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Abstract:

Objective:

The influence of phosphorus deficit on the growth of plants and acid phosphatases activity in leaves and roots of barley seedlings
(Hordeum vulgare L.), as well as oat (Avena sativa L.), rye (Secale cereale L.) and wheat plants (Triticum vulgare L.) was studied.

Method:

Plants were cultured three weeks in a nutrient media: complete (control, +P) or without phosphorus (-P). The growth on -P medium
significantly affected the inorganic phosphate (Pi) content in plants tissues. Pi deficit decreased shoots growth but ratio of root/shoot
was higher for -P plants when compared to control. The root elongation was enhanced under Pi deficiency - in -P oat and barley more
intensive elongation was observed than in other plants. On the other hand, inhibition of shoot growth was more pronounced for -P rye
and wheat. Pi-deficient plants showed higher activity of acid phosphatases in tissue extracts and in exudates from roots than +P
plants.

Result:

Extracellular acid phosphatases activity increased the most for -P rye and wheat plants. Acid phosphatases secretion was intensive in
growing parts of Pi-deficient roots. The activity of enzymes secreted by -P roots of all studied plants was higher than intracellular
acid phosphatases.

Conclusion:

Our results indicated that wheat is more sensitive to the Pi deficiency at the early stage of growth than other plants, whereas oat is
rather resistant to Pi deficit. The results suggested that acid phosphatases played an important role in acclimation of studied crop
plants to moderate Pi deficiency.

Keywords: Extracellular phosphatase, Low Pi nutrition, Root, Secretion, Pi mobilization, Phosphate deficiency.

1. INTRODUCTION

Phosphate-limiting  condition  is  common  in  the  soils  because  phosphorus-containing  compounds  are  mainly
insoluble and thus unavailable for plants. Phosphorus is an essential nutrient important in metabolism, plant growth,
development and productivity. Plants respond to phosphorus starvation by developing various mechanisms that can
increase the Pi availability and uptake from soil as well as Pi mobilization/recycling and transport in plant cells and
tissues  [1  -  5].  Plants  acclimate  to  Pi  deficiency  by  modifications  of  growth  parameters  and  metabolism  or  genes
expression and protein production [6 - 11]. One of the common symptoms of phosphate deficiency is the increase of
root/shoot ratios which is usually the result of reduction of shoot growth  and/or  stimulation of root growth [7, 12 - 14].
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Low Pi availability in the soil often affected the root elongation, increase development of lateral roots as well as the
number  and  length  of  root  hairs  [15  -  17].  Pi  deficiency  can  regulate  many  features  of  anatomy  of  roots,  or  root
architecture, e.g., aerenchyma formation (via ethylene mediation), higher root hair density, different lateral branching or
cluster root formation and the total surface area enhance [6, 7, 16, 18]. In response to Pi deficit many plants activate
root colonization by mycorrhizal fungi or interaction with rhizosphere bacteria [5, 9, 19]. Probably, all of these changes
result in a better opportunity for soil exploration and are under strictly genetic control [20, 21]. Differences in Pi uptake
from soil may be due to better growth of roots or high external root efficiency, the simulations indicated that even very
small changes in parameters related to the root growth could have significant effects on Pi uptake [21]. In addition, low
Pi supply often induces exudation of organic acids and protons from roots to increase Pi availability from insoluble
mineral forms of phosphorus in the rhizosphere, or secretion of enzymes hydrolyzing organic esters of phosphorus [4, 5,
22, 23].

Acid phosphatases (EC 3.1.3.2) are important components of the response of plants to Pi limitation [23 - 25]. Acid
phosphatases, mainly extracellular isoforms, catalyze the hydrolysis of Pi from phosphate monoesters (present both in
soil  and  plant  tissues)  and  function  in  the  processes  of  uptake,  transport  and  recycling  of  Pi.  Intracellular  acid
phosphatases are important for phosphorus scavenging processes and Pi remobilization in plant cells and tissues [4, 14,
23, 25], but their role in plant acclimation to low Pi availability is not always clear [26]. Acid phosphatases are found in
intracellular spaces, cell walls and inside cell: in amyloplast, mitochondrium, nucleus, Golgi body and endoplasmic
reticulum [23,  25,  27].  Acid phosphatase activity  increase under  Pi-deficient  conditions have been documented for
various crop plants, including lupine and clover, barley, oat, rice or wheat [28 - 32]. Some of the genes encoding acid
phosphatases, both intra- and extracellular, were found to be upregulated by Pi-deficient condition, and correlated with
higher proteins content [5, 14, 29, 33]. Extracellular acid phosphatases, including those secreted by plant roots, can
efficiently acquire Pi from organic sources of phosphorus - several studies have demonstrated that Pi deficiency in the
soil (or growth medium) increased secretion of acid phosphatases from the roots [29, 30, 33 - 36]. On the other hand,
some experiments showed no significant changes in acid phosphatase activities in plants grown under Pi deficiency [26,
28, 30], or indicated that root acid phosphatases are poor indicator of growth of crop plants under low Pi nutrition in
different soils [37].  Genotypic variations in activity of acid phosphatases (or secretion) and morphological features
under Pi deficiency has been reported for various crop species and cultivars [14, 28, 30, 32, 38, 39].

