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Abstract: Surface electromyography (EMG) is a widely used, straight-forward, technique which allows to investigate 

patterns of neuromuscular activation. In contrast to the relative simplicity of the recording technique, the analysis of the 

derived electric signals may be rather sophisticated. The last decade, in particular, has been characterized by the 

development of a several quantitative approaches to the analysis of the EMG signals. The common principle underlying 

these analyses is the decomposition of the EMG signal waveforms in a small set of basis waveforms that capture most of 

the relevant features of the source EMGs and define a low-dimensional space on which the original EMG activation 

patterns can be represented as vectors. This could be particularly useful when the aim is to classify quantitatively EMG 

patterns recorded across muscles or from the same muscle across several motor tasks. Within this framework, this article 

will be focused on one of these approaches, the Principal Component Analysis, which has a strong potential for large scale 

diffusion both in research and clinical settings because of its conceptual simplicity and high practicality. The intent is to 

provide an overview/tutorial of the PCA applied to surface EMG signals, first by outlining the main methodological 

aspects and, then, by drawing examples from the movement control literature where PCA has been used effectively to 

gain insight on the neural processes that may underlie the control of common actions of our motor repertoire such as arm 

pointing and gait. 
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INTRODUCTION 

 Surface electromyography (EMG) is a relatively simple 
technique, widely used in both the clinical and the research 
field, which allows investigating the patterns of neuro-
muscular activation by applying pair of electrodes on the 
skin surface above the belly of selected muscles. In spite of 
the overall simplicity of standard surface EMG methods, the 
analysis of the derived electric signals may be rather 
complex and sophisticated. One reason for this complexity 
stems from the inherent nature of the surface EMG signals, 
which represents the electrical activity of a population of 
motor units. During motor behavior the population of motor 
units of a given muscle may be active simultaneously 
generating an easily recognizable burst-like waveform in the 
EMG signals derived from the skin surface. In other cases, 
however, motor units within a muscle, especially in bi-
functional muscles, may be activated with different timing 
and intensity, generating complex temporal waveforms of 
activation. Moreover, when studying the pattern of activity 
derived from several muscles throughout the body it 
becomes critical to find analytical means of comparing and 
describe synthetically the EMG activity across muscles. 
Conventional analyses of EMG signals, particularly in the 
clinical setting, are rather descriptive and generally focused 
on determining the timing of onsets and peaks as well as the 
duration  of EMG  bursts and on  characterizing the  intensity  
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of muscle activation by defining indexes like the EMG peak 
amplitude or the integral of the EMG burst. On one hand 
these analyses do not require much computational power and 
can be carried out rather easily by a clinician and/or 
researcher; on the other hand they offer a limited description 
of the potential complexity of the EMG activation pattern, 
especially when analyses of EMG waveforms across muscles 
are to be performed. During the last decade, in parallel with 
the rapid rise of the computational power available through 
personal computers, a number of quantitative analyses of the 
EMG signals have been developed in order to overcome the 
limitations of the conventional ones [1]. The common 
principle underlying these analyses is the decomposition of 
the EMG signal waveforms in a small set of basis waveforms 
that capture most of the relevant features of the original 
EMG activation patterns. These analyses are particularly 
useful when the aim of the study is to classify quantitatively 
EMG patterns recorded across muscles or from the same 
muscle across several motor tasks. The reduced number of 
basis waveforms extracted by means of these analyses 
define, in fact, a low-dimensional space on which it is 
possible to examine the distribution of the original EMG 
activation patterns. The waveform decomposition can be 
done in the frequency or temporal domain. Examples of 
waveform decomposition in the frequency domain are 
represented by Fourier analysis [2] and, in part, by wavelet 
analysis [3, 4]. Most methods that have been developed for 
EMG waveform decomposition operate in the temporal 
domain and are essentially variants of the factor analysis [5]. 
These include Principal component analysis (PCA), 
Independent component analysis (ICA), singular value 
decomposition (SVD) and non-negative matrix factorization 
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[6-11]. Although there is no ultimate factorization method 
and the choice among them should be carefully evaluated on 
the basis of the features inherent to dataset to analyze, PCA 
stands out both for its conceptual simplicity and also for 
practical reasons since it is supported by most commercial 
statistical software packages or it can be programmed rather 
easily. For these reasons, among other methods, PCA has the 
strongest potential for a large scale diffusion both in research 
and clinical settings to analyze large datasets of EMG signals 
derived from multi-electrode recordings. Therefore, this 
article is intended to provide an overview of the PCA applied 
to surface EMG signals, first by outlining the main 
methodological aspects in the form of a brief tutorial and 
then by drawing some examples from the movement control 
literature where PCA has been used effectively to gain 
insight on the neural processes that may underly the control 
of common actions of our motor repertoire such as arm 
pointing and gait. 

