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Abstract: This work introduces Particle Swarm Optimization (PSO) to protein structure prediction as a new field of ap-
plication. Finding the global optimum in the free energy landscape of protein structures is a challenging, non-trivial task 
and has been subject of research for decades, resulting in many different approaches and methods until today. Here we 
show that a standard implementation of PSO is capable of optimizing backbone geometries and generating good solutions 
in refolding studies, yielding near native structures for two small sample proteins. We present a straightforward approach 
to include secondary structure information in the optimization process and show that results improve. Finally, a first pre-
dicted structure from ab initio folding by PSO is shown where native topology could be captured with a basic energy 
function, giving a promising outlook on future research. 

INTRODUCTION 

 For many small proteins and protein domains, prediction 
of their three-dimensional (3D) or “tertiary” structure from 
the amino acid sequence (“primary” structure) should be 
feasible, as many such proteins fold and re-fold independ-
ently and spontaneously in an aqueous environment [1, 2]. 
For example, single-domain proteins adopt their native con-
formation typically on a millisecond time scale. During the 
past 40 years, numerous attempts have been made that con-
sider protein folding an optimization problem [3]. The true 
challenge is ab initio folding of an amino acid sequence, 
either by simulating the folding dynamics or direct structure 
prediction without knowing the native state. Because of the 
many degrees of freedom of an amino acid sequence, this 
cannot be achieved by exhaustive evaluation of all theoreti-
cally possible conformations available to a given protein 
(Levinthal paradox). It is generally assumed that protein 
folding dynamics follow a directed process rather than ran-
dom sampling [4]. Various potential functions and prediction 
methods have been developed for the purpose of protein 
structure prediction and simulation of folding dynamics [5], 
and tertiary structure prediction has become feasible for an 
increasing number of sequences [3, 6]. The energy functions 
used as quality criteria for folded protein states may also be 
used to analyze the potential energy landscape for solved 
protein folding problems [7]. 

 In this study, we demonstrate that particle swarm optimi-
zation (PSO) [8, 9] can be applied to predict the tertiary 
structure of a protein backbone in re-folding experiments. In 
this setting, an experimentally determined protein tertiary 
structure serves as the reference for optimization of a random 
coil conformation or heterogeneous denatured state ensemble 
of the same protein [10, 11]. In other words, by re-folding a 
successful optimization process converges at a known opti-
mum. PSO seems an intuitive choice for this purpose as the 
“native state” of a protein tertiary structure essentially repre-
sents an ensemble of low-energy structures [12, 13], which 
can be mimicked by a swarm population of individual  
 
 

*Address correspondence to this author at the Johann Wolfgang Goethe-
University, Chair for Chem- & Bioinformatics, Frankfurt am Main,  
Germany; E-mail: gisbert.schneider@modlab.de 

protein backbone conformations. The aim of our study was 
not to perform realistic forward folding simulation but to 
introduce PSO as an optimization technique for protein 
structure prediction. We restrict our discussion to small pro-
teins that fold spontaneously and independently from mo-
lecular “chaperones” [14]. We show that PSO yields native-
like conformations of simplified protein backbone models in 
re-folding experiments, and leads to properly folded confor-
mations in a prospective setting using a knowledge-based 
potential function. 

METHODS 

 Particle swarm optimization (PSO). In this study, we 
employed a common variant of PSO, the constriction-type 
PSO [15]. In the following, we refer to this PSO implemen-
tation as “CPSO”. Here, each particle was initialized at a 
random position in search space. The position of particle i is 
given by the vector xi = (xi1, xi2, …, xiD) where D is the di-
mensionality of the problem. Its velocity is given by the vec-
tor vi = (vi1, vi2, ..., viD). 

 The applied variant of constriction-type PSO, imple-
mented as in reference [16], contains of two kinds of mem-
ory that influence the movement of the particles: In the 
“cognitive memory” pi = (pi1, pi2, ..., piD) the best previous 
position is stored that was visited by each individual particle 
i. The vector pbest = (pbest1, pbest2, ..., pbestD), also called “social 
memory”, contains the position of the best point in search 
space visited by all swarm particles so far. By sharing this 
information within the swarm population, particles can imi-
tate more successful individuals and improve their own fit-
ness. Over optimization time, the swarm converges in an 
optimum after having explored the search space. 

 In each epoch, the velocity of every particle is updated 
according to Eq. (1): 
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where n1 and n2 are positive constants called “cognitive” and 
“social” parameters that weight the influence of the two 
types of swarm memory; r1 and r2 are pseudo-random num-
bers in [0,1]; K is the constriction factor as defined by Eq. 
(2). 
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 For all experiments, we applied n1 = n2 = 2.05, as rec-
ommended by others (e.g. [17]). 