The aim of the study was to compare responses of common cereal plants (barley, oat, rye, wheat) to early phosphate
deficiency  during  growth  period  important  to  tiller  formation  and  further  productivity.  Due  to  the  variability  in
responses of plant species/cultivars to Pi deficiency, such studies are still necessary. The examination of the intensity of
growth and activity of acid phosphatases in different plant tissues could be helpful to estimate the role of these enzymes
in acclimation of studied crop plants to Pi deficit.

2. MATERIAL AND METHODS

2.1. Plant Growth Conditions

Seeds of barley (Hordeum vulgare L., cv. Rodos) and oat plants (Avena sativa L., cv. Bajka), rye (Secale cereale L.,
cv.  Dankowskie  Zlote)  as  well  as  wheat  (Triticum  vulgare  L.,  cv.  Henrika)  were  germination  (7  days),  after  that
transferred to separate containers filled with control nutrient medium (+P) or medium without Pi (-P), similar to that
described by Ciereszko et al. [40]. Pi-sufficient nutrient medium contained: Ca(NO3)2 (4.4 mM), MgSO4 (2.7 mM),
KNO3 (1.5 mM), KH2PO4 (1 mM), Fe-EDTA (76 μM), H3BO3 (43 μM), MnCl2 (9 μM), CuSO4 (0.3 μM), ZnSO4 (0.8
μM), H2MoO4 (0.1 μM); to the -P medium KCl (2 mM) (instead KH2PO4) was added. Plants were cultured in different
containers (15 seedlings per about 5 l of nutrient medium). The culture medium was adjusted to pH 5.7 (by adding
drops of 1N NaOH), aerated and changed every 4 days. Plants were cultured for one to three weeks in growth chamber
under 16 h light period, photon flux density of 130 μmol m-2 s-1, temperature of 23/19 °C (day/night), and air humidity
about 70%. Cereal plants were cultured 7, 14 and 21 days on various nutrient media (14-, 21- and 28-day old plants,
respectively). Samples of tissues (leaves or roots) were collected 4-5 hours after the beginning of photoperiod. Fresh
mass and length of shoots and roots were measured after plant harvest, dry mass-after at least 24 h tissue drying at 90C;
root diameters were estimated according to [15].

2.2. Phosphate Content Measurements

Inorganic phosphate (Pi) content was determined after homogenization and extraction of tissues (leaves or roots) of
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barley, oat, rye and wheat plants (0.5 g samples), cultured 1, 2 and 3 weeks on +P and –P nutrient media, with cold 10%
trichloroacetic acid. The phosphomolybdate colorimetric assay, described by Ames [41], was used to Pi determination.

2.3. Extracellular Acid Phosphatases Activity Measurements

Root  surface  acid  phosphatases  activity  measurements  were  described  before  by  Ciereszko  et  al.  [13,  30].  The
whole roots or root “tips” (around 20 mm) were washed in distilled water, blot dried and placed into 10 ml (or 30 ml for
larger roots) of substrate (6 mM p-nitrophenyl phosphate in 100 mM sodium acetate buffer, pH 5.0) and incubated at
20°C. To ensure linearity, 100 μl aliquots of medium were removed at different intervals for above 2 hours, to each
sample 100 μl of 4N NaOH was immediately added (to terminate the reaction) and the absorbancies were read at 410
nm (Cecil CE 2501) and compared to a standard curve with p-nitrophenol. Enzymes activity, after 15 min incubations,
was presented, as μmol p-nitrophenol h-1 g-1 of fresh weight (FW).

2.4. Intracellular Acid Phosphatases Activity Measurements

For intracellular acid phosphatase activity assay, tissues samples (0.2 g, leaves or roots) were homogenized and
extracted in 5 ml of 50 mM Na-acetate buffer, pH 5.0, with 1 mM DTT (dithiothreitol), centrifuged at 12000 g for 10
min at 4°C. Enzyme activities were determined in supernatants (100 μl) after 10 min incubations at 37°C with 6 mM p-
nitrophenyl phosphate in 100 mM Na-acetate buffer, pH 5.0; reaction was terminated of as described above. The results
after 15 min of incubations are presented. The protein content in media for measurements of surface acid phosphatase
activity  was  extremely  low,  thus  both  intra-  and  extracellular  enzymes  activity  was  expressed  per  g  FW (μmol  p-
nitrophenol h-1g-1FW), similar to Żebrowska et al. [14].

