
 The Open Software Engineering Journal, 2007, 1, 1-20 1

 1874-107X/07 2007 Bentham Science Publishers Ltd.

Integrability and Extensibility Evaluation from Software Architectural
Models – A Case Study

K. Henttonen*, M. Matinlassi, E. Niemelä and T. Kanstrén

VTT Technical Research Centre of Finland

Abstract: Software systems are composed of components acquired from different sources, e.g. subcontractors, component

providers, and open source software providers. Therefore, integrability is one of the most important qualities in software

development. Extensibility is especially important in open source software systems because they evolve according to the

needs of the user community and often into a direction not originally foreseen. Integrability evaluation refers to testing if

separately developed components work correctly together. Extensibility evaluation focuses on how new features, origi-

nated from customers’ demands or new emerging technologies, could easily be developed and exploited in systems with-

out losing existing capabilities. The impact of changes to the system also has to be estimated. This can be done by a

method called IEE, which enables extensibility and integrability evaluation from software architectural models. The con-

tribution of this paper is to introduce the IEE method and illustrate how it is to be used with a real world case study. In the

case study, we applied the IEE in evaluating the architecture of an existing open source tool. Evaluation revealed a need to

introduce two new extension points to the architecture and also that an integration framework is needed to integrate the

tool under evaluation with other supporting tools.

Keywords: Integrability, extensibility, evaluation, quality, modeling, software architecture, quality-driven, software family,
open source.

INTRODUCTION

 Software systems, especially software families, are inte-
grated systems based on proprietary components, commer-
cial components, open source components and specific com-
ponents of 3rd parties adapted to the needs of particular
software systems [1,2,3]. In this context, software family
refers to a collection of software-intensive systems that share

common features and architectural concepts in order to fulfil a

specific mission. The quality of the used heterogeneous com-
ponents has a strong influence on the quality of target sys-
tems, because the scope of a software family architecture is
broader than that of a single system architecture. The quality
of a family architecture is of high importance because it is a
long term investment; the life span of a family architecture
ranges from 5 to 25 years. The aim of integration is to cut
down development costs and to shorten the time to market
by using components that can be integrated together for
achieving the desired functionality. Because of changing
customer needs, there is a challenge to keep software archi-
tecture stable and flexible at the same time. It is not easy to
continuously provide new products to the markets based on
emerging technologies, and still to remain competitive in
terms of product quality. In software families, the trend is to
concentrate on the differentiating parts of systems and to use
the 3rd party software for commonalities [4]. Thus, inte-
grability may be even more important in the development of
software intensive systems in the future than it is today. Be-
cause of the unpredictability of changes in customer needs
and markets, architecture has to remain flexible, allowing
new features and components to be added to software sys-
tems during their evolution.

*Address correspondence to this author at the VTT Technical Research

Centre of Finland; E-mail: katja.henttonen@vtt.fi

 The importance of extensibility and integrability is par-
ticularly evident in the context of open source software.
Open source software development is global movement that
seems to be changing the way of software development as
we have known it so far. Open source software is made
available with its source code and under a license that allows
anyone to use, modify, and distribute the modified or un-
modified version of the software [5]. It is mostly developed
by volunteers who work in a distributed environment [6].
Eric Raymond [7] resembled the open source development
into “a great babbling bazaar of differing agendas and ap-
proaches”. In other words, open source software systems are
constructed from modules developed by business and com-
munity actors whose skills, interests and agendas may vary
significantly. The requirements engineering process is typi-
cally incremental, user-driven and decentralized and there-
fore the requirements are most likely to increase beyond
those foreseen [8,9].

 Although there are a number of different quality evalua-
tion methods and techniques available, e.g. for evaluating
interoperability [10, 11], extensibility [12], architecture
mismatches [11, 13] and multiple quality attributes [14], to
our knowledge there is no method for integrability and ex-
tensibility evaluation that would cover software development
from integrability and extensibility (IE) requirements speci-
fication to architecture design and that would enable quality
evaluation from architectural models. Scenario development
and scenario evaluation are the common activities for all
scenario-based methods. The main differences between
methods are; how early in the software architecture design
the method is used, what quality attributes the method sup-
ports and how easy it is to apply and integrate to the design
process [15].