STATISTICAL BASIS OF PCA 

 Principal component analysis is a method to extract from 
a large dataset of waveforms (specifically, the EMG signals) 
a smaller number of waveforms, the basis waveforms or 
principal components, that describe the most common 
features represented in the dataset. In statistical terms, the 
principal components are the factors explaining most of the 
dataset variance [5, 12]. 

Covariance and Correlation 

 The PCA is based on the concepts of covariance and 
correlation. The covariance between two variables (X, Y) 
represents a measure of how much the two variables change 
together and it can be defined as: 

cov(X, Y) = E{[X - E(X)][Y – E(Y)]}           (1) 

where E is the mean value. 

 Correlation is related to covariance (see eq. 2) and it 
represents a measure of the linear relationship between the 
two variables that is, how much one variable varies as a 
function of the other (Morrison, 1990). It can be defined as: 

cor(X, Y) = cov(X, Y)/[sd(X) sd(Y)]          (2) 

where sd is the standard deviation. Note that because of the 
sd terms at the denominator, the correlation, unlike the 
covariance, is not influenced by the oscillations in amplitude 
of the two variables but only by their temporal relationship. 
Correlation between two variables is quantified by the 
Pearson product-moment correlation coefficient (r), which 
can assume values between -1 and 1. A positive correlation 
(or covariance) indicates that the two variables have similar 
trends while negative correlation (or covariance) signifies 
that the two variables have specular trends. If the two 
variables are unrelated the correlation (or covariance) 
coefficient is equal to zero. Fig. (1) illustrates examples of 
two variables which can be strongly correlated (r = 1), not 
correlated (r = 0) or anti-correlated (r = -1). 

 

Fig. (1). Correlation between two variables. (A) Two variables 

showing maximal positive correlation (r = 1). (B) Uncorrelated 

time-series (r = 0). (C) Anti-correlated time series: the two 

variables have specular trends (r = -1). 
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Computing the Principal Components 

 The first step to perform a PCA is to compute either the 
covariance or the correlation matrix of the dataset variables, 
that is the EMG signals. From the definitions of correlation 
and covariance mentioned above, it follows that PC 
extracted from a covariance matrix will be dominated by 
signals with larger amplitudes, whereas those extracted from 
a correlation matrix will be influenced only by the temporal 
relationships among the original time-series. In effect, the 
application of PCA to EMG signals is mostly concerned with 
identifying common temporal features across EMG signals 
and therefore a correlation matrix represents the elective 
choice. In order to compute the correlation (covariance) 
matrix, the raw EMG signals must be preprocessed by means 
of rectification, low-pass filtering (cut-off frequency: 10-20 
Hz) and normalization of the time-base (for example, if gait 
data are being processed, EMG signals could be normalized 
to the fraction of the gait cycle). 