2.5. Soluble Proteins Content Determination

The soluble proteins content was determined by the method described by Bradford [42]. The absorbance at 595 nm
was measured in enzymatic  extract  (0.2 ml)  after  15 min incubation with the Bradford reagent  (Sigma) (2 ml)  and
compared to a standard curve with BSA.

2.6. Statistical Analysis

All measurements were performed in at least three replicates in four to five series, independent, of experiments and
standard deviation (SD) was calculated. The treatments effects were tested by one way analysis of variance. Means
were compared between the treatments at the 0.05 probability level (SPSS Statistics).

3. RESULTS

Inorganic phosphate content in leaves and roots of all studied plants decreased significantly already after one week
of culture without Pi (Fig. 1). After 2 weeks culture on nutrient media the Pi content in -P leaves (21-days-old plants)
was between 6-13% of that found in control (+P plants). Pi content in root of P-deficient barley and rye was about 7%
of control  but  in -P roots of oat  and wheat was about 16% and 14%, respectively,  of  control.  After  three weeks of
culture in -P conditions, Pi level in leaves of studied plants was about 8-9% of the control. In the -P roots of barley, Pi
content decreased to about 4% of control, however in roots of oat and wheat was 7% or in rye - 11% of that found in +P
plants (Fig. 1).

The growth of studied plants was significantly affected by Pi deficiency, especially after three weeks of growth (Fig.
2). The fresh mass of shoots after one week growth on -P nutrient medium was between 73%-82% of control plants; the
fresh mass of +P and -P roots after one week culture was similar, with exception of barley (64% of control) (Table 1).
Shoot mass of Pi-deficient cereals decreased significantly after two weeks of culture and was 70%, 58%, 35% and 51%
of control for -P barley, oat,  rye and wheat,  respectively; however root fresh mass of -P and +P plants was similar
(Tables 1-4). The differences in growth parameters were higher after three weeks of culture when the shoot fresh weight
was  about  54%,  26%,  13%  and  23%  of  control,  respectively,  for  -P  barley,  oat,  rye  and  wheat.  Additionally,  the
reduction of -P root mass was observed and was 67%, 69% and 49% of control, respectively, for -P oat, rye and wheat
(Tables 2-4). However, the ratio of root/shoot for fresh mass was always significantly higher in -P plants than in +P
plants,  e.g.  up  to  3-5-fold  for  rye  (Table  3).  The  shoot  dry  masses  of  Pi-deficient  cereal  plants  were  lower  when
compared to phosphate-sufficient plant, in a similar way like fresh weight of shoots (Tables 1-4). The dry masses of
roots were similar in younger +P and -P plants, however after 3 weeks of culture under Pi-deficient condition the root
dry weight of rye and wheat was about 65% of the control (Tables 3, 4). The decrease in shoot mass of -P crop plants
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was accompanied by a decrease in shoot height; on the other hand, root length of Pi-deficient plants increased by about
20% (for 21 days old barley and 28 days old wheat), by 28 and 38% (for 14- and 21 days old rye) or even by 39% (for
28 days old oat) when compared to control, even despite mass drop (Tables 1-4). The increase of root length of studied
 -P plants was probably at the cost of decrease of root diameters. The ratio of root/shoot length was always higher in -P
plants than in +P plants, especially after 2-3 weeks of culture (Tables 1-4).

Fig. (1). Pi content in shoots and roots of barley, oat, rye and wheat plants grown for 1, 2 and 3 weeks in phosphate-sufficient (+P) or
phosphate-deficient (-P) nutrient medium (means ± SD); all differences between treatments are statistically important at p<0.05.
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Table  1.  Growth  parameters  of  barley  plants  (Hordeum  vulgare  L.)  cultured  3  weeks  on  phosphate-sufficient  (+P)  or
phosphate-deficient (-P) nutrient medium. Means ± SD.