 Our contribution is an IEE (Extensibility and Integrabil-
ity Evaluation) method that is an integrated part of the

2 The Open Software Engineering Journal, 2007, Volume 1 Henttonen et al.

QADA® (Quality-driven Architecture Design and quality
Analysis) methodology [16]. If a software architecture has
been developed in accordance with QADA, the use of the
IEE method takes only some extra working hours. The
method can be easily learned and adopted by architects and
quality engineers, especially if already familiar with the
principles of QADA. The method supports two quality at-
tributes, integrability and extensibility, which are of great
importance for evolvable software systems. QADA also pro-
vides other evaluation methods, e.g. RAP (Reliability and
Availability Prediction) [17] and AEM (Adaptability Evalua-
tion Method) [18], for other quality attributes. In this paper,
the IEE method has been applied to a case called Stylebase
for Eclipse

1
. The case study is an open source tooling envi-

ronment for software architects and designers.

 The structure of the paper is as follows. The background
section introduces the topic by discussing the selected as-
pects of software architecture. After that an overview of the
IEE method is provided, followed by the description of the
case study. The case exemplifies how the method can be
used to evaluate integrability and extensibility aspects from
architectural models. The main sections in evaluation are
impact analysis, quality and variability analysis, hierarchical
domain analysis, scenario modeling and quality evaluation.
Discussion summarizes our experiences on using the method
and concludes the paper.

BACKGROUND

Software Architecture

 A commonly agreed
2
, short definition of software archi-

tecture is the structure of the software system including
components and relationships. Further, in literature, there has
been defined at least seven different meanings for software
architecture. In general, architectural models document ar-
chitecture to the body of knowledge for reusing the architec-
ture at multiple levels of granularity [19, 20, 21]. Quite re-
cently some guidelines for software architecture documenta-
tion, such as [20,22], have emerged.

 Further, architecture models are a manifestation of the
earliest design decisions [23,20,21] and a means of abstrac-
tion [20,24] to understand the system. Examples of design
decisions are the decisions such as “we shall separate user
interface from the rest of the application to make both user
interface and application itself more easily modifiable”.
Manifestations of the design decisions are many and they
may even be as small as definition of components and con-
nectors.

 Also, software architecture models can be seen as the
language for communication [23,20,21,24]. The role of ar-
chitecture models is also to provide analysis opportunities at
early stages of development [19,20]. Architecture model is
also an expression of the system’s evolution [19,20] and a
management instrument [20,24].

 As the meanings of software architecture are many, the
role of software architect has become very demanding. The
level of abstraction has risen, required amount of cumulative
knowledge has exploded and international and multicultural

1http://stylebase.sourceforge.net
2http://www.wikipedia.org

environments with geographically distributed development
sites emphasize an ability to communicate ideas clearly.
Clements et al. [26] made quite an extensive survey on the
duties, skills and knowledge required from software archi-
tects today. The survey covered, e.g web pages, books, job
descriptions and university courses on software architecture.
This study considered that software architect and quality
analyst play one role and therefore, the duties of software
architect include project and requirements management and
also architecture evaluation and analysis duties. In addition
to communication skills, an architect needs the skill for ab-
straction, i.e. skills for handling the unknown and skills for
handling the unexpected. These are two different but related
skill sets. Skills are important but, useless without competent
and appropriate knowledge on e.g. computer science, archi-
tecture concepts, technologies and platforms, programming
and knowledge on organization’s context and management.

 Considering architecture concepts - among the most im-
portant ones are software patterns. Software patterns
[23,26,27] encapsulate the idea of communicating insight
and experience about common software engineering prob-
lems and their solutions [23]. Nowadays, software commu-
nity is using patterns widely for software architecture and
design. An architectural pattern expresses a fundamental
structural organization schema for software systems, which
consists of subsystems, their responsibilities and interrela-
tions [26]. For example, layered architecture is a call-and-
return style, when it defines an overall style to interact.
When it is strictly described and commonly available, it is a
pattern [26]. A design pattern is smaller in scale, describing a
schema of communicating objects on design level. Design
patterns are based on practical solutions implemented in
mainstream programming languages [27]. Each software
pattern implements tactics to achieve a particular goal (e.g.
better performance or dynamic extensions) and also makes
choices about tactics. Therefore, patterns are often concerned
with different quality attributes and the design process in-
volves making a choice of which patterns best provide the
desired qualities [28].

