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Abstract: Kinetic modelling of nonequilibrium flows is described as it applies to hypersonic phenomenology. A Monte 
Carlo method is described for the study of species separation on shock wave fronts; a Particle in Cell with Monte Carlo 
Collisions (PIC/MCC) technique is described for the simulation of dust in plasma flows; modelling of nonequilibrium 
radiation in shock heated gases; implementation of slip models for the description of separation zones occurring in shock-
boudary layer interactions. 
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1. INTRODUCTION 

 The study of high-speed reacting gas flows, as it arises in 
aerospace applications, involve the consideration of 
nonequilibrium effects. Current research on nonequilibrium 
modelling in Computational Fluid Dynamics (CFD) solvers 
has progressed substantially in including many 
nonequilibrium effects in the flow description. Still, there are 
flow conditions where the degree of nonequilibrium is such 
that the hydrodynamic description fails and kinetic methods 
are required for the correct description of the flowfield. In 
this cases, new methods must be used to solve the governing 
equations at the kinetic level. In this study we report on a 
number of situations where kinetic nonequilibrium effects 
have a large impact on the overall flowfield and we 
introduce the kinetic models used to tackle them. 
 In section 2, the problem of diffusion in shock wave 
fronts in analyzed. Here, large temperature and density 
gradients prevent the Navier-Stokes description from being 
accurate. A particle (i.e. Monte Carlo) method is devised to 
solve the relevant Boltzmann transport equations both for the 
bulk gas and for a trace species. It is shown, in particular, 
how the proposed method can successfully describe the 
transport of the seed species to any desired level of accuracy, 
thus overcoming a major limitation of standard Monte Carlo  
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methods for flow simulation (like, e.g. Direct Simulation 
Monte Carlo, DSMC). 
 In section 3, a Particle-in-Cell (PIC) technique is 
described for the simulation of dust grains inside a plasma. 
This is relevant for the study of dust grains effects in 
complex plasmas, but it is also interesting for aerospace 
applications in that it shows how charged particle kinetic 
effects affect the boundary layer of macroscopic objects 
flying through a partially ionised gas. 
 In section 4, a theoretical framework is presented for the 
simulation of the nonequilibrium radiation emitted by shock 
heated gas mixtures. While the gas flowfield is here 
described by hydrodynamic equations, with due account of 
thermal and chemical nonequilibrium effects, a detailed 
kinetic framework is developed for the description of the 
radiation field. This is required when comparing simulation 
results to detailed experimental spectral measurements. 
 Finally, in section 5 a approach is proposed for the 
description of separation zones in CFD simulations. The 
Immersed Boundary (IB) method has been shown to be a 
promising technique to include boundary conditions in CFD 
solvers without requiring a body-fitted mesh, thus providing a 
significant gain in flexibility and computational requirements. In 
separation zones, however, rarefied gas effects make their 
appearance and standard boundary conditions fail to describe 
the flow accurately. In this study we show that rarefied gas 
effects (velocity slip and temperature jump) can effectively be 
described in a IB framework. Predictions of the model are 
assessed by comparison to accurate DSMC simulations for a 
hypersonic ramp flow in Nitrogen. 



Particle Methods for Nonequilibrium Hypersonic and Plasma Flows The Open Plasma Physics Journal, 2014, Volume 7    89 

2. NEUTRAL SEPARATION IN SHOCK WAVES 

2.1. Monte Carlo Model 

 Results of this sections have been obtained by using a 
Monte Carlo (MC) method in a “two stage” calculation 
based on the method described in [1] and shortly reviewed 
here, and besides, a discussion of a test case is provided 
where separation effects along specific sections of a 2D 
shock produced by a blunt body are discussed for the first 
time. In a first stage the bulk flow field is established by 
solving the main component, so that, in a second stage, it is 
possible to handle both the components which are separately 
solved one after the other. 
 The computational module implementing the first stage 
solves the nonlinear transport equation 

   

∂ fb

∂t
+ v ⋅

∂ fb

∂r
= ∫dΩd 3v1gσ b g,ϑ( ) ′fb ′fM ′v1( )− fb fM v1( )( ).  (1) 

 Here 
  
σ b g,ϑ( )  is the differential cross section (where g  

is the relative speed), and  fb  the translational distribution of 

the bulk, whereas  fM  is the corresponding local equilibrium 
distribution based on local macroscopic variables while 

   
fM r,v( )  is determined from the simulation making the 

whole process nonlinear. 