Parameters 7 days 14 days 21 days
+P -P +P -P +P -P

Shoot Fresh Weight (g) 0.33 ± 0.05 0.24 ± 0.04* 0.71 ± 0.2 0.50 ± 0.09* 1.36 ± 0.16 0.74 ± 0.14*
Roots Fresh Weigth (g) 0.28 ± 0.06 0.18 ± 0.04* 0.44 ± 0.14 0.54 ± 0.08 0.87 ± 0.17 0.77 ± 0.15

Root/Shoot 0.85 0.75 0.62 1.08 0.64 1.04
Shoot Dry Weight (mg) 39 ± 6 31 ± 5* 87 ± 23 68 ± 12* 180 ± 21 103 ± 20*
Roots Dry Weigth (mg) 41 ± 13 21 ± 4* 31 ± 10 47 ± 7* 67 ± 12 69 ± 10

Shoot Height (cm) 20.8 ± 2.4 18.0 ± 1.8* 29.4 ± 3.9 27.2 ± 1.7 40.3 ± 3.8 34.5 ± 3.6*
Root Length (cm) 12.2 ± 1.5 15.2 ± 2.3* 28.8 ± 4.2 33.5 ± 3.4* 48 ± 5.4 52.1 ± 4.3

Root/Shoot 0.59 0.84 0.99 1.23 1.19 1.51
Mean Root Diameter (mm) 0.85 0.61 0.70 0.72 0.76 0.69

* Significantly different at 0.05

Table 2.  Growth parameters of oat (Avena sativa  L.) plants cultured 3 weeks on phosphate-sufficient (+P) or phosphate-
deficient (-P) nutrient medium. Means ± SD.

Parameters 7 days 14 days 21 days
+P -P +P -P +P -P

Shoot Fresh Weight (g) 0.28 ± 0.03 0.23 ± 0.07 1.02 ± 0.15 0.59 ± 0.08* 2.43 ± 0.52 0.62 ± 0.14*
Roots Fresh Weigth (g) 0.16 ± 0.03 0.16 ± 0.02 0.56 ± 0.14 0.64 ± 0.1 0.97 ± 0.18 0.65 ± 0.14*

Root/Shoot 0.57 0.69 0.55 1.08 0.4 1.05
Shoot Dry Weight (mg) 27 ± 3 24 ± 5 93 ± 13 70 ± 11* 220 ± 49 92 ± 22*
Roots Dry Weigth (mg) 13 ± 3 14 ± 3 34 ± 7 50 ± 8* 60 ± 11 57 ± 8

Shoot Height (cm) 21.5 ± 3.1 18.9 ± 2.5 * 35.9 ± 3.2 30.2 ± 3.3* 51.6 ± 1.9 32.1 ± 5.0*
Root Length (cm) 13.2 ± 1.3 15.2 ± 2.6* 31.1 ± 4.4 32.1 ± 3.8 35.8 ± 7.9 49.7 ± 9.2*

Root/Shoot 0.61 0.8 0.87 1.06 0.69 1.55
Mean Root Diameter (mm) 0.62 0.59 0.79 0.76 0.93 0.64

* Significantly different at 0.05

Table 3. Growth parameters of rye (Secale cereale L.) plants cultured 3 weeks on phosphate-sufficient (+P) or phosphate-
deficient (-P) nutrient medium. Means ± SD.

Parameters 7 days 14 days 21 days
+P -P +P -P +P -P

Shoot Fresh Weight (g) 0.16 ± 0.02 0.12 ± 0.02* 0.52 ± 0.1 0.18 ± 0.03* 1.56 ± 0.11 0.2 ± 0.05*
Roots Fresh Weigth (g) 0.1 ± 0.02 0.09 ± 0.02 0.22 ± 0.06 0.22 ± 0.06 0.49 ± 0.1 0.34 ± 0.07*

Root/Shoot 0.62 0.75 0.42 1.22 0.31 1.7
Shoot Dry Weight (mg) 19 ± 3 15 ± 3* 57± 10 25 ± 6* 164 ± 17 31 ± 7*
Roots Dry Weigth (mg) 9 ± 2 9 ± 2 16 ± 4 19 ± 5 42 ± 9 28 ± 5*

Shoot Height (cm) 13.9 ± 1.4 14.3 ± 1.7 23.3 ± 3.7 17.8 ± 2.1* 32.9± 2.9 20.8 ± 4.2*
Root Length (cm) 15.2 ± 1.7 19.5 ± 2.9* 23.9 ± 5.5 33.1 ± 7.1* 39.8 ± 2.9 44.3± 2.9*

Root/Shoot 1.09 1.36 1 1.86 1.21 2.13
Mean Root Diameter (mm) 0.47 0.45 0.54 0.46 0.63 0.50

* Significantly different at 0.05

Table  4.  Growth  parameters  of  wheat  (Triticum  vulgare  L.)  plants  cultured  3  weeks  on  phosphate-sufficient  (+P)  or
phosphate-deficient (-P) nutrient medium. Means ± SD.