 In essence, the PCA extracts from the correlation 
(covariance) matrix: 

1. the eigenvectors namely, the directions of the 
orthogonal axes, which account for most of the 
dataset variance; 

2. the eigenvalues, i.e, the scalar component of the 
eigenvectors, which indicate the fraction of the total 
variance accounted for by each eigenvector; 

3. the principal components or factor scores (PC), which 
represent the waveforms associated to each 
eigenvector/eigenvalue; 

4. the weighting coefficients or factor loadings (FL), 
which represent the Pearson correlation coefficients 
between the principal components and each original 
EMG waveform so that the original EMG signal 
could be reconstructed by the weighted sum of the 
principal components: 

EMG = pc* fl
1

n

            (3) 

 The PCs extracted with this method are ordered on the 
basis of the fraction of variance explained and usually, 
depending on the complexity and the size of the original 
dataset, 2 to 5 PCs can account for up to 80-90% of the total 
variance. This represents a remarkable reduction of the 
dimensionality of the dataset. In fact, the low-order PCs 
define a low-dimensional space on which the original dataset 
of EMG signals could be represented by using the weighting 
coefficients as vector coordinates. In the PC space, EMG 
signals that share similar temporal components will tend to 
cluster together whereas those that show different temporal 
patterns will be far apart. Fig. (2) illustrates one example of 
such PC space representation. The first two PCs extracted 
from a dataset of 25 original waveforms accounted for more 
than 80% of the total variance and the original waveforms 
have been plotted as vectors using their weighting 
coefficients in the bi-dimensional space defined by these two 
PC waveforms. Note that the original waveform shown in 
the inset is heavily weighted on the first PC. 

Rotation of the Principal Components 

 The PC waveforms extracted using the procedure 
described above represent a mere statistical description of 
the common features across the dataset and may not have 
any particular functional significance. In order to improve 
the interpretability of the results of a PCA, several 
algorithms that perform iterative rotations of the PC axes 
have been developed with the aim of forcing the resulting PC 
waveforms to be more adherent to the original dataset. PC 
rotations are subdivided in two families, orthogonal and 
oblique rotations, depending on whether or not the 
orthogonality (i.e. the independence) of the PC axes is 
preserved. The type of rotation that is found to be employed 
most often with PCA of EMG signals is the Varimax 
rotation. This is an orthogonal rotation of the PC space 

 

Fig. (2). Principal components space. Principal components were extracted from a dataset of 25 waveforms. The first two PCs explain more 

than 80% of the total variance and their waveforms are graphed next to the corresponding axes. The original time series are represented as 

vectors in the bi-dimensional PC space (red circles). Inset shows the original waveform associated with the data-point indicated by the 

yellow arrow. 
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which redistributes the variance explained more evenly 
among the PCs by forcing the weighting coefficients to 
either maximal (1 or -1) or null values (see Fig. 3). 
Consequently, each original EMG signal will be described 
by fewer PCs and the PC waveforms will be more similar to 
the original EMG waveforms, making the results of the PCA 
potentially more interpretable. 

 

Fig. (3). Varimax rotation. (A) PC space before the application of 

the varimax rotation. (B) PC space after varimax rotation. Rotated 

axes are dashed and the rotation angle is indicated on the right side 

of the graph. Note that after varimax rotation, data-points 

representing the original time-series (red circles) lay closer to the 

PC axes. 

WHAT CAN BE LEARNED FROM PCA OF 

ELECTROMYOGRAPHIC DATA? 

 In sum, PCA is a powerful technique that identifies 
common temporal patterns across large datasets of time-
series like EMG signals and defines a low-dimensional space 
on which the original signals could be represented as vectors 
and classified. Then, how can PCA be used effectively to 
analyze EMG patterns? There could be at least two potential 