 The Test Particle Monte Carlo (TPMC) method is 
employed to solve the transport equation in the nonlinear 
version explained in [2], in which a “virtual” target particle 
is sampled from a local equilibrium distribution to treat the 
particle collisions. Here the particles are handled and 
storaged in a way that is more similar to (BKG/MC) [3-5] 
than it is to Direct Simulation Monte Carlo (DSMC). For 
simplicity a fixed number of particles is used, a particle 
which leaves the simulation domain is injected back from the 
inlet. During a time step tΔ , particles are moved according 
to their velocity and solid obstacles (aerodynamic control 
surfaces, thermal protection) are included in the model by 
marking as “filled” the corresponding mesh elements [6,7]. 
Each particle in the course of the nonlinear process 
contributes to the local average of a generic quantity a: 

   

a
c

= p
∑Fc rp( )ap

p
∑Fc rp( ) ,  (2) 

where c is the cell index, p is the particle index, and 
 
Fc r( )  is 

a function that characterizes the c-th cell. This applies to the 
average number density, local temperature, etc. Every 
particle interacts with a virtual target particle by means of 
binary collisions, and, if the local number density of the 
target species at the time t is denoted by 

   
n r,t( ) , the collision 

probability is 

   
Pvv1

= 1− exp −gσ g( )n r,t( )Δt( ).  (3) 

v, v1, and 
   
g = r − r1  are the particle velocity, the virtual 

particle velocity, and the relative speed, respectively, while 
σ  is the scattering cross section. 

    
fM r,v1,t( )  is the distribution which describes the 

stochastic variable v, v1i, the i-th Cartesian component of   v1 , 
can be calculated as follows. First a random number ξ  is 

generated from an ensemble with a 
 
exp −ξ( )  distribution, 

which is in turn produced by means of the von Neumann 
rejection method. Secondly the averages iv , and 

   
v − v( )2

 are computed in agreement with Eq. (2). 

Finally 1iv  is obtained as 

   
v1i = 2

3
ξ v − v( )2

+ vi .  (4) 

 Let η  be a random number uniformly distributed 
between 0 and 1, then the collision occurs if 

   
Pvv1

>η . After 

the collision, a new relative velocity  ′g  is chosen at random 
by sampling it from a suitable distribution, and the particle 
velocity  ′v  is calculated as 

   
′v =

mv + m1v1

m+ m1

+
m1

m+ m1

′g .  (5) 

 If the momentum transfer cross section is used, the 
isotropic distribution is the appropriate one. 

 The energy and momentum conservation is enforced by 
performing a new sampling, but the memory of the results of 
the previous sampling is kept, as the velocity of each particle 
is scaled to find an agreement with these results. For this 
purpose, the averages 

 
v , 

  
v2  and the same quantities 

after the new sampling, i.e. 
 

′v  and 
  

′v 2 , are calculated 
cell by cell, and finally the particle velocities are computed 
again, according to the formula 

   

v ← v − ′v( ) v2 − a2

′v 2 − ′a 2
+ v .  (6) 

 The developed model does not need a dynamic list of 
particles, as does the DSMC model, because each particle 
communicates with other particles only indirectly by means 
of the cell. 
 The cycle composed by the procedures of the first stage 
is iterated a sufficient number of times to reach the steady 
state, at which the quantities that characterize the main 
species and that define the flow field are calculated. These 
quantities, i.e. temperature, space resolved number density, 
and velocity components, are written in some output files, 
which are read from the code that implements the second  
 



90    The Open Plasma Physics Journal, 2014, Volume 7 Bruno et al. 

stage and calculates the separation effects. The transport 
equation proposed is not strictly the Boltzmann equation, but 
a nonlinear equation obtained generalizing the linear 
transport method and requires the local energy conservation 
to be enforced. The approach proposed presents elements of 
novelty. As such, its accuracy is to be verified: such check 
has been performed in [1] by comparing the flow field 
calculated with this approach for a transition regime flow on 
a cylinder with a finite element solution of the Boltzmann 
equation, obtaining very close results. 

 In the second stage, TPMC method has been used to 
solve the following linear transport equation for i-th 
component: 

   

∂ fi

∂t
+ v ⋅

∂ fi

∂r
= ∫dΩd 3v1gσ i g,ϑ( ) ′fi ′fM ′v1( )− fi fM v1( )( ),  (7) 

which has been obtained by setting the target distribution 

 fM  to the solution of of Eq. (1). Moreover  fi  is the 
translational distribution of the i-th species, while iσ  is the 
differential cross section for the elastic scattering between 
the particles of the i-th component and the main species 
particles. 

 In this way the final quantities of both the main species 
and the impurity are determined by mean of a linear test 
particle method. If 

  
T r( )  and 

  
n r( )  are the local temperature 

and number density of the target species, the collision 
frequency, preliminarily estimated, is 

   
vi r( ) = C ⋅n r( )σ i kT r( )( ) kT r( )

πµi

,  (8) 

where 
  
µi = mima / mi + ma( )  is the reduced mass. In the rigid 

sphere model, the temperature corrected average cross 
section, 

  
σ kT r( )( ) , is a constant. C is a proportionality 

constant, whose global value, which can be selected 
following the rule described in [1], is usually ~10. The 
random free time between two collisions is calculated by the 
usual relation 

   
tc = − lnη

vi r( ) ,  (9) 

where the random number η  is uniformly distributed 
between 0  and 1 . Excess collisions are removed using the 
null collision method [1]. We deal with the boundary 
conditions, with the particle motion for the stochastic time ct , 
and finally with the sampling of a main component atom as 
candidate partner for the next collision as we do in the first 
stage. A collision is effective only if the collision probability 

   
Pvv1

= n r( )σ i g( )g / vi r( )  is greater than a random fraction 

sampled from a uniform distribution. In this case Eq. (5) is 
used to calculate the post collision velocity. 
 In the second stage the grid is set up only to treat 
obstacles and to store values of the quantities calculated in 
the first stage as well as their functions, so that the 

information is not propagated along the grid and the stage 
itself is not affected by numerical diffusion. 