 The constriction factor K controls the magnitude of the 
particle velocity and can be seen as a dampening factor. It 
provides the algorithm with two important features [18]: 
First, it often leads to a faster convergence than standard 
PSO [18]. Second, the swarm maintains its ability to perform 
broad movements in search space even when convergence is 
already advanced but a new optimum is found. CPSO has a 
potential ability to avoid being trapped into local optima 
while possessing a fast convergence capability [18]. 

 In our experiments a restriction constant Vmax was applied 
to control the maximal velocity of the particles. Velocities 
exceeding the threshold set by Vmax were set back to the 
threshold. Due to our search space (angular degrees), Vmax 
was set to 180. 

 Based on the velocity vector the positions of the particles 
were updated according to Eq. (3): 
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 We employed a maximum number of 2000 epochs as 
termination condition for the algorithm and chose a swarm 
size of 20 particles. 

 Particle initialization. In ab initio protein structure pre-
diction, every swarm particle represents a distinct backbone 
conformation. For our simulations we chose a coarse-grained 
“beads-on-a-string” backbone model, which has been used in 
various previous studies [19, 20, 21]. The geometry of the 
protein is hereby described by just two free parameters, the 
phi ( ) and psi ( ) torsion angles (Fig. 1). According to this, 
the number of dimensions D to optimize is for each particle 
is given by Eq. (4): 

D = N 2 2      (4) 

where N is the number of amino acids. The first (N-terminal) 
and last (C-terminal) residue contains only one torsion angle. 
Each dimension was initialized in the range of [-180, 180], 
unless secondary structure constraints were exerted. 

 In order to test whether the inclusion of predicted secon-
dary structure information can reduce the complexity of the 
search, the following constraints to the dimension ranges 
were included: 

-helical regions:  in [-65, -50],  in [-55, -40]. 

ß-strand regions:  in [-120, -110],  in [125, 135]. 

 Since these restrictions in structural space are based on 
secondary structure predictions, there is the possibility that 
important regions in the solutions landscape are not sampled 
in case of incorrect secondary structure assignments. We 
used the PredictProtein web server (www.predictprotein. 
org; version May 2007) [22] to predict secondary structure 
( -helix, ß-strand) from the amino acid sequence. Note that 
only a limited degree of flexibility that can occur in secon-
dary structure elements is taken into account with the above 
defined ranges. 
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Fig. (1). Protein backbone architecture. Proteins are bio-
polymers consisting of amino acids, which are connected via 

planar amide bonds (C=O-NH). (a) The amino acid side chains 
are neglected in the beads-on-a-string model of a protein back-
bone. (b) Here, only two parameters determine the fold, the phi 
( ) and psi ( ) torsion angles. The planar peptide bond is 
shown as a bold line. In our study, peptide bonds were consid-
ered to be in all-trans conformation, and idealized backbone 
angles and bond lengths were used for structure generation. C  
atoms were used for structure alignment and calculation of the 
rmsd fitness function (see text). 

 Two small proteins were used as examples, their experi-
mentally determined atom coordinates were taken from the 
Protein Data Bank (PDB) [23]: i) a sub-domain from chicken 
protein Villin containing 35 amino acid residues with an all-

-helix fold (PDB identifier: 1vii, NMR model 1) [24], and 
ii) the immunoglobulin binding domain of streptococcal pro-
tein G encompassing 56 amino acid residues with a mixed 
alpha-beta (ubiquitin-like) fold (PDB identifier: 2gb1, NMR 
model 1) [25]. Sequences and secondary structure predic-
tions are shown in Fig. (2). 

 Scoring function for protein backbone folding. We 
performed protein re-folding simulations using the root mean 
square deviation (rmsd) between the actual backbone struc-
ture represented as a swarm particle and an experimentally 
determined structure (from the PDB; interpreted as the “na-
tive” structure) as fitness function (Eq. 5). 
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where di gives the spatial distance (in Å) between two corre-
sponding backbone atoms of residue i, and n is the total 
number of atom-pairs considered. Each generated structure is 
aligned to the native structure, and the rmsd is calculated 
over all C -backbone atoms (Fig. 2b). We used the rmsd as 
the most obvious scoring function, in order to assess the abil-
ity of CPSO to find a good set of torsion angles that models 
the native geometry best. 

