

 
fcij  are expressed in a power series involving the 

(small) parameter  ε .  The zeroth order solution 
  
fcij

(0)  satisfies 

the relation 
  
Jcij

el ( fcij
(0) , fcij

(0) )+ Jcij
rot ( fcij

(0) , fcij
(0) ) = 0 . Consideration 

of collision invariants, leads to the following form for the 
zeroth order distribution function: 

  

fcij
(0) =

mc

2πkT
⎛
⎝⎜

⎞
⎠⎟

3/2

sj
ci nci

Zci
rot (T )

exp −
mccc

2

2kT
−
ε j

ci

kT

⎛

⎝
⎜

⎞

⎠
⎟ ,  (2) 

where  nci  is the number density of molecules of species c  

(with molecular mass cm ) in vibrational level i, 
 
s j

ci  denotes 
the statistical weight, k is the Boltzmann constant, T is the 
temperature,  cc ≡ uc − v  is the peculiar velocity, v is the 

macroscopic gas velocity and  Zci
rot  is the rotational partition 

function. The macroscopic parameters ( , )cin x t , ( , )v x t  and 
( , )T x t  are defined in terms of the distribution function and 

satisfy the following relations: 

   
nci =

j
∑∫ fcij duc =

j
∑∫ fcij

(0) duc  (3) 

   
ρv =

cij
∑mc ∫uc fcij duc =

cij
∑mc ∫uc fcij

(0) duc  (4) 

   
ρU =

cij
∑∫

1
2

mccc
2 + ε i

c + ε j
ci + ε c⎛

⎝⎜
⎞
⎠⎟

fcij duc  (5) 

   
=

cij
∑∫

1
2

mccc
2 + ε i

c + ε j
ci + ε c⎛

⎝⎜
⎞
⎠⎟

fcij
(0) duc .  (6) 

 Note that U  denotes the total energy per unit mass 

defined such that 
  
ρU ≡ 3

2
nkT + ρEr + ρEv + ρE f . For each 

species c  and vibrational level i, the corresponding (mass) 
density is defined as   ρci = mcnci , the vibrational energy of 

the molecule is given by  ε i
c  (based on reference minimum of 

its potential curve,   ε
c = −Dc , where cD  is the energy of 

dissociation of the molecular species c ). The components of 
total energy per unit volume due to rotation, vibration and 
dissociation are given by 

   
ρEr =

cij∑ ∫ε j
ci fcij duc ,  

  
ρEv =

ci∑ ε i
cnci  and 

  
ρE f =

c∑ ε cnc  respectively. Also note 

that the number density of species c  is given by 
  
nc =

i∑ nci , 

the total number of particles is given by 
  
n =

ci∑ nci  and the 

density of the gas mixture is given by 
  
ρ =

c∑ mc i∑ nci . 
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 Based on Eqs. (1)-(6), macroscopic equations governing 
the evolution of ( , )cin x t ,   v(x,t)  and   T (x,t)  for a multi-
component reacting gas mixture in vibrational and chemical 
nonequilibrium can be obtained as 

   

dnci

dt
+ nci∇⋅v +∇⋅ nciVci( ) = Rci  (7) 

   
ρ dv

dt
+∇⋅P = 0  (8) 

   
ρ dU

dt
+∇⋅q+ P :∇v = 0,  (9) 

where the production terms are given by 
   
Rci ≡ j∑ ∫Jcij

slow duc , 

the diffusion velocity   Vci  of the chemical species c at 

vibrational level i is given by 
   
nciVci ≡ j∑ ∫cc fcij duc , the 

pressure tensor is given by 
   
P ≡

cij∑ ∫mccccc fcij duc  and the 

heat flux vector is given by 

   
q ≡

cij∑ ∫ mccc
2 / 2+ ε j

ci + ε i
c + ε c( )cc fcij duc . Based on the 

zeroth order distribution function, the corresponding 
approximations for the diffusion velocity, pressure tensor 
and heat flux vector can be obtained as    Vci

(0) = 0 ,    P
(0) = pI  

and   q
(0) = 0 , where p  denotes the pressure and I  denotes 

the unit tensor. First order corrections to these 
approximations can be obtained from linear integral 
equations for the first order distribution functions 

  
fcij

(1) ≡ fcij
(0)ϕcij . These linear integral equations result in the 

following form of the first order distribution function: 

   
fcij

(1) =
fcij

(0)

n
−Acij ⋅∇ lnT −

dk
∑Dcij

dk ⋅ddk −Bcij :∇v − Fcij∇⋅v −Gcij

⎛
⎝⎜

⎞
⎠⎟

 (10) 