2.2. Neutral Separation 

 The method developed has been applied to a seeded 
transonic gas flow where He is the main component and Ar 
is the seed. As the mass ratio of the components is rather 
high   (mAr / mHe ~ 10),  the separation phenomena are distinct. 
As regards the choice of cross sections, for technical 
applications it is better to use those calculated by means of 
Variable Soft Sphere (VSS) model [8] or quantum 
calculations. Nevertheless, our goal is to compare the test 
case results with next results obtained by other models, so 
we have calculated the hydrodynamic quantities by using the 
rigid sphere model. For He/He and He/Ar scattering, we 
have employed the momentum transfer total cross sections 
reported in [9]. Different cross sections are used to study an 
expanding atomic beam, and the results obtained by a 
preliminary version of the code are presented in [1]. 

 We have considered a flow impinging on a cylindrical 
obstacle with a surface which is an adiabatic diffuser. In the 
unperturbed region far from the obstacle the gas flows with a 
Mach number and a Knudsen number equal respectively to 
= 3M  and = / = 0.5Kn Rλ∞ ∞ . Equating the physical and 

numerical particle fluxes, we obtain the coefficient w  by the 
formula: 

  
w = n0 M

γ kT0 / m
Φ p

,  (10) 

which is valid in the case of supersonic injection with 
3M ≥ . Here  γ = 5 / 3  is the specific heat ratio and 

 
Φ p  is 

the flux of injected numerical particles, which is calculated 
by a time average during the simulation. In both stages the 
particles are  2×104 . The grid of the simulation box consists 
of 200 150×  cells and is uniform. In the first stage we need 
4000  time steps before the steady state is reached. From this 
moment on, for the next 4000  time step, the dynamic 
quantities are sampled 

2.3. Results 

 The results obtained for the test case are shown in the 
following figures. 
 Fig. (1) is the result for the main component (He) 
calculated by the nonlinear test particle method. In particular 
Fig. (1a) is the number density, Fig. (1b) is the temperature, 
Fig. (1c) is the x component of the velocity and Fig. (1d) is 
the Mach number. These results which have the function to 
establish a bulk flow field have been calculated by assuming 
rigid sphere scattering. The results for the density of He are 
in good agreement with those obtained by deterministic 
numerical solution of the Boltzmann equation for an atomic 
gas in the same conditions and presented in [10]. The shock 
structure is clearly visible and it is better outlined by the side 
plots which reports the corresponding quantites along the 
white horizontal and vertical lines shown in the color plot. 
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 The next figures show results related to the impurity 
component which is calculated by the linear test particle. In 
particular Fig. (2a) report the ratio of the impurity particle 
density with respect to the bulk one, whereas Fig. (2b) report 
the impurity particle density. 

 The distributions represented in Figs. (1, 2) are in 
agreement with expected theoretical distribution [11]. He 
atoms, which are less massive than Ar atoms, tend to 
concentrate entering the shock front, while are diluted just 
after the shock. In the wake there is another separation 
region, in fact the flow is enriched in He. 

 
Fig. (1). Bulk flow field results calculated by the nonlinear TPMC method and by rigid sphere scattering. (a): number density.  
(b): temperature. (c): x component of the velocity. (d): Mach number. 

 
Fig. (2). Impurity component results calculated by the linear TPMC method and by rigid sphere scattering. (a): ratio of the impurity particle 
density with respect to the bulk one. (b): impurity particle density. 
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 The computational cost is about 14  minutes on a 3.6 
GHz Intel Xeon processor, most of the time spent after the 
steady state is reached, in order to collect a satisfactory 
statistics and to achieve a desired level of variance. 

2.4. Test Case Conclusion 

 In this section we have shown how the problem of 
component separation in transitional flows can be 
conveniently handled using a combination of Monte Carlo 
methods. In particular, the use of TPMC methods for the 
calculation of the detailed components in the framework of 
the previously established flow field is very efficient since 
such methods can provide an exact solution of the linear 
transport equation, thereby eliminating any numerical 
diffusion. In this way the separation effects can be studied 
even under conditions when they are relatively small. 
 Results for a 2D detached shock around a cylindrical 
body show an enrichment of the heavier component just after 
the shock, coherently with theoretical expectations based on 
kinetic theory [11]. Future extensions of the approach used 
in this paper will allow the determination of separation 
effects with molecular and ionic species taking into account 
the internal energy for the first case and the space charge 
effects for the second case. 