applications of this method with clear and rather insightful 
examples coming from the motor control literature. One 
possible application of the PCA would be to study the 
electromyographic activity of individual muscles recorded 
during several variants of one motor action (or even different 
motor behaviors) and characterize the temporal patterns of 
activity associated to different components of the motor 
action. A study by Flanders and Herrmann [6], which 
pioneered the use of PCA on EMG data, exemplifies this 
first type of PCA application. These authors recorded the 
EMG activity of several arm muscles while human subjects 
were instructed to perform pointing movements at various 
speeds to targets in different directions. They performed 
PCA of the EMG signals recorded from individual muscles 
during movements to one target at different speeds with the 
aim of identifying components of muscle activity that could 
be related to movement speed. PCA identified only two 
components of muscle activity that explained most of the 
variance in the EMG patterns. By rotating the PC space, 
Flanders and Herrmann found that the two PCs were 
represented differently in the EMG activity associated to 
pointing movements at different speeds. The first PC 
contributed equally to the EMG activity at different speeds, 
since its weighting coefficients did not vary with movement 
time. In contrast, the contribution of the second PC scaled 
with movement time, as its weighting coefficients showed a 
clear monotonic trend. This result was interpreted by the 
authors as evidence for two separate premotor signals 
driving the motoneuronal pools during arm movements. One 
speed-independent signal, described by the first PC, would 
be responsible for generating muscle forces to counteract the 
effect of gravity, whereas the other premotor signal 
identified by the second PC would produce phasic muscle 
activation which scales with movement speed. 

 Another potential application of PCA relates to the 
analysis of patterns of electromyographic activity recorded 
by means of multi-electrode systems (up to 32 electrodes) 
from many muscles throughout the body during one or more 
motor actions. PCA, then, may be used to identify spatial-
temporal neuromuscular synergies underlying the motor 
behavior. In this respect, Ivanenko and colleagues have 
performed a series of insightful studies using PCA with 
varimax rotation to analyze EMG data recorded from 16 to 
32 muscles throughout the body during several locomotion 
conditions which included walking, running, various levels 
of body weight support (BWS) and coordination of 
locomotion with voluntary actions, such as kicking a ball or 
grasping an object [7, 13, 14, 15]. They identified five basic 
component waveforms that explained about 90% of the total 
variance across different muscles activation waveforms 
during normal gait. These component waveforms tended to 
be timed relative to the foot lift-off and were invariant with 
respect to walking speed and body weight unloading. 
Moreover, by using correlation analyses, it was found that 
two of the component waveforms were systematically 
related to the foot kinematics, suggesting that few spinal 
oscillators can control the limb and the trunk muscles to 
produce the locomotion kinematics [7, 13]. Interestingly, the 
five basic muscle activation waveforms were invariably 
present also when the locomotion motor program had to be 
coordinated with some additional voluntary action (kicking a 
ball, stepping over an obstacle or grasping an object from the 
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ground). The component waveforms, however, were 
weighted differently across muscles in the different 
locomotion conditions and a separate activation component, 
temporally related to the voluntary task, could be also 
present. According to the authors of this study, these results 
imply that coordination of locomotion with the voluntary 
task was achieved with a combination of distinct temporal 
activation patterns for locomotion and the voluntary task, 
consistent with the idea that compound movements may be 
accomplished by virtue of a superposition of motor programs 
[14]. Finally, PCA was also used to analyze EMG data 
recorded from spinal patients supported with a BWS system 
and trained to step on a treadmill. It was found that, at the 
end of the training program, patients produced similar foot 
kinematics to that of control healthy subjects but using 
different activations of individual muscles [13]. However, 
PCA indicated that in patients the basic set of five temporal 
components was preserved and that the large variability of 
muscle patterns observed between controls and patients 
could be explained by flexible combinations of the same 
basic component waveforms. This result suggested further 
that the basis waveforms identified by the PCA could be 
related to control signals output by spinal pattern generators. 

 In conclusion, the applications of PCA of EMG data 
outlined here highlight the potential for this method (as well 
as for similar waveform decomposition methods) to capture 
features from surface EMG signals that can provide insight 
not only on the activation state of motoneurons, but also on 
the nature of the premotor control signals, opening new 
windows for both neurophysiological and clinical/ 
rehabilitation studies. 

ABBREVIATIONS 

BWS = Body Weight Support 

EMG = Electromyography 

FL = Factor Loadings 

ICA = Independent Component Analysis 

PC = Principal Components 

PCA = Principal Component Analysis 

SVD = Singular Value Decomposition 
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