 Generally speaking, qualities, quality goals, quality at-
tributes, quality requirements or, non-functional require-
ments, see e.g. [29,30,23,31], answer to the question how
well whereas software functional requirements answer the
question what. In the next section, it is discussed about qual-
ity-driven software architecture development i.e. an architec-
ture design and analysis approach that is driven by quality
goals.

Quality-Driven Software Architecture Development: De-
sign and Analysis

 Quality-driven software architecture development em-
phasizes the importance of qualities, wherein qualities refer
to the non-functional properties of software products. The
approach relies on gathering, categorizing and documenting
quality properties as at least equally important requirements
as functional requirements and constraints, and utilizing the
gained knowledge in architectural design. The quality-driven
design is further complemented with an architectural analy-
sis. Architectural analysis is about testing the architecture
model produced in the design, i.e. verifying whether the ar-
chitecture meets the quality goals set in the very beginning.

Integrability and Extensibility Evaluation from Software The Open Software Engineering Journal, 2007, Volume 1 3

These two activities combined together form an interacting
pair of activities in software architecture development

3
.

 The work described in this article is a part of a long-term
research started in 2000 [32], namely the development of the
QADA® (Quality Driven Architecture Design and Analysis)
methodology. The development has been done in a sequence
of various types of research projects involving several re-
searches, each project and researcher focusing on certain
part(s) of the methodology. The research approach of the
whole concept is to create, validate and improve parts of the
methodology as methods, techniques and realizations, to
evaluate the parts and therefore to iteratively elaborate the
methodology. Methodology parts are individual methods,
wherein a method [33] denotes (1) an underlying model, (2)
a language, (3) defined steps and ordering of these steps and
(4) guidance for applying the method complemented with (5)
tool support.

 The focus of the QADA methodology is on identifying as
many as possible of the design problems and quality goals in
architecture design and analysis. In the design, this is
achieved by identifying system stakeholders, analyzing tar-
get system quality goals from the point of view of several
different stakeholders and describing the architecture and
quality with models from various viewpoints so that the ap-
propriate knowledge reaches each stakeholder. The analysis
considers quality goals of architecture and products from the
point of view of at least developers, users and customers.

Integrability and Extensibility as Quality Attributes

 Integrability means an ability to make separately devel-
oped components of a system to work correctly together.
Integrability is related to interoperability and again, inter-
connectivity. Interoperability is the ability of software to use
the exchanged information and to provide something new
originated from exchanged information whereas interconnec-
tivity is the ability of software components to communicate
and exchange information. Thus, interconnectivity is a pre-
requisite for interoperability and those two - interconnectiv-
ity and interoperability - are intertwined with functionality
and visible at runtime [3].

 Integrability has a decisive impact on the development
and evolution of a system, due to which it should be taken
into account as well as the other features of a system family,
such as domain requirements, coarse grained architectural
elements and the practices used for developing and maintain-
ing a system family and deriving products from it. Interoper-
ability is considered when components and their interactions
are defined in detail and finally observed as executable mod-
els, simulations and running systems. Extensibility is the
ability to extend a software system with new features and
components without loss of functionality or qualities speci-
fied as requirements. In order to evaluate integrability and
extensibility (IE), architecture characteristics should be iden-
tified from architectural models and components docu-
mented in a way that assist IE evaluation.

OVERVIEW OF THE IEE METHOD

 This section provides an overview of the IEE method,
one of the evaluation methods provided by the QADA meth-
odology. The details will be clarified later when we explain

3http://virtual.vtt.fi/qada

how the method is applied in the case study. IEE is a sce-
nario-based evaluation method. It is aligned with the princi-
ples of QADA and consists of the following three phases:

Phase 1: Defining quality goals and quality criteria.

Phase 2: Defining and modeling change scenarios for IE
evaluation.

Phase 3: Evaluating integrability and extensibility of the
family architecture from architectural models.