3. ABSORBING DUST IN STATIONARY PLASMA 

3.1. Introduction 

 The interaction of an object with the sorrounding plasma 
is still an open issue in plasma physics [12-15]. In particular, 
the particle charging and shielding is an unsolved problem in 
complex plasmas. The most used approach is the Orbital 
Motion Limited (OML) theory [16,17]. It claims that: (a) the 
particle surface potential is independent from the particle 
size and gas pressure; (b) the dust charge dQ  is linearly 
dependent from the dust radius dr ; (c) the dust charge is 
independent from gas pressures P. The most accepted 
electric potential distribution around the particle is the 
Debye-Hückel (DH) form: 

  
ϕDH (r) =ϕd

rd

r
e−(r−rd )/λ  (11) 

where   λ = λDeλDi / λDe
−2 + λDi

−2  is the linearized Debye 
length. 
 In this work, we study an isolated absorbing spherical 
particle immersed in stationary, isotropic plasma with the 
effect of ion-neutral collisions for different particle radius 
and gas pressures. 

3.2. Numerical Model 

 We have implemented a one-dimensional Particle-in-Cell 
(PIC) code [18-23]. Electrons and ions are tracked in the 
radial domain (motion in a central field of forces) using the 
electric field generating from their dynamics. The radial 
domain simulated ( 40λ≈ ) goes from the grain surface to the 
unperturbed neutral plasma. The operative conditions used 
are those typical of Argon ( = 39.95 1836µ × ) gas discharge: 

plasma density 
  
np = 6 ⋅1015 m−3 ; electron/ion temperature 

  Te = 1 eV  and   Ti = 0.2 eV   (τ = 5);  grain radius   rd = 0.8− 200 µm,  

corresponding to   ρd = rd / λ = 0.02−5;  gas pressure 

  P = 0−1000 Pa,  corresponding to a Knudsen number 

  Kn = 5⋅10−3 − ∞; gas temperature 
  
Tg = 1000 K . The 

equations of motion are integrated through the leapfrog 
technique [19], while the particles plasma charge is 
deposited on the grid points taking into account the spherical 
metrics [24]. Poisson equation with the following boundary 
conditions: 

  

dϕ
dr

|rd = −
Qd

4πε0rd
2  (12) 

  
ϕ |r∞ = 0  (13) 

is solved by using the Thomas tridiagonal algorithm [25]. 
Ion-atom momentum MT and charge CT transfers collisions 
are processed through a detailed Test-Particle Monte Carlo 
technique [26]. 

3.3. Results and Discussion 

3.3.1. Ionic Flux, Dust Charge and Surface Potential 

 Fig. (3) shows the ion flux   ji = Ii / q  collected on the 
particle surface as a function of the gas pressure for different 
particle radius. Ion-neutral collisions start to affect the ion 
dynamics already at few Pa. For larger pressure, more ions 
reach the dust surface before the ion current collected 
dramatically decreases. This behavior can be explained as 
follows: ion-neutral collisions induce first a destruction of 
ion orbital motion (producing in this way an increase of the 
ion current collected by the particle) and then, when the 
number of collisions become very large (collision-dominated 
regime), they lead to a drastic reduction of ion flux collected 
 

 
Fig. (3). Ion collection flux to the particle as a function of the gas 
pressure for different particle size. 
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on the grain surface. For   ρd < 5  (the particle radius is 
smaller than the screening length), ion-neutral collisions 
enhance the current collected; this is the sign of orbital 
motion destruction. On the contrary, for   ρd > 5 , the ion flux 
collected on the dust surface becomes a monotonic 
decreasing function of the gas pressure (thin sheath limit). 

 Fig. (4a) shows the surface potential dϕ  as a function of 
gas pressure for different particle size. The same behaviour 
of the ion current has been recovered: the surface potential 
reaches a peak, which is absent for large particles. Fig. (4b) 
shows the surface dust potential as a function of the dust 
radius for different collisional regimes. The dependence of 
surface potential from the particle size becomes more strong 
at high pressure (OML theory predicts no-dependence at all). 
In particular, for < 10 P Pa  (weak collisional regime) the 
size-dependence is evident only for small dust ( < 0.5dρ ), 
while for intermediate collisional regimes the surface 
potential becomes strongly dependent from the particle size. 
This result is also a sign of the orbital motion destruction 
around the dust. Fig. (4c, d) show the dependance of dust 
particle charge from gas pressure at different particle size 
and from dust radius at different gas pressure, respectively. 
As the surface potential, the particle charge follows the ion 
flux behaviour too; in the transitional collision regime, the 
ion flow increase with the pressure results in a particle 
charge reduction, while the ion flow decrease for high 
collisional regime results in a particle charge increase. 
3.3.2. Ionic flux, Dust Charge and Surface Potential 

 Fig. (5a) shows the radial profiles of electric potential 
around a particle of radius   ρd = 1  at three different 
pressures. It is evident that: 

1. The far asymptote power law decay has been 
confirmed:   ϕ ∝ r−2  in the collisionless case (dashed 

violet line), while   ϕ ∝ r−1  in the strong collisional 
case (dashed light blue line); 

2. The electric potential can be well fitted with a 
Yukawa form (11) with an effective screening length 

 
λeff  depending on the dust radius: for   ρd << 1, 

 
λeff  

is close to the ion Debye radius  λDi , while for 

  ρd >> 1 , effλ  increases reaching several  λDe . 

 In Fig. (5b) the radial profile of the electric potential for 
= 100 P Pa  at different particle radius have been reported. 

