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Abstract:

Background:

The infection pathway of virus in living cell is of interest from the viewpoint of the physics of diffusion.

Objective:

Here, recent developments about a diffusion theory for the infection pathway of an adeno-associated virus in cytoplasm of a living
HeLa cell are reported.

Theories and Results:

Generalizing fractional kinetics successfully modeling anomalous diffusion, a theory for describing the infection pathway of the virus
over the cytoplasm is presented. The statistical property of the fluctuations of the anomalous-diffusion exponent is also discussed
based on a maximum-entropy-principle approach. In addition, an issue regarding the continuum limit of the entropy introduced in the
approach is carefully examined. The theory is found to imply that the motion of the virus may obey a scaling law.

Keywords: Infection pathway of virus in living cell, Anomalous diffusion, Fractional kinetics, Exponent fluctuations, Time-scale
separation, Maximum entropy principle, Scaling law.

1. INTRODUCTION

Viruses  and  related  phenomena  are  of  great  interest  from  the  viewpoint  of  physics  [1,  2].  In  particular,
understanding the infection pathway of virus in living cell may be relevant, for example, to drug delivery based on
virus-based carriers [3].

The purpose of the present article is to report recent developments about a diffusion theory for the infection pathway
of an adeno-associated virus in cytoplasm of a living HeLa cell. It is discussed that the exponent characterizing the
diffusion property of the virus fluctuates depending on localized areas of the cytoplasm. Then, there is no information
on  the  local  property  of  such  fluctuations.  Therefore,  as  will  be  seen  later,  the  entropy  associated  with  the  local
fluctuations is introduced in the theory: a measure of uncertainty about how the exponent locally distributes over the
cytoplasm. It turns out to play a key role for proposing the statistical property of the fluctuations, i.e., the statistical
distribution of the fluctuations over the cytoplasm, which is crucial in the theory. In addition, the discussion about the
entropy will be developed further (Sec. 3 below).

In the experiments [3, 4], it has been observed, by using the technique of real-time single-molecule imaging, that the
viruses, each of which is labeled with a fluorescent dye molecule, exhibit stochastic motions in the cytoplasm in both
the form being confined in the endosome, i.e., a spherical vesicle and the non-confined form. Based on analysis of  the
 trajectory of  the  virus, then  the mean  square  displacement, which  is  denoted here  by  with the  over-bar being
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the average,  has been evaluated in order to characterize the diffusion property of the virus.  For large elapsed time,

 has been found to behave as follows:

(1)

The resulting diffusion property has two cases: one is normal diffusion with α = 1, and the other is the case with 0 <
α < 1, which is referred to as anomalous diffusion. Here is a certainly remarkable feature [4] that the exponent, α, in the
case of anomalous diffusion fluctuates between 0.5 and 0.9, depending on localized areas of the cytoplasm. Therefore,
this is apparently different from traditional anomalous diffusion [6, 7] widely discussed in the literature.

It may be of interest to mention that the variation of the exponent has been observed for diffusion of macromolecule
(such as ribosome) in a bacterial cytoplasm in a recent work [8]. There, nonspecific interactions, which are due to high
macromolecular  concentration,  have  been  discussed  for  such  a  variation.  (Later,  we  will  briefly  discuss  a  possible
relevance of nonspecific interactions to the origin of anomalous diffusion of the virus.)

2. FRACTIONAL KINETICS AND ITS GENERALIZATION

Consider 1-dimensional stochastic motion of the virus in the cytoplasm. As a first step, we regard the cytoplasm as a
medium  for  stochastic  motions  of  the  virus  in  both  the  endosomal  and  non-confined  forms.  This  medium  is  then
imaginarily divided into many small  blocks,  each of which is  identified with a localized area of the cytoplasm. To
describe the motion of the virus in a given block, we apply fractional kinetics [9] modeling anomalous diffusion in a
unified way. The fractional diffusion equation we consider here is as follows:

(2)

Here, f (x, t) dx is the probability of finding the virus in the interval [x, x + dx] at time t, Dα is a generalized diffusion

constant,  and   is  a  fractional  operator  [9,  10]  defined  by   with

 where
 

 is the Euler gamma function. α in Eq. (2) is taken to

be in the following range:
(3)

The scheme of continuous-time random walks [11] tells us the physical basis behind Eq. (2).  As discussed in a
recent work [12], two different distributions are relevant in this scheme: one for a spatial displacement Δ of the virus in
a finite time step τ,  and the other for the time step τ.  The former is sharply peaked at Δ = 0 and has evenness with
respect to Δ, whereas the latter is implied to decay as  for long time step, i.e., a power law characterized by
α, which has the divergent first moment. Here, s is supposed to be a characteristic time, at which the virus is displaced.
It can be found [12] that Dα is given by  with being the second moment of Δ.