 Fig. (1) presents the main activities of the IEE method
defined by a UML2 activity diagram. The horizontal swim-
lanes are named according to the engineering stakeholders or
roles responsible for the defined activities and the vertical
swim-lanes are named according to the main phases of the
IEE method.

 The first phase includes four activities: impact analysis,
quality analysis, variability analysis and hierarchical domain
analysis. Domain experts are responsible for impact analysis
and quality analysis. In the impact analysis, the domain ex-
perts identify and elicit the interests of the business
stakeholders and technical stakeholders, define the standards,
regulations and practices to be followed in the domain. This
activity results in a list of the stakeholders and quality goals.
Software family architects identify and define variability of
functional and non-functional capabilities inside a family
(i.e. variability analysis), and categorize capabilities to serv-
ice taxonomy taking into account the defined functional ca-
pabilities, quality goals, variability and commonality of the
capabilities (i.e. hierarchical domain analysis). Phase 1 re-
sults in a list of prioritized quality criteria against which the
architecture is evaluated. Instructions how to define quality
goals and quality criteria, and how to represent the required
and provided quality properties in architectural models are
given in [34]. The article describes thoroughly the QRF
(Quality Requirements of a software Family) method and
produces an evidence how it is applied in the context of a
software product family.

 In (Fig. 1), the phase 2 is presented as one combined ac-
tivity: scenario modeling. The purpose of this phase is to
define and model a representative set of change scenarios
and, if necessary, enhance the existing architectural descrip-
tion with information relevant to the IE evaluation. The sce-
narios represent possible future needs as regards to integra-
tion and extension of a software family. The scenario model-
ing consists of the following tasks: 1) defining scenarios for
integrability and extensibility, 2) selecting appropriate views
and patterns for describing architecture, 3) defining matching
conditions for interface evaluation, and 4) defining assump-
tions, architectural constraints and design rationale for each
view. The phase results in the description of a software fam-
ily architecture at the point where all figurative change sce-
narios have realized. The description includes a complete set
of views (e.g. structure, behavior, deployment and develop-
ment) and selected styles and patterns. The results are used
as input to the phase 3.

 In the third phase, quality analysts evaluate the inte-
grability and extensibility of the architecture and compare
the evaluation results to the defined quality criteria. In qual-
ity evaluation, the following activities and techniques are
applied: 1) architecture mismatch analysis is done by com-

4 The Open Software Engineering Journal, 2007, Volume 1 Henttonen et al.

paring component features and used styles and patterns, 2)
dependency analysis is used for checking dependencies be-
tween interfaces, dependencies between variabilities and
dependencies between the binding times (i.e. when variation
takes place), 3) extensibility analysis is used to identify in
which part the architecture extension points are required and
how effectively extensibility patterns are used in the archi-
tecture, 4) comparative analysis is applied to compare the
evaluation results to the quality criteria, identifying conflicts
and making tradeoffs, and finally 6) evaluation results are
reported as proposed improvements and identified unsolved
problems, which are returned to the software family archi-
tects for the next iteration phase.

 The quality evaluation is done iteratively and incremen-
tally. First, the quality criteria, which have high importance
and affect many parts of the architecture, are evaluated. If
these qualities are not met to the requirement, architecture
refinement is required and after refinement the quality crite-
ria of high importance are re-evaluated. Secondly, quality
criteria of high importance but small impact are evaluated.
Third, quality criteria of medium importance for any part of
the architecture are taken under evaluation. Last, quality cri-
teria of low importance are checked. The approach allows to
focus first on the most important qualities and thereafter to
make tradeoffs among the less important quality criteria.

CASE DESCRIPTION: STYLEBASE FOR ECLIPSE
TOOL

Overview of the Stylebase for Eclipse Tool

 The case study is a model repository tool which is the
starting point for the Stylebase for Eclipse

4
product family.

Stylebase for Eclipse is a tooling environment for software
architects and designers.