 Since the rmsd value alone can only be taken as a rough 
measure of fold similarity [26], we also calculated the ratio 
of the C  contacts found within a fixed range of 8  in the 
generated structure and the contacts found in the native 
structure. The distribution of contacts present in a planar 
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backbone chain is used as reference (background) state, so 
only contacts formed through the protein fold are considered 
(Eq. (6)). 

observednative

nativelike
ratio =

2

   (6) 

 In some of our folding studies, two additional scores 
were applied: To favor a globular overall shape, a “confine-
ment score” [27] was employed. This score disfavors struc-
tures with a radius of gyration (Rg) above a certain expected 
value typical for a globular protein with a similar number of 
residues (Eq. (7)). 

( ) >

=

globggglobgg

globgg

RRRR

RR
tConfinemen

,

,0

2
 (7) 

where Rg is the radius of gyration of the template structure 
and Rg-glob is the expected radius of gyration (Eq. (8)): 

Rg glob = 2.5 N 0.34     (8) 

 We used the same prefactor value as Fleming et al. [20], 
thus putting slightly more pressure on globularity than in the 
original confinement score (prefactor = 2.83). 

 To avoid steric clashes between the modeled backbone 
atoms, the “soft-debump potential” described by Gong et al. 
[27] was applied. This potential acts as soft-sphere potential 
when the inter-atomic distance is smaller than the sum of the 
respective atoms van der Waals radii, otherwise a pseudo-
energy of zero is applied (behavior of a hard-sphere poten-
tial). 

 To estimate the energy of the generated structures in the 
preliminary prediction study, a basic statistical contact po-
tential [28, 29] was calculated from a set of PDB-chains 
taken from the PDBselect list [30] of July 2005. A radius of 
5  between the van der Waals surfaces of the atoms was 
chosen, all inter-atomic distances between C -atoms below 
this threshold were defined as “contacts”. By invoking the 
inverse Boltzmann approach [28], a pseudo-energy is calcu-
lated for a new structure, based on the present contacts. 

 In the prediction run, we used the weighted sum of the 
pseudo-energy, the confinement score and the score from the 
soft-debump function as energy function. 

 

RESULTS AND DISCUSSION 

 In our first study, we wanted to assess the ability of 
CPSO to tune each backbone torsion angle such that the op-
timized structure resembles the native one best in terms of 
C -backbone atoms. We also compared the CPSO perform-
ance in simulations with and without the inclusion of infor-
mation from secondary structure prediction. For each ap-
proach, 50 separate optimization runs were performed. 2,000 
iterations and a swarm size of 20 particles were chosen for 
optimization. The mean rmsd value, standard deviation and 
minimum rmsd from the best run for both approaches are 
listed in Table 1. 

Table 1. Results of CPSO-Based Protein Folding Simulation 
with the rmsd (Å) Fitness Function 

 

 With Secondary 
Structure 

Without Secondary 
Structure 

Protein identifier 1vii 2gb1 1vii 2gb1 

Mean rmsd 1.61 2.10 2.48 2.80 

Standard deviation 0.53 0.37 0.30 0.30 

Minimum rmsd  
(best structure) 

0.79 1.17 1.77 2.22 

 
 In both cases, CPSO was able to converge close to the 
native conformation. The inclusion of predicted secondary 
structure elements yielded lower rmsd values, as expected. 
The restriction of conformational space improves the mean 
rmsd. Also, the best structure generated under consideration 
of the secondary structure predictions is closer to the native 
structure than the best structure out of the runs without any 
restraints. Fig. (3) shows the best results for both approaches. 
This outcome demonstrates the usefulness of CPSO for pro-
tein folding simulation. 

 One should bear in mind that the use of idealized back-
bone angles and bond lengths introduces a systematic error 
to the simulation that makes exact refolding (rmsd = 0) un-
likely and can introduce relatively large rmsd aberrations 
[31]. This is one probable explanation why no CPSO run 
came closer to the perfect alignment with rmsd ~ 0. 

 Then, we analyzed swarm behavior for different numbers 
of particles. 50 independent CPSO runs over 2,000 iterations  
 

 

 

Fig. (2). Amino acid sequences of the two model proteins used in this study (PDB identifiers 1vii and 2gb1). Secondary structure 
predictions are given below each residue (H: helix, E: sheet). Underlined residues indicate actual, experimentally observed secondary 
structure elements. 
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Fig. (3). Superimposed conformations of the best simulated 
structures (red) with the reference conformation ( “native” struc-
ture) in blue. On the left, the results from folding with secondary 
structure constraints are shown, the simulated conformations 
without secondary structure are shown on the right. Here, only 
approximative helical elements have evolved, which is a conse-
quence of the lacking consideration of any terms accounting for 
interaction energy. 