With the initial condition, f (x, 0) = δ(x), the mean square displacement of the virus turns out to have the form in Eq.
(1).  Thus,  the  behavior  observed  in  a  localized  area  of  the  cytoplasm is  reproduced.  Note  that  normal  diffusion  is
realized in the limit, α → 1, in our present theory.

Next, let us generalize fractional kinetics mentioned above in order to describe the motion of the virus over the
cytoplasm. Such a discussion has been made by introducing the statistical fluctuation of α [12], There, a basic premise
is the existence of two largely separated time scales in the infection pathway: the time scale of variation of exponent
fluctuations is much larger than that of stochastic motion of the virus in each local block. In other words, α in each local
block slowly varies in time, but is assumed to be approximately constant. Denoting the statistical distribution of the
fluctuations of α by P (α), the following generalized fractional diffusion equation has been presented:

(4)

where  D  is  the  diffusion  constant  given  by   We  here  mention  the  following  recent  study.  A
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theoretical framework has been developed for deriving Eq. (4) [13, 14]. In this framework, in contrast to the procedure
employed in the work [12], the existence of the large time-scale separation is explicitly taken into account. In the above-
mentioned scheme, it turns out [13] that Eq. (4) appears through the average of the distribution of time step with respect
to P (α). For the virus in a given local block, it can be shown [12, 13] that taking P (α) = δ(α−α 0) with α 0 being a certain
fixed exponent in the range 0 < α 0 < 1 and applying the operator  Eq. (4) becomes reduced to Eq. (2). Thus,
fractional kinetics is generalized in this way.

3.  STATISTICAL  DISTRIBUTION  OF  EXPONENT  FLUCTUATIONS  AND  MAXIMUM-ENTROPY-
PRINCIPLE APPROACH

Clearly, it is necessary to determine the statistical distribution P (α), since otherwise Eq. (4) is formal. Here, we
wish to present a proposition for it based on both the experimental data and a maximum-entropy-principle approach. In
addition, we carefully examine an issue concerning with the continuum limit of the entropy in the approach, which has
not been discussed [12 - 14].

For 104 trajectories of the viruses, the mean square displacement has the form in Eq. (1) [4]: 53 trajectories among
them exhibit normal diffusion, whereas other 51 show anomalous diffusion with the exponent α varying between 0.5
and 0.9. (Although there are trajectories yielding a parabolic form [4, 5], such trajectories have been neglected since the
number  of  them is  seen to  be  less  compared to  those  in  the  case  of  normal  diffusion and anomalous  diffusion.)  In
addition,  the  virus  tends  to  reach  the  nucleus  of  the  cell.  Accordingly,  these  facts  motivated  the  works  [12,  13]  to
suggest that normal diffusion is often to be realized, whereas anomalous diffusion with the exponent near α = 0 may not
be the case. There, it is also supposed that the exponent found in the endosomal form is slightly different from that
found  in  the  non-confined  form.  Based  on  these  considerations,  the  following  exponential  distribution  of  the
fluctuations  has  been  proposed:

(5)

where λ is a positive constant.