4
http://stylebase.sourceforge.net

 The tools are implemented as extensions to the Eclipse
5

platform. Eclipse is a popular open source development en-
vironment and a vendor-neutral platform for integrating tools
and services. Eclipse has a so called pure plug-in architec-
ture [35] which means that there are no core tools in the plat-
form itself and all functionality is implemented as exten-
sions, a.k.a. plug-ins. Each plug-in can define its own access
points and extension points, which allow communication
with other plugs in a controlled but loosely coupled manner
[36].

 Stylebase is a knowledge base which stores information
and guidelines of architectural styles, architectural patterns
and design patterns in a uniform manner. The idea of main-
taining an architectural knowledge base is an important part
of QADA methodology [37] discussed previously. The
stylebase helps a software architect in selecting styles and
patterns, which promote the desired quality goals.

 The starting point of the Stylebase for Eclipse product
family is a basic tool for browsing and maintaining the style-
base. The tool can be used for both designing and evaluating
software architecture. While designing a new architecture
model, an architect searches the stylebase according to the
desired quality characteristics and selects patterns on that
basis. When used for evaluation, an architect detects which
patterns have been used in an architecture model and then
checks from the stylebase which qualities are associated with
these patterns.

 The open source implementation of the tool was devel-
oped based on previous work [38, 39] and a new open source
community was announced in October 2006. By the time of
writing this paper (October 2007), five new releases have
been issued, the most recent one in September, 2007. The
tool has approximately 500 users and there has been more

5 http://www.eclipse.org

Fig. (1). Overview of the IEE method.

Phase 3Phase 2

Architectural
Patterns

Quality Evaluation

Evaluation
Results

Scenario Modelling

Architectural
Vlews

Quality
Requirements

Quality

Hierachical Domain Analysis

Criteria
Service

Taxonomy

Quality goals

Quality Analysis

Variability Analysis

Variability

Commonality

Impact Analysis

Stakeholders
interests

Standards &
Regulations

Existing
Products

Software
Assets

Phase 1

D
om

ai
n

E
xp

er
t

S
of

tw
ar

e
(F

am
ily

) A
rc

hi
te

ct
Q

ua
lit

y
A

na
ly

st

Integrability and Extensibility Evaluation from Software The Open Software Engineering Journal, 2007, Volume 1 5

than 2000 downloads on the project website [40]. Five de-
velopers have contributed code to the project; three of them
are volunteers who come from outside of our research insti-
tute.

Software Architecture of the Stylebase for Eclipse

 In this section, the current architecture of the model re-
pository tool is described. The following points are dis-
cussed: database schema, internal architecture of the tool,
outside interface and the selected third-party components and
technologies [41].

 The tool stores the descriptions of architectural styles and
patterns in a relational database. The database was designed
in the third normal form (3FN) in order to keep the schema
simple and easy to maintain. Fig. (2) presents the most es-
sential fields of the tables and illustrates dependencies be-
tween them. The abbreviations “PK”, “U”, and “I” stand for
primary key, unique index and index (non-unique), respec-
tively. The table “patterns” contain three large fields. The
“model” field contains the data model of a pattern, i.e. struc-
tural representation of its components and their interrela-
tions, typically an UML diagram in XML format. “Guide” is
a large text field containing the documentation of a pattern,
typically stored in HTML format. The field called “picture”
stores graphical representation of the pattern in binary format
(e.g. jpg/gif).

Fig. (2). Database schema for stylebase.

 The internal architecture of the model repository tool
follows the well-known model-view-controller (MVC) pat-
tern (see e.g. [26]). In the MVC architecture, the user input,
the manipulation of data and the visual feedback to the user
are separated and handled by controller, model and view
objects respectively. The pattern supports extensibility [26,
41] and is well-suited for Eclipse plug-in development [41].
In fact, the Eclipse platform itself also follows the model-
view-controller architecture [42]. Fig. (3) shows how the

core plug-in implements a model-view-controller pattern. In
order to increase the level of modularity, the architectural
subcomponents communicate with each other via predefined
interfaces (IF).