 The functions 
  
Acij , 

  
Bcij , 

  
Dcij

dk , 
 
Fcij  and 

  
Gcij , which 

depend on microscopic velocities cu  and macroscopic 
parameters   nci (x,t) ,    v(x,t)  and   T (x,t)  can be identified as 
coefficients of the underlying gradient terms in the linear 
integral equations. Note that the diffusion driving forces for 
each chemical species c  at vibrational level  i  is given by 

   dci = ∇(nci / n)+{(nci / n)− (ρci / ρ)}∇ ln p . The above first 
order distribution functions can be used to obtain expressions 
for the diffusion velocity, pressure tensor and total heat flux 
vector as: 

   
Vci = −

dk
∑Dcidkddk − DTci∇ lnT  (11) 

   
P = p − prel( )I − 2µS −η∇⋅vI  (12) 

   
q = −λ '∇T − p

ci
∑DTcidci +

ci
∑ 5

2
kT + 〈ε j

ci 〉r + ε i
c + ε c⎛

⎝⎜
⎞
⎠⎟

nciVci .  (13) 

 Here  Dcidk  and  DTci  denote the diffusion coefficient and 
thermal diffusion coefficient for each chemical and 

vibrational species, given in terms of bracket integrals as 

   
Dcidk = 1

3n
[Dci , Ddk ]  and 

   
DTci = 1

3n
[Dci , A].  Note that the 

pressure tensor (based on the first order approximation) 
depends on the strain rate tensor S, the shear viscosity 

coefficient 
   
µ = kT

10
[B, B],  the bulk viscosity coefficient 

  η = kT[F , F]  and the relaxation pressure   prel = kT[F ,G].  
As a result of inelastic translational and rotational energy 
transfers in collisions between molecules of different 
vibrational and chemical species, additional terms appear in 
the pressure tensor in the form of relaxation pressure and 
bulk viscosity. The coefficient of thermal conductivity 

   
′λ = k

3
[A, A]  appearing in the total heat flux vector also 

depends on the elastic and inelastic exchanges between 
translational and rotational modes. The transport coefficients 
corresponding to shear viscosity, thermal conductivity, mass 
diffusion and thermal diffusion coefficients can be obtained 
using Sonine and Waldmann-Trubenbacher orthogonal 
polynomials. An important aspect of this approach for 
obtaining the transport coefficients is that detailed 
interactions due to vibrational energy transfers and chemical 
kinetics are carefully considered and could result in more 
accurate expressions for diffusion velocity, stress tensor and 
heat flux vector in the presence of thermochemical 
nonequilibrium. 
 Simplifications to the above approach are possible when 
the diffusion velocity is assumed to be given by a Fick's law 
as 

   ρciVci = −ρc D11∇(ρci / ρc ),  (14) 

where   D11  is the self-diffision coefficient which can be 

obtained from kinetic theory as   D11 = ′η µ / ρ , where ′η  is 
1.2 for hard sphere molecules, is 1.43 for Maxwell molecules 
and is somewhere in between these two values based on 
experimental results. The species diffusion velocity 

   Vc ≡ C c − v  defined as the species mass-averaged velocity 

    
C c ≡

1
ρc

i, j∑ mc ∫uc fcij duc  relative to the mixture mass-

averaged velocity v, can also be approximated by Fick’s law 
as 

   ρcVc = −ρD12∇(ρc / ρ),  (15) 

where the binary diffusion coefficient 12D  is obtained by 
assuming a constant Lewis number. These simplified 
approximations for transport coefficients can be used in 
conjunction with the global conservation equations as: 

    
∂t ρci +∇⋅ ρci v + Vc + Vci( )⎡⎣ ⎤⎦ = ω ci  (16) 

    
∂t ρc +∇⋅ ρc v + Vc( )⎡⎣ ⎤⎦ = ω c  (17) 

    ∂t (ρv)+∇⋅(ρvv + τ ) = 0  (18) 
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∂t (ρevib )+∇⋅ ρevib(v + Vc )+ qtrans + qvib⎡⎣ ⎤⎦ = ρ ω vib  (19) 