Now, as will be seen below, it is possible to theoretically derive the distribution in Eq. (5) in a consistent manner.
The medium is viewed as a collection formed by constructing the local blocks [12, 13]. This construction then offers all
of  possible  distinct  collections  in  the  sense  that  each  collection  is  different  from  each  other  in  terms  of  the  local
fluctuations and no difference exists at the statistical level of the fluctuations. That is, the local property of exponent
fluctuations is  distinct  depending on the collections,  but the statistical  property is  not.  The local blocks seem to be
independent in terms of the exponent.  For a set of discrete values of different exponents,  {αi}i,  the total number of
distinct collections, G, is therefore calculated as a combinational problem and is given by

(6)

where N is the total number of blocks in the medium, nαi
 is the number of blocks with the ith value of the exponent,

αi,  in the medium, and  is  fulfilled.  Then,  the entropy associated with the local  fluctuations has been
introduced as follows:

(7)

As  mentioned  in  the  INTRODUCTION,  this  gives  a  measure  of  uncertainty  about  the  local  property  of  the
fluctuations over the medium. Here, N and nαi

’s are assumed to be large, since the medium is composed of many blocks.
It has been shown that this assumption seems to be appropriate [15]. It is found [12, 13] that the entropy in Eq. (7) can
approximately be given by the form of the Shannon entropy:

(8)

where   is  the  probability  of  finding  the  exponent  αi  in  a  given  local  block  of  the  medium.
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Correspondingly, the entropy in the case of continuous values is taken to be

(9)

where P (α)dα is the probability of finding the exponent in the interval [α, α +dα].

Now, a careful treatment should be employed for the continuum limit of the entropy in Eq. (8). Below, following the
discussion in the work [16], we shall see it in the present context.

Let us divide a fixed interval [a, b] into a set of intervals, 
Then, we increase the number of discrete exponents αi ’s according to some definite function of α denoted by m(α),
which determines how each interval tends to zero in the limit n → ∞. In this limiting procedure, the following relation
holds [16]:

(10)

In other words, the measure, m, is introduced in this way. At this stage, the limiting procedure is generically treated
since the form of m may depend on the medium, but, as will be seen below, m is taken to be a certain constant. This

measure  has  the  following  property:   The  probability  Pαi
 in  Eq.  (8)  is

connected to the probability density P (α i) in Eq. (9) through the measure as follows:

(11)

Taking into account the above property, the entropy in Eq. (8) tends to

(12)

We here note the following points. Due to the presence of the additive logarithmic divergence, limn  → ∞ ln n, the
quantity in Eq. (12) itself fails to define the entropy for a continuous variable. This difficulty is, however, overcome
when the change of the entropy, not the absolute value of the entropy, is considered, leading to cancellation of such a
divergence. Then, the form of m(α) may depend on the medium as mentioned above, but there is no a priori information
about determination of the form, and this is precisely the situation we are considering here. In such a situation, it seems
natural to suppose that all of possible exponents with equal intervals should be taken into account in the fixed interval.
In other words, it seems fair to assume that any intervals in the above-mentioned set  equally
tend to zero each other in the limit n → ∞, implying that m (α) can be taken as a certain constant. This turns out to bring
an additive constant in Eq. (12), which is cancelled again in the entropy change.

Thus, from these considerations, we can define S [P] in Eq. (9) as the entropy in the case of continuous values of the
exponent.

We shall show that the distribution in Eq. (5) can be derived based on maximization of the Shannon entropy in Eq.
(9).  We  are  considering  the  situation  that  only  information  is  available  about  the  statistical  property  of  exponent

fluctuations. In such a situation, we impose two constraints: one for the normalization condition,  and

the other for the expectation value of α,  Under these constraints, we maximize S [P] with respect to
P (α) as follows:

(13)
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where  κ  and  λ  are,  respectively,  the  Lagrange  multipliers  associated  with  the  constraints  on  the  normalization
condition and the  expectation value,  and δP  denotes  the  variation with  respect  to  P  (α).  It  should  be  noted that  the
condition, P  (1) > P  (0),  has been imposed in Eq. (13),  which requires λ  to be a positive Lagrange multiplier.  This
condition is supposed to express the tendency that the virus reaches the nucleus. The stationary solution of Eq. (13) is

given by  which is, in fact, the distribution in Eq. (5).