 The view component is responsible for providing the
Graphical User Interface (GUI). View attaches to a model
and shows model contents on the display. The model notifies
the view when model contents have changed and then the
view redraws the affected part of the image to reflect these
changes. The view also detects GUI events (e.g. mouse click,
button press) and sends them to the Controller. A Controller
receives events from the View and then commands the
Model (Admin) to perform actions based on the input. The
Model (Admin) updates data both in the model container and
the remote database. Upon initialization of the program, the
Model (Admin) reads data from database and fills the con-
tainer. MySQL has been selected as a relational database
system and its functionality is hidden behind generic inter-
face. There is also a system component which provides small
number of static functions which are accessible from all
parts of the Stylebase for Eclipse core plug-in.

 The tool also implements access points and extension
points which facilitate users to develop downstream plug-ins
without touching the source code of the core plug-in. Access
points are implemented by building and exporting API (Ap-
plication Programming Interface) packages. They define a
set of functions which developers of other plug-ins may use
without detailed knowledge of their internal workings. Ex-
tension points are implemented with the extension point
mechanism offered by the Eclipse PDE (Plug-in Develop-
ment Environment). They provide framework for, not only
using, but also enhancing the functionality of the core plug-
in. The access and extension points provided by the core
plug-in are as follows [38]:

Controller Access Point

 Provides access to the control component. It allows inte-
grators to associate the controller actions of the Stylebase for
Eclipse with the GUI of another plug-in for example to open
a dialog for editing quality properties or to check who is
locking a pattern.

Model Access Point

 Gives access to the Model component. It provides a set of
methods for retrieving and updating essential data in the
Stylebase.

SQL Database Access Point

 Provides direct access to the underlying relational data-
base though SQL query language. It helps in implementing
specific functionality not provided by the model interface.

Model Extension Point

 Provides the means of adding new models, units for stor-
ing, and handling different types of data.

GUI Extension Point

 The extension point provides the means of customizing
the user interface of the Stylebase for Eclipse. It allows ex-
tenders to add their own views and/or menu items to the
main view of the Stylebase for Eclipse.

PK id

U1
l1

name
discription
model
guide
picture
abstraction level

Quality Attributes

PK id

U1 name
definition

Quality Relations

PK
PK

attribute id
pattern id

rationale

Patterns

6 The Open Software Engineering Journal, 2007, Volume 1 Henttonen et al.

 In order to provide the desired functionality the core
plug-in is integrated with various tools developed by other
open source communities. Fig. (4) illustrates the selected
technologies and their providers as follows [43]. The
MySQL database and the associated JDBC (Java Database
Connectivity) Driver are provided by a company called
MySQL and the open source community it supports. Eclipse
Platform and Eclipse Plug-in Development Environment

(PDE) are developed by respective communities under the
official Eclipse project. The Standard Widgets Toolkit
(SWT) is a graphics library for Eclipse plug-ins. The SWT
project is managed by the Eclipse platform community, but
new widgets originate from the Nebula project which is a
source of supplemental SWT widgets and an “incubator” for
SWT.

Fig. (3). The current architecture of the Stylebase for Eclipse represented with component diagram.

Stylebase for Eclipse

Help Plug-in

Help IF

View
sends events

Core Plug-in

Controller

Controller IF

Commands

System Static

gets content

Container IF View IF
Model Admin IF

notifies on change

Model

Container

Patterns[*]

QualityAttributes[*] updates

Model Admin reads / updates

Database IF

MySQL Facade

MySQL JDBC Client

Requires an interfaceProvides an interface

Integrability and Extensibility Evaluation from Software The Open Software Engineering Journal, 2007, Volume 1 7

IMPACT ANALYSIS

Stakeholders

 IEE quality goal definition is started by identifying
stakeholders of the software system. In this example, the
stakeholders are identified from software engineering point
of view i.e. they describe actions of an individual engineer.
The roles are based on what an engineer does with the prod-
uct and what is his/her relationship to the respective open
source community.

 From this view point, the stakeholders of the Stylebase
for Eclipse tooling environment are as follows:

End User

 Utilizes core tools, i.e. the basic functionality of the
Stylebase for Eclipse, together with patterns and styles that
are distributed with the product.

Advanced End User

 Utilizes the extended tooling environment, i.e. both the
basic tools and various extensions developed by other
stakeholders. This creates new styles and patters and stores
them into a local or company-wide database.

Plug-in Extender

 Builds custom extensions (i.e. downstream plug-ins) to
the Stylebase for Eclipse. Extension may be intended either
for personal use or for redistribution.