    
∂t (ρe)+∇⋅ ρ(e+ p / ρ)v −∑qvib +∑(ρchcVc )− v ⋅τ⎡⎣ ⎤⎦ = 0  (20) 

 The conservation Eq. (16) is used in the state to state 
kinetics code, written for mass density in quantum level i for 
diatomic molecules. The source term   ω ci  derived from the 
vibrational master equations is made up of the relevant 
energy exchange processes consisting of the V-T and V-V 
energy exchange mechanisms. The density of molecular 
species is the sum of population densities in the various 
vibrational levels. For diatomic species in the state to state 
kinetics formulation, a separate vibrational conservation 
equation was not necessary as the vibrational energy was 
calculated at each quantum level. The mass conservation of 
species is represented by Eq. (17). The production of small 
amounts of atoms due to dissociation of molecules is 
included in the source term,    ω c .  The mixture density, ρ  is 
the sum of the partial species densities, 

  
ρ = ρN2

+ ρO2
+ ρO + ρNO + ρN  (21) 

Eq. (18) gives the conservation of total momentum. For 
diatomic molecules other than those treated with the state-
kinetic rates, vibrational relaxation in Eq. (19) was modeled 
according to the Landau-Teller [5-16] form. Eq. (19) also 
includes terms for the conduction and diffusion of 
vibrational energy. The conservation of total energy is given 
by Eq. (20) with heat conduction and species diffusion 
terms. 

3. RESULTS AND DISCUSSIONS 

 Results are presented in two sections. The first section 
provides comparisons of using two commonly used transport 
coefficient models for the RAMC-II test case. The second 
section is a parametric study of binary & self diffusion on an 

2N - N  gas mixture using a state specific approach. 

3.1. Relative Effects of Simplified Transport Coefficients 
on RAMC-II Test Case 

 In this section, an assessment is made of two simplified 
transport coefficient models commonly used in current 
hypersonic CFD codes, based on flow simulation for a 
RAMC-II test case (Mach 23 air flow at 61 km altitude). A 
post-processing technique is used to assess the local 
influence of the transport coefficient model on diffusion 
coefficient values throughout the flowfield. The dynamic 
viscosity for each of the five species in the reacting flow 
hypersonic sphere-cone simulation is calculated as a function 
of temperature, using the Blottner model [4] employed in a 
CFD flow simulation that solved Eqs (17)-(20). This 
viscosity is given as 

  µBlottner = exp[( AlnT + B) lnT +C]  (22) 

where A, B, and C are species specific constants. 

 For comparison, species viscosities are also computed for 
the variable hard sphere (VHS) model of Bird [6] through a 
series of post-processing calculations based on CFD 
simulation results. The VHS model is the standard transport 

coefficient model in the direct simulation Monte Carlo 
(DSMC) method, and is widely used for a range of gas 
kinetic schemes due to its ease of implementation and the 
existence of analytical solutions involving integration over 
equilibrium velocity distributions. In this model, the cross 
section for intermolecular collisions scales as a constant 
power of the relative speed for each collision pair, and the 
post-collision relative velocity is isotropically distributed. It 
follows that the viscosity is proportional to a constant power 
(ω ) of temperature, with the allowable range bounded by a 

value of 
 

1
2

 for a hard sphere gas and 1 for a Maxwell gas. 

Given a reference temperature 
 
Tref  and a reference collision 

diameter refd  at this temperature, the VHS viscosity may be 
expressed as 

  
µVHS =

15 πmkBTref

2πdref
2 (5− 2ω )(7 − 2ω )

T
Tref

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ω

 (23) 

where m  is the molecular mass, T  is the gas temperature 
and Bk  is Boltzmann's constant. As with the Blottner model, 
the species-specific dynamic viscosity in the VHS model is a 
function of only temperature and species constants. The local 
ratio of Blottner viscosity to VHS viscosity may therefore be 
calculated for each species as a function of temperature. 
Eucken's relation is employed to calculate species thermal 
conductivities for both Blottner and VHS models. Species 
thermal conductivities will therefore have the same 
dependence on internal energy excitation in both models, 
and the local ratio of thermal conductivities should equal the 
corresponding viscosity ratio. In the flow simulation, the 
mixture viscosity and thermal conductivity values are 
computed as functions of species transport coefficients and 
concentrations using the mixing rule of Wilke [5]. As part of 
post-processing calculations, this mixing rule is applied 
separately to the species-specific VHS viscosities given by 
Eq. (23). The resulting local mixture VHS viscosity, 