For small particles ( < 0.4dρ ), at the intermediate collisional 
regime ( 0.1Kn ≈ ), the screening length is reduced due the 
reduction of the grain charge that is induced by an increased 
ion flux to the dust surface. While for large particles the 
screening length monotonically increases with P. 
 In Fig. (5c) radial profiles of electron (red lines) and ion 
(black lines) density for two different particle size (  ρd = 0.5  

and   ρd = 5 ) at = 100 P Pa  have been reported. The most  
 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. (4). Particle potential (a) as a function of the gas pressure for 
different particle size (dashed line is OML theory) and (b) as a function 
of particle radius for different gas pressure. Particle charge number (c) 
as a function of the gas pressure for different particle size and (d) as a 
function of particle radius for different gas pressure. 
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(a) 

 
(b) 

 
(c) 

 
Fig. (5). Electric potential distribution (a) for a particle radius 

  ρd = 1  at different gas pressure and (b) for a gas pressure 

  P = 100 Pa  at particle radius. (c) Radial profiles of electron (red 
lines) and ion (black lines) density for two different particle size 

  ρd = 0.5  and   ρd = 5 , both at   P = 100 Pa . The dashed lines 
represent the Boltzmann relation. 

evident feature is the rapidly increasing of ion density close 
to the particle due to the spherical geometry; the majority of 
ions orbits around the particle with a significant angular 
momentum and does not strike the dust. Differently from the 
planar sheath behaviour (monotonic decreasing density), 
where all the ions entering the sheath are continuously 
accelerated until reaching the surface. As a confirmation in 
the behavior of ion density for large particle radius; the ion 
rise decreases with the increasing of the particle size. As 
regards the electrons behavior, the discrepancy from the 
Boltzmann representation (dashed red lines) reaches a factor 
up to 5  close to the particle. Finally, as already shown in 
Fig. (5b), the sheath width grows from Diλ  to a size of order 
of several  λDe  with   ρd .  

  

4. ADVANCED MODELS IN SHOCK-WAVES 

 The first investigation in the Laboratory of Radiative Gas 
Dynamics dedicated to the calculation of nonequilibrium 
spectral intensity of radiation emitted by the shock-heated 
gases was performed and presented in 1997 [27]. Since then 
our group is involved in this area of scientific researches  
[28-30]. Two parts of activities are distinguished in this area. 
The first one is connected with the development and 
investigation of properties of hybrid radiative-collisional 
model. In our opinion hybrid and full radiative-collisional 
models differ in the following way. In the full radiative-
collisional models all electronic excited states of particles 
presented in the gas mixture and processes relevant for the 
transitions among these states are taken into account. The 
problem with this approach is that there is limited amount of 
reliable data in the temperature region of interest regarding 
the rates (or cross sections) of processes accounted for in the 
model (due to the fact that there are a lot of processes 
generally because of the number of states included in the full 
model). Another problem is the extreme computational cost 
of these models [31]. Consequence of it is inability of 
inclusion of them into high fidelity Computational Fluid 
Dynamics (CFD) codes. However, in the hybrid radiative-
collisonal models not all but only those of electronic excited 
states of particles (and processes responsible for transitions 
among them) are accounted for that are important from the 
point of view of radiation. It should significantly reduce cost 
of computations and uncertainty in the obtained results. The 
hybrid radiative-collisional model developed in our group 
consists of the following parts: 
• Euler system of equations for the determination of 

parameters of the flow in the relaxation zone behind 
the shock front. The equation of energy is modified in 
order to take into account the fact that the considered 
gas mixture is multicomponent and chemically 
reacting: 

 
  

d
dx

(ρu) = 0; d
dx

( p + ρu2 ) = 0; d
dx

(h+ u2

2
) = 0  (14) 

 
  
p =

ρR0T
MΣ

; MΣ =
i=1

Ns

∑µixi; µi = mi N A  (15) 
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h = (T −T 0 )(
5
2
+

i=1

N M

∑xi )+
i=1

N M

∑xi
j=1

NV ,i

∑gi, j

θ i, j

exp(θ i, j / TV ,i, j )−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (16) 

 Here   p,ρ,u,T  - pressure, density, velocity and 
translational temperature;   xi ,mi  - molar fraction and 
mass of i-th chemical component (atom or molecule); 

  
TV ,i, j ,θ i, j ,gi, j  - vibrational temperature, characteristic 
vibrational temperature and degeneracy of j-th 
vibrational mode of i -th molecule,  Ns  - number of 

chemically reacting components;  N M  - number of 

diatomic and triatomic molecules; 
  
NV ,i  - number of 

vibrational modes of i-th molecule. 
• The system of chemical kinetic equations: 

 

   

dXk

dx
=

j=1

Nr

∑ (bkj − akj )k j
f

i=1

Ns

∏Xi

aij + (akj − bkj )k j
r

i=1

Ns

∏Xi

bij
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

k = 1,…, Ns

 (17) 

 Here kX  - molar volume concentration, ,kj kja b  - 
stoichiometric coefficients of the j-th forward and 
backward reactions for the k-th chemical component, 
,f r

j jk k  - forward and backward rate coefficient of j-th 
reaction. The system of chemical equations can be 
written in the following form: 

 

  
i=1

Ns

∑aij Xi⎡⎣ ⎤⎦

k j
f

k j
r i=1

Ns

∑bij Xi⎡⎣ ⎤⎦  (18) 

 Here [ ]iX  - symbol that correspond to the i-th 
chemical component, rN  - total number of reactions. 
It is worth noticing that for the chosen electronic 
excited states of molecules the relevant set of 
chemical equations formulated and kinetic equations 
are solved in order to determine populations of these 
states. 