Plug-in Integrator

 Integrates Stylebase for Eclipse programmatically with
other plug-ins to improve usability or enhance functionality.
Typically acts also as a Plug-in Extender.

Committer

 Contributes code to the Stylebase for Eclipse project.
Same as Plug-in Integrator or Plug-in Extender, except that

Fig. (4). Integrated components and their providers in Stylebase for Eclipse architecture.

Eclipse Project
PDE Community

Eclipse Platform Community

MySQL DBMS

Communicates

Develops

Develops

artifact
MySQL JDBC Driver

MySQL Ab & Community

Develops

Develops

artifact
Eclipse PDE

Extends Uses
Uses

Eclipse Platform

artifact Uses
SWT Graphics Library

Uses

Extends

Uses

Develops

Uses

Nebula Commmunity

Stylebase for Eclipse

View (GUI)

Controller Model

Develops

VTT & Community

8 The Open Software Engineering Journal, 2007, Volume 1 Henttonen et al.

enhancements are published as part of the official Stylebase
release. In addition, makes modifications (enhancements,
bug fixes) to the basic tools. Experienced committers act as
product architects.

Project Leader

 Makes final design decisions (as to the development of
the core tools) and acts as a product family architect.

 When considering the impacts of quality goals from the
point of view of business, it is notable that the same cus-
tomer may act in several software engineering roles. Table 1
presents customer roles (i.e stakeholders defined from busi-
ness or organizational view point) and their typical relation-
ship to software engineering roles (i.e. stakeholders defined
from technical view point).

Quality Goals

 Once the stakeholders have been identified, IE quality
goals of each stakeholder are elicited. Quality goals to be
evaluated concerning integrability (I1 – I6) on the architec-
ture level are listed below.

Advanced End User

I1: The product supports a wide range of data models.
Consequently, diagrams can be exported and im-
ported to/from heterogeneous modeling tools. Ra-
tionale: It is much more convenient to use a familiar
modeling tool than purchase a new tool and learn to
use it.

Integrator

I2: The product can be programmatically integrated with
other plug-ins with minimum development effort.
Stylebase plug-ins can be treated as “black box”
components if desired. Rationale: If integration re-
quires deep knowledge on the Stylebase architecture
or is otherwise time-consuming it will turn away po-
tential volunteer contributors and/or increase ex-
penses of a commercial actor.

I3: Plug-ins in the product family can be developed and
tested independently from each other, but still work
together as a coherent whole. Many developers can
work simultaneously on the product family source
code. Rationale: There is no way an open source pro-
ject could mature unless software architecture sup-
ports parallel development [44]. In a modular archi-
tecture, developers do not have to learn their way
through all the source code before they can start con-
tributing [45].

Committer

I4: The architectural styles of different plug-ins in the
product family conform with each other. Rationale:
Style conformance decreases the time that developers
need to spend in learning the product family architec-
ture. It also eases the integration of plug-ins to some
extend.

I5: An existing 3rd party component, which is used by
the core product, can be easily substituted with a dif-
ferent one. Rationale: While open source markets
evolve, it may be beneficial to switch to a new com-
ponent or technology which better provides the de-
sired functionality.

I6: Subcomponents of each plug-in can be developed
separately from each other, but still operate together
as a united whole. Several developers can work si-
multaneously on the source code of each plug-in. Ra-
tionale: Open source development model requires
modularity, see rationale for the goal I3.

The quality goals of extensibility (E1-E3) evaluation at the
architectural level are as follows.

Extender

E1: In addition to patterns, the knowledge base supports
to store various types of architectural styles (for ex-
ample macro, micro and reference architectures plus
other, so far undefined, types of styles and patterns).
Rationale: Different user groups use the Stylebase

Table 1. Business Stakeholders and their Possible Relation to SW Engineering Stakeholders

Business Stakeholder Description
Possible relation to SW Engineering

Stakeholders

Individual (OSS)

Developer

Utilizes design patterns which come with the product. May store his/her own de-

sign patterns and idioms for reuse and share them with fellows. May built custom

extension for personal use or even contributes to global release as a committer.