  µVHS ,mix  may then be compared with the mixture viscosity 

  µBlottner ,mix  employed in the simulation by evaluating the 

ratio   µBlottner ,mix /  µVHS ,mix . Note that, while for individual 
species, the ratio of Blottner-to-VHS thermal conductivities 
is equal to the corresponding viscosity ratio, these two ratios 
are not necessarily equal for the mixture; this follows from 
the fact that species thermal conductivities depend on the 
number of internal degrees of freedom, so the relative 
contributions of each species to summations used in Wilke's 
mixing rule will be different for thermal conductivity than 
for viscosity. In order to guarantee that the summation of 
species diffusive mass fluxes is zero, a single diffusion 
coefficient is utilized in the simulation through a constant 
Lewis number approximation. This approximation is 
equivalent to setting the mixture diffusion coefficient as a 
function of only the mixture viscosity. The ratio of Blottner 
to VHS mixture diffusion coefficients is therefore equal to 
the viscosity ratio   µBlottner ,mix /  µVHS ,mix . 
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 Note that the transport coefficient assessment here is 
inherently approximate, due in part to the following three 
factors: First, a separate simulation employing the VHS 
model is not performed, and instead the same local 
temperature values are used to compute Blottner and VHS 
viscosities. Second, in DSMC simulation of a gas mixture, 
each combination of species involved in a binary collision 
may be assigned a different reference diameter 

 
dref  and 

temperature exponent (ω ), which makes application of VHS 
procedures for a mixture not easily amenable to CFD 
calculations or analysis. Single species viscosity ratios are 
used in order to avoid consideration of differences associated 
with mixing rules, and the Wilke mixing rule is employed as 
a simplified means of relating VHS and Blottner transport 
coefficients for a five-species air mixture. Finally, due to the 
approximate nature of the VHS power law temperature 
dependence, VHS input parameters are generally only valid 
over a limited temperature range. The temperature range in 
the calculated flowfield is considerably wider than the 
appropriate range for a single set of VHS parameters, so a 
comparison between VHS and Blottner transport coefficients 
should be performed with an understanding that VHS 
coefficient values may not be accurate at all points within the 
simulation domain. 

 In order to quantify the variation in transport coefficient 
ratios among the different species, ratio values extracted 
along the stagnation streamline are presented in Fig. (1). The 
corresponding temperature variation is also shown in the 
figure. We find a maximum value within the highest 
temperature shock region for N, a drop in viscosity ratio 
values across the shock for all other species, and a relatively 
small range of ratio values for 2N  in comparison with the 
other species. For all species, very little variation in the 
viscosity ratio is found over the large temperature range 
(over 10,000 K) which characterizes the post-shock region; 
this trend seems to indicate that the relative validity of the 
Blottner and VHS models and input parameters may be 
comparable over this temperature range. For the mixture 
ratio, it is observed in Fig. (1) that values are greater than 
one outside a small region around the shock, with a 
maximum of 1.20 near the outer edge of the thermal 
boundary layer. 

 The strong dependence of the mixture Blottner/VHS 
transport coefficient ratio on nitrogen dissociation and 
recombination is illustrated in Fig. (2), which shows the 
variation in mixture ratio along with species mole fractions 
over the stagnation streamline. In this figure, the maximum 
ratio value is coincident with the location of highest N  
concentration, near the outer edge of the boundary layer. Due 
to comparatively low dissociation energy,   O2  is shown in 
Fig. (2) to almost completely dissociate a short distance 
downstream of the shock. As a result, the large transport 
coefficient ratio values for O (in addition to the large ratio 
for atomic nitrogen) may be assumed to contribute 
significantly to a post-shock increase in the mixture ratio. 
Based on general trends in Fig. (2), including mixture 
transport coefficient ratio values which are smaller than one 

near the shock and greater than one elsewhere along the 
stagnation streamline, we assume that the use of the VHS 
model in place of the Blottner model would result in a 
somewhat reduced shock thickness and a slightly thicker 
boundary layer. 

 
Fig. (1). Variation in transport coefficient ratios and temperature 
along stagnation streamline, RAMC-II test case at 61 km altitude, 
Medium = Air. 