• Equations for the determination of temperature of 
vibrational modes of molecules: 

 
  

dem

dt
= QVT

m +QCV
m  (19) 

 The relaxation times are usually estimated using the 
Millikan-White approximations combined with Park 
correction. The mutual influence of chemical kinetic 
and vibrational relaxation is taken into account in the 
model (CVDV interaction). 

• Equation for the determination of temperature of 
electron gas: 

 
  

d
dx

3
2

Te Xeu
⎛
⎝⎜

⎞
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+Te Xe

du
dx

= Qei +Qea +Qai +Qion +Qev  (20) 

 The processes responsible for the heating/cooling of 
the electron gas are as follows: elastic electron-ion 
and electron-atom collisions; associative ionization/ 
dissociative recombination; ionization; interaction of 
electron gas and vibrational modes of molecules. 

• The just-overlapping line model is used for the 
spectral intensity of radiation calculations. The 
equations of the model are as follows: 
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 (21) 

 The most important value here is  S ′V ′′V  which is the 
strength of vibronic transition. It is connected with 
the square of moment of vibronic transition in 
accordance with the following relation: 

 
  
S ′V ′′V = (2−δ 0, ′Λ + ′′Λ )(2S +1) R ′V ′′V

2
 (22) 

 
  
R ′V ′′V

2
= 3h

64π 4a0
2e2

2−δ 0, ′Λ

2−δ 0, ′Λ + ′′Λ

1
ω ′V ′′V

3 ⋅ A ′V ′′V  (23) 

 Here  A ′V ′′V  is the Einstein coefficient of vibronic 

transition. One can obtain the  A ′V ′′V  as a result of 
solution of quantum mechanical problem of the 
calculation of vibronic wave functions. 

 The full description of the model can be found in [28-30]. 
It is worth noting that what is presented here is actually a 
framework. Using it different gas mixtures and chemical 
kinetics models can be studied. Using the method it is 
possible to study nonequilibrium and equilibrium spectral 
intensities of radiation emitted by shock-heated gases. The 
second part of activity in our group is dedicated to the 
systematic processing of experimental data obtained on 
different shock tube facilities all around the world by means 
of the model developed in our group. Up to the moment we 
have performed the analysis of results obtained on the shock 
tubes of NASA Ames Research Center (EAST facility) 
[32,33], Chofu Aerospace Center [34], Queensland 
University (X2 facility) [35], Institute of Mechanics MSU 
[36]. By means of our model we have studied spectral 
intensity of radiation of shock-heated  N2-O2 ,  CO2-N2 , 

 CH4-N2  gas mixtures. Examples of comparison of num-
erical and experimental results are presented in Figs. (6, 7). 

5. SIMULATION OF HYPERSONIC RAREFIED FLOWS 
WITH THE IMMERSED-BOUNDARY METHOD 

5.1. Introduction 

 Computational Fluid Dynamics (CFD) studies of real-
world industrial applications has typically to deal with 
complex geometries. A very time-consuming step in these 
cases is represented by the generation of the body-fitted 
computational mesh. A promising alternative is the 
Immersed Boundary (IB) method. In this method a Cartesian 
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grid is employed and the effect of the solid boundary is 
simulated by suitable boundary conditions. The method has 
been first applied to incompressible flows [37-41] and later 
extended to preconditioned compressible Navier-Stokes 
(NS) equations [42]. Local mesh refinement techniques have 
been implemented in order to resolve the strong gradients 
that typically appear in boundary layers and shock waves 
[43,44]. 

 
Fig. (6). Nonequilibrium spectral emissivity of the relaxation zone 
behind the shock wave initiated in   80%N2 − 20%O2  gas mixtures 

at   P = 1 Torr,Vsh = 5.56 km / s.  

 

Fig. (7). Nonequilibrium spectral emissivity of the relaxation zone 
behind the shock wave initiated in   30%N2 − 70%CO2  gas mixtures 

at   P = 0.3 Torr,Vsh = 6.76 km / s.  

 In this work, the IB method is extended to the solution of 
flows with rarefaction effects and is validated against DSMC 
simulations of a shock wave-boundary layer interaction. 