 

Fig. (4). Course of structure optimization by CPSO for the best 
final conformation of model protein 1vii. Average rmsd values 
and standard deviations of the swarm population (20 particles) 
are shown. 

were performed with 10, 20, 30, 50, and 100 particles, re-
spectively. Again, reference structure 1vii served as model 
protein. We found no striking dependency of the average 
rmsd value on the swarm size (Fig. 5). Runs with secondary 
structure constraints yielded lower average rmsd values than 
the CPSO without secondary structure constraints in all runs. 
Notably, overall swarm diversity (expressed as rmsd stan-
dard deviation) was lower in the unconstrained runs (Fig. 
(5), open circles). This reflects a more localized, fine-grained 
search compared to conformation sampling with fixed sec-
ondary structure elements. 

 Fig. (6) shows the correlation between rmsd values and 
the ratio of correct (native) contacts for both simulated struc-
tures. For rmsd values < 2 Å (1vii) and < 4 Å (2gb1) a corre-
lation is visible, while there seems to be little or no correla-

tion for greater rmsd values. This suggests that below these 
thresholds the simulated protein conformations are native-
like. This result is in agreement with ab initio folding simu-
lations performed by Shakhnovich and coworkers, who de-
termined an rmsd threshold of 2-6 Å for the lowest energy 
structures of a representative set of proteins, irrespective of 
their structural classes [32]. 

 

Fig. (5). Dependency of the optimization result (average rmsd 
value) on the swarm size (number of particles) for folding of pro-
tein 1vii. Error bars give standard deviations calculated from 50 
independent CPSO runs. 

 Finally, ab initio folding of 1vii was performed with a 
simple pseudo-energy function and inclusion of the predicted 
secondary structure regions. A weighted sum out of the 
pseudo-energy and two terms punishing steric clashes and 
deviations from an expected radius of gyration was com-
puted. No further optimization of these energy functions was 
performed; this is subject of ongoing research. We present 
here one example of a successful optimization run, where 
topology of the structure 1vii was correctly captured, result-
ing in a final rmsd ~ 4 Å (Fig. 7). One out of the three -
helical elements exhibits an angular shift, while the other 
helices are accurately aligned to the native structure. A major 
fraction of the rmsd error origins from derivations in the loop 
regions as well as on the N- and C-terminal ends of the se-
quence. 

 This result is overall promising, but requires further in-
vestigation. It is reasonable to assume that more sophisti-
cated scoring functions will improve the outcome of the 
simulations, and work on this field is in progress. CPSO also 
requires extensive testing with larger proteins. A major limi-
tation of the scoring function and protein representation used 
in this study is the total negligence of amino acid side chain 
interactions [2]. From the simulations with predicted and 
fixed secondary structure elements one can see that hydrogen 
bonding between backbone atoms must be taken into account 
to achieve realistic folded structures. Our simplifying beads-
on-a-string representation does not allow for this. Another 
shortcoming is the imperfect correlation between score and 
degree of “nativeness” modeled by the scoring function used 
here. It is evident that with increasing correlation between 
these two parameters, the optimization should perform better 
in ab initio folding. 
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Fig. (7). 

CONCLUSIONS 

 In this work we have introduced PSO as a heuristic to the 
problem of simulated protein folding and structure predic-
tion. We have demonstrated that CPSO is feasible of suc-
cessfully tuning protein backbone torsion angles in refolding 
experiments, producing near-native structures. This implies 
that with the use of an appropriate energy function ab initio 
protein structure prediction should be feasible. Rigorous sta-
tistics for the ab initio prediction of a set of small protein 
structures are required to probe the usefulness of PSO in 
applied protein structure prediction, along with a comparison 
of the method to the performance of other common heuris-
tics like Monte Carlo sampling or simulated annealing [32, 
33]. Also, modifications to our naïve and straightforward 
approach might bring improvement. One possible working 
point for improvements is the way how search space is rep-
resented and dealt with. Search space can be limited in more 
ways than just by including secondary structure constraints, 
For example, each residue can usually only occupy a limited 
region in torsion angle space, and by incorporation of this 
information an additional reduction of search space might be 

achieved. We are currently working on the development of 
such more advanced models for protein folding by PSO. Ir-
respective of the outcome of these particular studies, the 
amalgamation of PSO and protein folding simulation should 
provide an interesting alternative to existing methods that are 
commonly used. 
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