 
Fig. (2). Mixture transport coefficient ratio and species mole 
fractions along stagnation streamline, RAMC-II test case at 61 km 
altitude, Medium = Air. 

 Due to the inherent difficulty in adjusting the constants in 
the Blottner model or VHS parameters for thermochemical 
nonequilibrium gas mixtures of air, the evaluation of 
transport coefficients based on state to state kinetic modeling 
is attractive. 

3.2. Parametric Study of Binary and Self Diffusion in N2 - 
N Gas Mixture: State Kinetic Approach 

 Having assessed the effects of experimental-based and 
empirical transport models, in this section we assess the 
importance of state specific transport coefficients for given flow 
conditions. The work of Kustova [1] lays the foundation for this 



178    The Open Plasma Physics Journal, 2014, Volume 7 Josyula et al. 

extension. Her formalism is recaptured, recast in a parametric 
form and then evaluated for a molecular/atomic nitrogen 
mixture with a focus on vibrational state specific coefficients. 

 Following Kustova [1] the diffusion coefficients - both 
binary and self - are expressed in terms of mass fractions of the 
relevant species. The system under consideration is a mixture of 
molecular nitrogen and atomic nitrogen. A state specific 
approach is adopted with the relevant molecular states being the 
vibrational states. Only a single atomic state is considered. The 
molecular mass fraction for a given molecular state is recast into 
a fractional vibrational population form and the diffusion 
coefficients simplified. The fractional population is displayed in 
Fig. (3) as a function of the vibrational states. The vibrational 
temperature,   Tv = −Δ / ln[n2 / n1] , ranges from 1500 to 3000 K 
with Δ  set to [ 0.3 11600×  K]. An artificially enhanced 
population in the high vibrational states is introduced (shown in 
Eq. (24) below) to simulate effects due to anharmonic pumping 
and biased recombination. 

 
Fig. (3). Fractional population distribution in vibrational energy 
states from 1500 K to 4000 K, Medium = N2 - N gas mixture. 

  

ni / nN 2 = exp[−0.3× i / ((Tv / 11600)× (1+ 0.0431× i))]
i = 0,1,2,3...48

 (24) 

 The original form of the self-diffusion coefficient in [1] 
given below (Eq. (25)) is cast in a functional form that 
permits parametric studies. 

   

DN2i ,N2i
=

CN

DN2

+
2(−1−CN +1/ CN2i

)

DNN2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
DNN2

mN
2 n2

CN2

2DN2

+
CN

DNN2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
ρ2

i = 0,1,2,3...  (25) 

 This form is achieved by expressing the atomic nitrogen 
mass fraction as   1/ f , the ratio of the binary, atomic 
nitrogen-molecular nitrogen diffusion coefficients 

   
DNN2

/ DN2
 as β  and the vibrational state concentrations, ξ , 

in terms of the fractional populations. The resulting equation, 

   
DN2i ,N2i

= DN2

(1+ f )2β[2 f 2(−1+ξ )+ξ(−2+ β )− f ξβ]
2(−1+ f ) f 2ξ[2+ (−1+ f )β]

 (26) 

asymptotically depends inversely on the fractional 
population. This is made obvious in Fig. (4) by plotting the 
product of the state concentration and the state-specific self 
diffusion coefficient. For this and the future comparisons, we 
have normalized the diffusion coefficients to the molecular 
nitrogen self-diffusion coefficient, 

   
DN2

.  Note that the 

asymptotic value is insensitive to vibrational temperature 
and population departures from Boltzmann form. 

 
Fig. (4). Self-diffusion coefficient from 1500 K to 4000 K, f=20, 
β =1, Medium = N2 - N gas mixture. 

   

DN2iN2k
= DN2N2

=

(
CN
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−
2(1+CN )
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)DNN2
mN

2 n2

(
CN2

2DN2

+
CN

DNN2

)ρ2

i ≠ k  (27) 

is also cast into the parametric representation with the result: 

   
DN2N2

= DN2

(1+ f )2(2+ 2 f − β )β
2 f 2[2+ (−1+ f )β]

 (28) 

 It is interesting to note that state specific binary diffusion 
coefficient is directly proportional to the molecular nitrogen 
binary diffusion coefficient and independent of the states of 
the collision partners, i and k. 