Parameters 7 days 14 days 21 days
+P -P +P -P +P -P

Shoot Fresh Weight (g) 0.22 ± 0.03 0.18 ± 0.03* 0.69 ± 0.11 0.35 ± 0.04* 1.77 ± 0.2 0.41 ± 0.06*
Roots Fresh Weigth (g) 0.13 ± 0.02 0.16 ± 0.04 0.48 ± 0.08 0.4 ± 0.05* 0.95 ± 0.2 0.47 ± 0.07*

Root/Shoot 0.59 0.89 0.69 1.14 0.54 1.15
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Parameters 7 days 14 days 21 days
+P -P +P -P +P -P

Shoot Dry Weight (mg) 29 ± 3 23 ± 3* 85± 13 52 ± 4* 208 ± 36 69 ± 7*
Roots Dry Weigth (mg) 15 ± 1 19 ± 4* 40 ± 6 41 ± 5 83 ± 20 54 ± 6*

Shoot Height (cm) 17.9 ± 1.3 18.3 ± 1.1 33.4 ± 2.2 30.1± 2.4* 42.8 ± 1.4 30.8 ± 3.6*
Root Length (cm) 13 ± 3.8 15.3 ± 3.4 21.8 ± 4 25.9 ± 2.1* 39.7 ± 5.6 33.1 ± 4*

Root/Shoot 0.73 0.84 0.65 0.86 0.93 1.07
Mean Root Diameter (mm) 0.57 0.58 0.84 0.70 0.87 0.68

* Significantly different at 0.05

Fig. (2). Barley, oat, rye and wheat plants after 3 weeks of culture on complete phosphate-sufficient nutrient medium (+P), and
phosphate-deficient (-P) nutrient medium.

The activity of intracellular acid phosphatases in shoots and roots generally increased in all studied plants under Pi
deficiency, especially after 2-3 weeks of culture on nutrient medium; however, this occurred to a lesser extent than
increase of extracellular phosphatases activity (Tables 5-8). After three weeks of culture the activity of acid phosphatase
in extracts from leaves of -P barley and oat plants was higher by about 20% and 50%, respectively, as compared with
+P plants (Tables 5, 6). However, the activity of internal acid phosphatases in -P shoots of rye and wheat increased
significantly already after 2 weeks culture by about 1.9 and 1.3-fold, whereas after 3 weeks - by 2.5-fold and 2.3-fold,

(Table 4) contd.....



116   The Open Plant Science Journal , 2017, Volume 10 Ciereszko et al.

respectively,  when  compared  to  control  plants  (Tables  7,  8).  After  14  days  of  plant  growth  on  nutrient  media,  the
activity of internal acid phosphatases in -P root of rye increased by about 85%, but in wheat and barley roots - by 35%
and 27%, respectively, as compared to +P plants (Tables 6-8). After 21 days of culture, intracellular acid phosphatases
activity was enhanced by about 1.4-fold for -P roots of barley and oat (Tables 5-6), and even 2.7-fold for -P rye (Table
7), but was similar in -P and +P roots of wheat (Table 8). Soluble proteins content in enzymatic extracts from leaves
and roots was generally not affected by Pi deficit, except that found in shoots of barley and wheat plants, grown 1-2
weeks on –P medium and shoots  of  oat  and rye cultured 3 weeks (Table 9);  in  all  experimental  conditions soluble
proteins content in roots was much lower than in leaves.

Table 5. Intracellular and extracellular acid phosphatase activities in leaves and roots of barley (Hordeum vulgare L.) plants
cultured 3 weeks on phosphate-sufficient (+P) or phosphate-deficient (-P) nutrient medium. Means ± SD.

Parameters 7 days 14 days 21 days
+P -P +P -P +P -P

(μmol g-1 FW h-1)
Leaf Acid Phosphatases 323 ± 44 360 ± 41.7 396 ± 15.7 411 ± 56.6 444 ± 49.4 533 ± 48*

Root Intracellular
Acid phosphatases

113 ± 11 122 ± 15 90.4 ± 4 115 ± 7.8* 136 ± 15.5 190 ± 17.2*

Extracellular
Acid Phosphatase:

Intact Root

67.5 ± 5 100 ± 6.7* 55 ± 4.6 80.4 ± 3.1* 31.8 ± 1.2 75 ± 3*

Extracellular
Acid Phosphatase:

Root Tips

119 ± 5 201 ± 8* 85.5 ± 3.5 187 ± 4.4* 110 ± 8.2 193 ± 15.6*

* Significantly different at 0.05

Table 6. Intracellular and extracellular acid phosphatase activities in leaves and roots of oat (Avena sativa L.) plants cultured
3 weeks on phosphate-sufficient (+P) or phosphate-deficient (-P) nutrient medium. Means ± SD.