5.2. Immersed-Boundary Navier-Stokes (IBNS) Equation 
Solver 

 The preconditioned Navier-Stokes (NS) equations for a 
steady laminar flow of a perfect gas are solved [43]. The Prandtl 
number is equal to 0.71 and a temperature exponent for the 
viscosity coefficient equal to 0.75 has been employed. 
 A pseudo-time derivative is added to the NS equations in 
order to use a time marching approach to compute the steady-
state solution. The preconditioning matrix proposed in [45] is 
used to pre-multiply such a pseudo-time derivative to enhance 
the efficiency of the solution at all values of the Mach number. 
The equations are discretized by an implicit Euler scheme in the 
pseudo-time. The space discretization is based on a cell-centred 
finite volume approach. The convective terms are discretized 
using a second-order-accurate upwind flux-difference-splitting 
scheme. The viscous terms are discretized by second-order-
accurate centred differences. The resulting discrete system is 
solved direction-by-direction using a BiCGStab [46] approach, 
the boundary conditions being treated explicitly (see [43] for 
details). 
 An efficient local grid refinement technique is employed 
for clustering cells near the immersed boundary and at other 
high-flow-gradient regions. For each face, the contributions 
of the neighbor cells are collected to build the corresponding 
convective and diffusive operators for the cell, the maximum 
number of neighbors being limited to two for the present 
two-dimensional computations [43]. 
 The IB technique used in this work is based on that 
proposed in [39,40]. In a preliminary step, the geometry 
under consideration, which is described by a closed polygon 
in two dimensions (a closed surface in three dimensions), is 
overlapped onto a Cartesian grid. Using the ray tracing 
technique based on the geometrical algorithms reported in 
[47], the computational cells occupied entirely by the flow 
are tagged as fluid cells; those whose centres lie within the 
immersed body are tagged as solid cells. Furthermore, the 
fluid cells neighboring solid ones are tagged as interface 
fluid cells, and the solid cells neighboring fluid ones are 
tagged as interface solid cells. Interface cells are used to 
enforce the boundary conditions between the solid body and 
the fluid. 
 In order to resolve strong gradients the computational 
mesh can be locally refined by an automated algorithm up to 
a user-specified resolution [48]. Note that the mesh 
refinement does not need to be isotropic. A parallel 
implementation has been obtained via domain decomposition 
and coded with the MPI protocol and computational load 
balancing is achieved by employing the METIS software 
[49]. 
 Boundary conditions at solid surfaces are obtained by 
imposing flow velocity and temperature at the solid surface 
and then using a linear interpolation to calculate flow 
variables in the interface cells [43]. 
 First-order slip velocity conditions [50] are employed. 

5.3. DSMC Method 

 IBNS results have been compared to DSMC simulations. 
The latter use a standard DSMC implementation [51]. In the 
present case, a model with continuous internal energy is 
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used. Energy in collision is distributed according to the 
Larsen-Borgnakke scheme with unitary collision relaxation 
number in order to simulate the constant- γ  behavior. The 
code implements a two-dimensional geometry with a bulti-
block, stretched grid approach. Parallel computations, based 
on a domain decomposition approach and coded with MPI 
standard have been performed for the hypersonic ramp flow 
on a 16-cpu Linux cluster. 

5.4. Slip Model Validation 

 As a first step, the slip flow model has been validated in a 
simple configuration. The gas is a Hard Sphere gas with the 
following properties: 

m=28.9641 amu 

=1.4γ  

6= 5.6853 10  
80
T Pa sη −⋅ ⋅

 
= 0.71Pr  

 The domain is a two-dimensional channel, 34 10  m−⋅  
wide and periodic in the other direction. The walls are 
perfectly diffusing with wall temperature set to 150 K . The 
average density in the channel is 21 3= 9.13 10  n m−⋅ . The gas 
is subject to a volume acceleration in the longitudinal 
direction equal to 6 2= 5 10  /xa m s⋅ . 

 The Knudsen number, based on the average density and 
the channel half-length, is = 0.05Kn . The local Knudsen 
number, instead, based on the local density and on the 
velocity gradient can reach the value 0.9 near the wall. The 
flow is highly rarefied, in fact. 
 For the NS simulations, uniform grids with 32 and 64 
mesh points in the normal direction to the boundary provide 
the same results within plotting accuracy. Computations 
have been performed in a two-dimensional domain with 
periodic boundary-conditions in the streamwise direction, 
slip-velocity boundary conditions at the bottom wall, and 
symmetry conditions at the top boundary corresponding to 
mid-channel height. 

 DSMC simulations have been performed on a simulation 
domain 38 10  m−⋅  long with periodic boundary conditions in 
the streamwise direction and 32 10  m−⋅  wide with a diffuse 
wall at = 0y  and symmetry condition at the upper limit. 
The simulation space has been discretized in 256x64 square 
cells   3.125⋅10−5 m  in length. The time step is 9= 5 10  dt s−⋅  
and the number of simulated particles is about 53.25 10⋅ . 
Time averaging has been performed in order to decrease the 
statistical error. 
 The velocity profiles obtained by DSMC and IBNS with 
and without slip are reported in Fig. (8). In this plot, the 
position in the channel is divided by the channel half-length 
and the flow speed is divided by the maximum value at the 
center of the channel. The first-order slip model therefore 
allows to accurately reproduce DSMC results in this case 
even in conditions of strong rarefaction. 

 
Fig. (8). Channel flow: velocity profiles. 