 In Fig. (5), we examine the variation of the binary state 
specific diffusion coefficient with f, the inverse of the atomic 
mass concentration for β =1. At small concentrations, less 
than 20% (f > 55), the coefficient approaches the molecular 
nitrogen binary diffusion coefficient, 

   
DN2

. This binary state 

specific diffusion coefficient is less sensitive to the relative 
values of the atomic and molecular diffusion coefficients,  β.  
We examine this dependence in Fig. (6) for β  ranging from 
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0.5 to 2 with f  assigned the value of 10 and note less than a 
20% variation. 

 
Fig. (5). Variation of binary diffusion coefficient with inverse of 
mass concentration, β =1, Medium = N2 - N gas mixture. 

 The state specific vibrational binary diffusion coefficient, 

  
DN2iN2k

 given in [1], 

 In Fig. (7), we examine the sensitivity of the state-
specific self-diffusion coefficient to the atomic to molecular 
ratio, β  for population distribution at 3000 K with f set to 
10. The dependence is weak over the entire range of β  from 
0.5 to 2.0, with asymptotic value decreasing as β  decreases 
and converging to the state specific binary value. Fixing β  
at 1 and the population distribution at the 3000 K value, we 
next examine the variation of the state specific self-diffusion 
coefficient with respect to atomic concentration, 1/ f. With  
f = 2, 5 and 10, the state specific self-diffusion coefficient 
decreases monotonically from values near 3 to those near 1, 
simultaneously approaching the value of the state specific 
binary diffusion coefficient, 

2 2N Ni k
D , shown earlier in  

Fig. (6). 

 CONCLUDING REMARKS 

 A numerical study is performed to assess the influence of 
thermochemical nonequilibrium on the transport coefficients 
used in Computational Fluid Dynamics (CFD) simulation of 
hypersonic flows and to introduce a much more rigorous 
approach to modeling of the nonequilibrium transport 
process than the current practice. A quantitative assessment 
is made of transport coefficients from simplified methods of 
Blottner curve fits and the Variable Hard Sphere (VHS) 
model for hypersonic external flowfield of a Mach 23 air 
flow past a sphere cone, the RAMC-II test case. A 
parametric study was conducted using a state specific 
approach to examine the roles of binary and self diffusion in 
an   N2 - N  gas mixture. 

 
Fig. (6). Variation of binary diffusion coefficient with ratio of 
atomic to molecular diffusion coefficient ( β ),   f = 10 , Medium = 
N2 - N gas mixture. 

 
Fig. (7). Variation of self diffusion coefficient in the vibrational 
energy states at 3000 K, Medium = N2 - N gas mixture. 

 Comparison of simplified transport coefficient models of 
Blottner curve fits and VHS model for a Mach 23 air flow 
past a body showed that use of VHS model would result in 
reduced shock thickness and a slightly thicker boundary 
layer. Large transport coefficient ratios between Blottner and 
VHS models for atomic oxygen and nitrogen contribute 
significantly to a post-shock increase in the Blottner/VHS 
ratio for a high temperature air mixture. The ratio of 
viscosity coefficients of the air mixture from the Blottner 
curve fits and VHS model has a relatively small variation for 
the large temperature range. However, significant differences 
in transport coefficients from both models are expected in 
mixtures with large oxygen concentration. It should be noted 
that variation in transport coefficient values associated with 
model selection is a well established fact, and the existence 
of the discrepancies discussed here is very much expected. 
The analysis shown in this work is not intended to 
demonstrate that such discrepancies exist, but instead to 
quantify the differences among both species-specific and 
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mixture transport coefficients for a representative hypersonic 
flow problem. This analysis shows the potential impact of 
different models for the temperature dependence of transport 
coefficients on these coefficients themselves, as well as on 
predicted flowfield characteristics. 

 A parametric study of assessing the role of binary and 
self diffusion in a 2N - N  gas mixture showed that self 
diffusion coefficients depend inversely on the population in 
the quantum energy states. It was found that the asymptotic 
value for the self diffusion coefficient is insensitive to the 
vibrational temperature as well as the population 
distributions, but this value is sensitive to the degree of 
dissociation. The state specific binary diffusion coefficient is 
directly proportional to molecular nitrogen binary diffusion 
coefficient and is independent of the states of the collision 
partners. For low atomic concentration the state specific 
binary diffusion coefficient approaches that of diatomic 
nitrogen. These findings have the potential to significantly 
impact the implementation and modeling of state-to-state 
transport coefficients in computational fluid dynamics flow 
solvers. 
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