Parameters 7 days 14 days 21 days
+P -P +P -P +P -P

(μmol g-1 FW h-1)
Leaf Acid Phosphatases 124 ± 8.4 125 ± 13.5 166 ± 12.8 157 ± 18 154 ± 21.2 234 ± 15.7*

Root Intracellular
Acid Phosphatases

40.1 ± 8 47.3 ± 4.2* 81.4 ± 14.3 91.9 ± 16 87 ± 15.3 124 ± 5.4*

Extracellular
Acid Phosphatase:

Intact Root

19.4 ± 5.2 22.3 ± 3.7 16.5 ± 1.5 22.7 ± 1.1* 21.1 ± 5.1 48.7 ± 2.1*

Extracellular
Acid Phosphatase:

Root Tips

31.8 ± 4.3 31.8 ± 3.1 29.4 ± 7.4 79.8 ± 7.8* 38.4 ± 1.7 108 ± 2.3*

* Significantly different at 0.05

Table  7.  Intracellular  and  extracellular  acid  phosphatase  activities  in  leaves  and  roots  of  rye  (Secale  cereale  L.)  plants
cultured 3 weeks on phosphate-sufficient (+P) or phosphate-deficient (-P) nutrient medium. Means ± SD.

Parameters 7 days 14 days 21 days
+P -P +P -P +P -P

(μmol g-1 FW h-1)
Leaf Acid Phosphatases 115.3 ± 7.6 141 ± 17.9* 126 ± 18.8 237 ± 10.6* 197 ± 18.6 497 ± 61.2*

Root Intracellular
Acid Phosphatases

61.1 ± 3.3 63 ± 3.1 85.7 ± 6.1 158 ± 13.6* 91.9 ± 10.5 248 ± 25.4*

Extracellular
Acid Phosphatase:

Intact Root

48.5 ± 6.4 75.8 ± 3.9* 49.9 ± 3.5 119 ± 6.9* 30.5 ± 5.9 145 ± 11*

Extracellular
Acid Phosphatase:

Root Tips

140.6 ± 7.2 141.7 ± 7.3 111 ± 9.5 261 ± 14.5* 76 ± 4.1 277 ± 30*

* Significantly different at 0.05
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Table 8. Intracellular and extracellular acid phosphatase activities in leaves and roots of wheat (Triticum vulgare L.) plants
cultured 1-3 weeks on phosphate-sufficient (+P) or phosphate-deficient (-P) nutrient medium. Means ± SD.

Parameters 7 days 14 days 21 days
+P -P +P -P +P -P

(μmol g-1 FW h-1)
Leaf Acid Phosphatases 147 ± 20 156 ± 12.8 205 ± 18.8 260 ± 28.8* 216 ± 11.5 506 ± 54.6*

Root Intracellular
Acid Phosphatases

49.5 ± 8.7 61.3 ± 12.9* 71.6 ± 11.4 96.9 ± 7.1* 123 ± 7.2 122 ± 13.6

Extracellular
Acid Phosphatase:

Intact Root

30.2 ± 3.5 54.3 ± 3.4* 18 ± 1.9 50.8 ± 8.5* 21.8 ± 1.6 77.2 ± 6.4*

Extracellular
Acid Phosphatase:

Root Tips

91.9 ± 6.5 165 ± 6.7* 61.5 ± 1 126 ± 5.9* 30.6 ± 3.6 155.3 ± 4.2*

* Significantly different at 0.05

Extracellular acid phosphatase activity increased already after one week of culture on -P nutrient medium in intact
roots of barley, rye and wheat,  by about 50% or 80% when compared to +P roots (Tables 5,  7,  8).  The increase of
enzyme activity, secreted by intact -P roots after 2 week-culture, was about 1.5- and 1.4-fold for barley and oat (Tables
5,  6),  2.4-fold for rye (Table 7),  2.8-fold for wheat (Table 8),  as compared to control.  After 3 weeks of culture the
increase of extracellular phosphatase activity in -P roots was: 2.4-fold for barley, 2.3-fold for oat, 4.8-fold for rye and
3.5-fold for wheat as compared to the control (Tables 5-8). The acid phosphatases activity (and secretion) was intensive
in young, growing parts of -P roots of all  crop plants (e.g.,  even up to 4-5 times more, for rye and wheat) whereas
activity of extracellular phosphatases in the mature parts of roots was lower (Tables 5-8 and data not shown). When
compared the studied plants, the highest activity of root surface enzymes was observed for wheat and rye, after 21 days
of culture on -P medium (especially in root tips of plants).

Table 9. Soluble protein content in extracts from leaves and roots of barley, oat, rye and wheat plants grown for 3 weeks on
phosphate-sufficient  (+P)  or  phosphate-deficient  (-P)  nutrient  medium.  Means  ±  SD  values  are  indicated.  *Differences
statistically important at 0.05.