5.5. Hypersonic Ramp Flow 

 The IBNS method has then been applied to the study of 
shock wave-boundary layer interaction as it appears in the 
supersonic flow over a wedge [52]. This conFiguration, 
representative of flows past deflection flaps, also features 
separation and re-attachment effects. Geometry and flow 
conditions are those studied in [52], the wedge angle being 
35 °C. The gas is Nitrogen. Due to the low temperatures 
involved, only rotational degrees of freedom are considered 
so the specific heat ratio γ  is 14; Prandtl number is set to 
0.71 and the viscosity coefficient is assumed to have a 
temperature exponent of 0.75. 

 Free-stream conditions are:   ρ∞ = 1.401×10−4 kg / m3 , 

  V∞ = 1521 m / s ,   T∞ = 9.06 K .  The corresponding free-
stream Mach and Reynolds number are 24.8 and 12,020, 
respectively. The wall is perfectly diffusing with wall 
temperature equal to   403.2 K .  

 2D geometry is studied, the computational mesh being 
locally refined at the leading edge of the plate and in the 
recirculation region. A total of 80,000 cells have been used, 
the width of the smallest cell along the wall being 0.02 mm . 
Steady-state calculations have been performed on a 16-core 
Linux cluster (8-core Intel Xeon @2.80Ghz processors) and 
about 20 minutes wall-clock time are required to obtain the 
solution (including the grid generation process). 

 DSMC simulations used 16 cpus on a Linux cluster. The 
mesh is made of 5 blocks with 1.7 million cells. The 
timestep is 8= 10  dt s−  and the number of simulated particles 
is 22 millions. 
 Fig. (9) shows the pressure and skin friction coefficients 
as obtained by DSMC and by IBNS method with slip 
conditions. Moss's results [52] are also reported for 
comparison. The IBNS results have been smoothed to avoid 
the typical small oscillations of the data at wall due to the 
linear reconstruction near the boundary. Concerning the 
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DSMC results, a small residual statistical scatter is still 
visible after the time averaging procedure. 
 At the leading edge, the strong velocity gradient that 
induces nonlinear transport terms in the stress tensor is the 
likely cause of discrepancy between the particle methods on 
one side and the Navier-Stokes equation solver on the other. 
 Apart from this, the results compare favorably. A better 
agreement is found when using the slip conditions than when 
the standard no-slip conditions are considered (not shown in 
the figures). The skin friction plot shows that the separation 
zone is overestimated by the IBNS method. As a result, the 
flow velocity following re-attachment is underestimated. 
One possible reason for the discrepancy might be the use of 
slip coefficients for the Hard Sphere gas. Although, on 
general grounds, first-order slip coefficients are considered 
insensitive to the gas model [50], in the present case the 
position and the extent of the separation zone are found to be 
very sensitive to the slip coefficients. Further investigations 
are in progress in order to clarify this point. 

 Figs. (10, 11) provide the non-dimensional density 
contours,  ρ / ρ∞ , obtained by the IBNS and DSMC 
methods, respectively. The peak value of density is found 
about in the same region and is equal to 12.4 for the IBNS 

approach and to 14.3 for the DSMC, whereas the value 
reported in [52] is 14.8. Finally, Figs. (12, 13) report the 
streamlines (superposed to the density contours) obtained by 
the IBNS and DSMC methods, respectively. The agreement 
is satisfactory both qualitatively and quantitatively apart 
from the small discrepancy in the separation zone already 
discussed. 

5.6. Conclusion 

 The results shown validate the Immersed Boundary 
method as an efficient approach for CFD studies of 
hypersonic rarefied gas flows. First-order slip-velocity 
boundary conditions have been tested that allow to account 
for rarefied gas effects. Automated, adaptive mesh 
refinement algorithms overcome the limits inherent in 
Cartesian grid approaches and a parallel implementation 
allows to tackle very demanding flow configurations. 
 Comparison with the results obtained from DSMC 
simulations is satisfactory. Discrepancies on the extension of 
the separation bubble call for further investigations. 

 CONCLUSION 

 A number of studies are reported that show the 
importance of kinetic simulation tools, in particular Monte 

 
Fig. (9). Hypersonic ramp flow: pressure coefficient (left); skin-friction coefficient (right). 

 

Fig. (10). Hypersonic ramp flow; Navier-Stokes equations: density contours ( ρ / ρ∞ ;  Δ = 1 ). 
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Carlo methods, for the description of nonequilibrium effects 
in hypersonic flows. Mass diffusion in steep shock wave 
fronts can therefore be analysed, which is not possible in the 
frame of a Navier-Stokes description of the fluid mixture. 
Plasma kinetic effects, arising in the interaction of 
macroscopic objects within a plasma environment, have been 
studied with a PIC technique. Consideration of thermal 
nonequilibrium effects also enters the modelling of 
nonequilibrium radiation from shock heated gas and a kinetic 
level collisional-radiative model has been presented that is 
Finally, gas rarefaction effects have been studied with a 
DSMC simulation tool and the results used to build a IB 
method for CFD solvers that takes these effects correctly 
into account. In addition, these results demonstrate that 
based on the results of such accurate kinetic models, 
significant progress has been achieved in devising 
nonequilibrium models for CFD solvers. 
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