In the above derivation, we have imposed the constraints on the expectation value of α as well as the normalization
condition.  If  additional  information  on  the  expectation  values  of  some  relevant  quantities,

 where  is the k th quantity, is given, then the maximum-entropy-principle

approach reads

(14)

where λ'  and λ(k)  ’s are, respectively, the Lagrange multipliers associated with the constraints on the expectation
values of α and Q(k) (α) ’s. The stationary solution derived above is changed into

(15)

accordingly. The multipliers appearing here are required to satisfy a relation to be suggested by the above condition

P (1) > P (0). Thus, the present approach also enables one to examine  for describing the statistical fluctuation to
be observed in the experiment, if such a fluctuation distribution is different from Eq. (5).

Closing this section, we briefly discuss a possible relevance of nonspecific interactions to the origin of anomalous
diffusion  of  the  virus.  It  has  been  considered  [4,  5]  that  such  an  origin  is  due  to  the  presence  of  obstacles  (e.g.,
organelles)  in  the cytoplasm. Now, numerical  simulation combined with experimental  data has been performed for
modeling  diffusion  of  macromolecules  in  a  bacterial  cytoplasm [8].  There,  it  has  been  discussed  that  the  bacterial
cytoplasm is ploy-disperse with high concentration of macromolecules and interactions between them are repulsive with
and without nonspecific attraction, demonstrating that macromolecules exhibit both normal diffusion and anomalous
diffusion. In particular, it has been shown that diffusion is suppressed in the case when nonspecific attraction is taken
into  account  (a  similar  discussion  can  be  found,  for  example,  in  a  recent  work  [17]).  Therefore,  from  the  above-
mentioned consideration, this may imply in our present case that such nonspecific interactions between the virus and
obstacles can lead to anomalous diffusion of the virus.

4. SCALING LAW FOR THE MOTION OF THE VIRUS

Let us discuss the motion of the virus over the cytoplasm based on Eq. (4) with the distribution in Eq. (5). It is
implied that f (x, t) asymptotically behaves for large elapsed time as follows [13]:

(16)

where   is  defined  by   Then,  we  immediately  see  that  it  satisfies  the
following scaling law:

(17)
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where   is  a  scaling  function  defined  by   Accordingly,  the
spatial extension of f ( x, t), e.g., its half-width, l, is seen to be

(18)

which indicates that the motion of the virus may exhibit logarithmic behavior.

We also mention the following. The mean square displacement of the virus has been calculated based on Eqs. (4)

and (5) [12]. From it, the root-mean square displacement,  turns out to have the form in Eq. (18). Therefore, one

might think that the difference between l and  is nothing but the characterization of the logarithmic behavior.
Regarding this point, we emphasize the following fact. The behavior of l comes from f (x, t) in Eq. (16) [or, equivalently

Eq. (17)] itself, and accordingly, is seen to be more fundamental than that of  which is based on the average with
respect to f (x, t) in Eq. (4) [with the distribution in Eq. (5)].

It is of extreme interest to further examine the infection pathway of the virus over the cytoplasm: if the scaling law
in Eq. (17) can experimentally be observed, then the time-scale separation is expected to exist in the infection pathway.

CONCLUSION

We have reported recent developments about a diffusion theory for the infection pathway of an adeno-associated
virus  in  cytoplasm of  a  living  HeLa cell.  The  generalized  fractional  kinetics  has  been  discussed  for  describing  the
infection pathway of the virus over the cytoplasm. A proposition for the statistical distribution of exponent fluctuations
has been presented. The entropy associated with the fluctuations has been introduced, and the discussion about a careful
treatment for the continuum limit of the entropy has been developed. Then, we have seen that maximization condition
of the entropy leads to the proposed distribution. We have also mentioned a scaling nature of the motion of the virus.

As  mentioned  in  this  article,  the  exponent  slowly  varies  but  is  assumed  to  be  approximately  constant.  If  this
assumption is relaxed, then the statistical distribution may deviate from Eq. (5), in general. This leads to the following
question: is it possible to determine the behavior of such a deviation? This question is affirmatively answered for a class
of small deviations [15]. There, it is shown that the deviation obeys the multivariate Gaussian distribution. Therefore, it
is also of extreme interest to examine if such a deviation can experimentally be observed in the infection pathway.
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Note added. Quite recently, the maximum-entropy-principle approach has been applied for diffusion of virus capsid
in a different cell [18]. There, a statistical distribution of exponent fluctuations has been derived in accordance with the
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one observed in a relevant experiment.
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