Proteins Content In Shoots Proteins Content In Roots
(mg g-1FW)

Growth On Nutrient Medium (days)

Plant
7 14 21 7 14 21

+ P - P + P - P + P - P + P - P + P - P + P - P

Barley 5.97
±0.6

7.92*
±0.9

5.9
±0.5

8.1*
±0.6

11.2
±0.7

10.4
±0.7

1.23
±0.15

1.74
±0.2

0.67
±0.2

0.65
±0.2

1.4
±0.1

1.3
±0.2

Oat 6.4
±0.4

6.9
±0.6

6.2
±0.5

7.8
±0.6

4.3
±0.3

9.1*
±0.7

1.36
±0.2

1.26
±0.2

0.8
±0.1

0.7
±0.2

1.08
±0.2

0.96
±0.2

Rye 6.3
±0.7

8.8
±1.2

4.9
±0.6

5.8
±1.1

3.6
±0.4

7.1*
±0.9

1.28
±0.1

0.95
±0.2

1.2
±0.1

0.75
±0.2

0.97
±0.2

0.66
±0.15

Wheat 6.1
±0.8

8.3*
±0.7

7.5
±1.1

6.8
±0.5

9.6
±0.9

9.1
±0.8

1.33
±0.2

1.37
±0.2

0.99
±0.1

0.68
±0.1

1.5
±0.3

0.53*
±0.1

4. DISCUSSION

The growth of barley, oat, rye and wheat plants for three weeks on Pi-deficient nutrient media resulted in lower Pi
content in tissues, changed characteristics of growth (mainly root to shoot ratios increase) and had significant effect on
acid phosphatases activity increase in tissues and root exudates.

Pi  deficiency significantly  reduced shoots  growth of  all  studied plants,  especially  after  3-weeks  culture,  the  –P
plants were also characterized by lower formation of tillers. When compared the growth parameters of studied cereal
plants, some conclusion could be made, e.g. the inhibition of shoot growth was more pronounced for rye and wheat,
cultured on Pi-deficient medium than other crop plants (Tables 1-4). Our other experiments indicated that Pi deficiency,
after  2-3 weeks culture,  affected also leaves area and intensity of  photosynthesis  and assimilate production in crop
plants [13, 40 and data not published]. Generally, the early Pi-deficiency had no significant effect on fresh and dry mass
of roots but a tendency to enhanced elongation of roots was observed for all studied plants. More intensive elongation
of the roots was observed for -P oat (and barley) than other plants, especially after 3 weeks growth on nutrient medium.
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The length of roots of –P plants increased, compared with control, already after one week of culture on nutrient media
without Pi and differences were similar (or higher - for rye) until about 14-days-culture; however after that the root
growth was relatively slower and after 21 days of culture the root length was similar (for barley, rye) or lower (for
wheat) (Tables 1-4).

Our previous results indicated that transfer of -P cucumber plants to full nutrient media did not change the slope of
curve of  root  growth,  the elongation of  roots  after  such transfer  was more similar  to  Pi-deficient  plants  than to  +P
plants, which might indicate that a signal coming from Pi starvation caused nonreversible reaction of plant, in this case -
the initial increase of root length [13]. The stimulation of root elongation is one of plant responses to low Pi level,
important for exploring and searching of available Pi, mainly at the beginning of stress condition. However, as an effect
of prolonged Pi starvation the significant reduction of root growth was also observed [6, 7, 12, 13, 43]. It was indicated
that growth of maize root was also enhanced shortly after beginning of Pi deficit, although it was reduced when low-Pi
conditions were prolonged [12, 15]. The elongation rate of axial roots was maintained but density of some laterals was
not affected, however the emergence of new axial roots was drastically reduced, probably due to lower availability of
carbohydrates [7, 17]. It was suggested that, under Pi starvation, a decrease of ATP content might be a limiting factor
for plant biomass production and that the increase of root mass or length of -P plants was the result of better relative
growth rate but only at the beginning of culture [43]. In addition, Pi deficiency could regulate other features of root
architecture/  anatomy  of  crop  plants,  similar  to  those  reported  by  [6,  7,  16,  18,  21],  often  resulted  in  a  greater
exploration of the soil and better root efficiency and higher Pi uptake, however we did not observed such features in our
studies.

Change in acid phosphatases activity is rather a common reaction of plant on phosphorus starvation, facilitated Pi
availability  by  hydrolyses  of  organic  sources  of  phosphorus  in  soil  or  inside  plant  cell  [5,  23].  Intracellular  acid
phosphatases are probably involved in greater recycling of organic P, mainly in the vacuole; whereas acid phosphatases
secreted from roots have a role in breakdown of organic forms of phosphorus in the rhizosphere [23 - 25]. The increase
of root surface phosphatases activity was often correlated with the decrease of phosphorus level in leaves, as observed
for white clover genotypes [28]. However, other experiments showed negative relationship between acid phosphatase
activity and efficiency of Pi uptake under phosphate deficit [26, 32]. Enzyme activity is dependent on the plant species,
duration of Pi deficiency and may differ, even between crop cultivars, e.g. barley, rice, maize or oat genotypes [14, 15,
30, 31, 39]. Significant differences were found, e.g., in activity of soil acid phosphatases under low-Pi availability in the
rhizosphere of roots of five barley cultivars [39], however study with other cultivars have shown more similar responses
to Pi depletion [30]. As indicated by our previous results, oat varieties may use different forms of acid phosphatases to
acquire  Pi  from the soil  or  internal  sources under  Pi  starvation [14].  When compared the studied cereal  plants,  the
increase of extracellular acid phosphatases activity was the highest for Pi-deficient rye and wheat, after 2-3 weeks of
culture and enzymes secretion was the most intensive in young, growing zones of -P roots (Tables 5-8). In addition, the
increase  of  activity  of  extracellular  acid  phosphatases  was  higher  than  intracellular  enzymes  (Tables  5-8).
Histochemical visualization of acid phosphatases in oat and barley roots demonstrated the highest enzymes activity in
the rhizodermis and vascular tissue of -P plants [14, 30]. In the present study we used in experiments the older cereal
varieties, plants which are currently not in use in intensive agriculture. However, the important traits like the ability to
increase  acid  phosphatase  production  and  activity  might  be  useful  in  breeding  and  selection  of  the  future-plants.
Especially the ability of rye (wheat and perhaps oat) to increase acid phosphatase activity/secretion and better growth
under  low-Pi  conditions  are  interesting  and  should  be  investigated  more  in  details.  The  knowledge  of  acclimation
mechanism  to  Pi  deficit  may  be  useful  to  culture  the  chosen  varieties  of  crop  plants,  especially  when  lack  of
inexpensive  phosphorus  will  cause  a  potential  crisis  in  agriculture  [44,  45].

The  induction  of  acid  phosphatase  production  in  roots  and  secretion  could  be  huge,  e.g.,  under  Pi-deficient
conditions enzyme secretion from roots of lupine increased up to 20 times, when compared to Pi-sufficient conditions
[46]. The increase of acid phosphatases activity in root extracts and exudates of Pi-deficient white lupine was most
pronounced in the proteoid region and proteoid-root-specific phosphatases secretion often coincided with organic acids
exudation as well as root development [47]. However, in our experimental conditions not observed changes of pH in the
-P nutrient media indicated, that studied cereal plants not respond to Pi starvation via increased exudation of protons or
organic acids from roots (data not shown). Recent studies by [48] indicated that the effects of organic anions in the
rhizosphere could be varied among plant species and they play minor roles in improving phosphorus availability and Pi
uptake.

The  root-associated  acid  phosphatases  pool  increased  when  Pi  was  limiting  and  several  enzyme isoforms  were
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secreted from roots of Arabidopsis; however, as an activity, only one of them increased specifically as response to low
external phosphorus level [33]. Three to four acid phosphatase isoforms were detected in oat and barley tissues but only
one unique isoform was strongly induced by moderate Pi deficiency [14, 30]. In rice, several acid phosphatase isoforms
were  identified  corresponding  to  novel  secreted  purple  phosphatase,  OsPAP10c  overexpression  increased  the
accumulation of four isoforms of acid phosphatases in transgenic plants [49]. Recently, several studies demonstrated
that transgenic plants with higher expression of acid phosphatase genes, including a purple phosphatase genes, had
improved Pi acquisition and better biomass production [45, 49 - 51], thus contribute to a better understanding of acid
phosphatases function in plants.

CONCLUSION

The responses of rye, wheat, oat and barley to phosphorus starvation were similar to those observed for other crop
plants. Pi deficiency, at a moderate level, significantly affected the growth of shoots of the studied crop plants, this was
followed by enhanced activity of acid phosphatases both in -P root extracts and those secreted by roots. More prolonged
low Pi-stress strongly reduced shoot growth of all studied plants, however root elongation growth was not affected or
even enhanced. The crop plant acclimation to Pi deficit is dependent both on duration of stress condition, and plant
species/cultivar ability, e.g., wheat is more sensitive to lack of Pi than oat or barley. The efficient acclimation of growth
and metabolic processes of cereal plants to moderate Pi deficiency conditions are necessary to appropriately respond to
changes of environment and survive on low-Pi soil.
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