End User

Advanced End User

Plug-in Extender

Committer

Open Source

Integrator

Develops an integrated system and uses selected modules of the Stylebase for

Eclipse product family as part of it. May contribute to the global Stylebase release.

Plug-in Integrator

Plug-in Extender

Committer

Small Company as

Utilizer

Stores both design patterns and architectural patterns for reuse. The knowledge is

shared in a local or distributed development team.

Advanced End User

Big Company as

Utilizer

Same as the small company, but can spent more effort in deploying the product,

e.g. by integrating it with other tools of their choice.

Advanced End User

Plug-in Integrator

Integrability and Extensibility Evaluation from Software The Open Software Engineering Journal, 2007, Volume 1 9

plug-in for different ends and thus need to store dif-
ferent types of data.

E2: Downstream plug-ins can be built with minimum
development effort and without touching the source
code of the core plug-in. Rationale: Modularity fa-
cilitates parallel development and allows the core
product to stabilize [45]. If building extension is la-
borious, it will turn away potential volunteer con-
tributors and/or increase expenses of business actors.
Furthermore, the architecture of the Eclipse frame-
work is based on the idea of having piles of plug-ins
built on top of each other [35].

Committer

E3: A new feature can be added to the core plug-in with
minimum development effort and without changing
the existing architectural style. The architecture re-
mains simple and easy to learn. Rationale: This saves
development efforts and helps to keep the product
evolving.

QUALITY AND VARIABILITY ANALYSIS

 The purpose of quality analysis is to separate quality

concerns related to business, constraints and functionality.
The purpose of the variability analysis is to define the re-

quirements that vary on the business domains or stakeholders

and to separate commonality and specialty of variations in
domains. The variability analysis is then continued by con-

sidering dependencies of the IE goals [34].

 In Table 2, quality goals are categorized and the impor-
tance of the quality goals is estimated from the view point of

each stakeholder. Fig. (5) represents the Strategic Depend-

ency Model [46], which describes the dependencies between
quality goals, functional domains and stakeholders. The cir-

cle corresponds to stakeholder, rectangles to the required

functionality and ellipses to the IE requirements. Arrows
indicate dependencies (e.g. a plug-in integrator is dependent

on quality goal I2 and relies on committer stakeholders to

implement that goal).

Table 2. Variability in Quality Goals Per Each Stakeholder

Category Quality goals Stakeholders Priority

I1: Support for heterogeneous data models and

modeling tools

Integrator, Committer

Advanced User, Extender

Passive User

Very High

High

Medium

I2: Integrability with other plug-ins as “black box”

components.

Integrator

Committer

Very High

Low

I3: Support for parallel development of plug-ins Committer, Integrator Very High

Plug-in Integrability

I4: Style conformance of product family architec-

ture

Committer

Integrator

Medium

Low

I5: Substitutability of third party subcomponents Committer

Integrator, Extender

Very High

Medium

Component

integrability

I6: Support for parallel development of subcom-

ponents

Committer

Integrator, Extender

Very High

Low

E1: Capacity to store entirely new types of data

models

Committer, Extender

Integrator

Advanced User

Very High

Medium

Low

E2: Support for building downstream plug-ins Extender, Integrator

Committer

Very high

Low

Plug-in Extensibility

E3: Expandable plug-in architecture Committer

Extender, Integrator

Very High

Medium

10 The Open Software Engineering Journal, 2007, Volume 1 Henttonen et al.

Fig. (5). Dependency model of IE requirements.

HIERARCICAL DOMAIN ANALYSIS

 When IE quality categories have been defined and their
prioritization has been done, the hierarchical domain analysis
is used to map the quality goals into to domains, sub-
domains, components or services of an application.

 Table 3 presents the domain specific IE goals, i.e. goals
that apply to a certain domain/domains of the core plug-in.
These goals also apply to respective domains of dependent-
plug-ins which are later added to the Stylebase for Eclipse
product family.

 Three of the previously defined goals are not mentioned
in the Table 3 because they cannot be assigned to a particular
domain of the core plug-in. These goals must be imple-
mented in the entire architecture as presented in Table 4.

 The purpose of the hierarchal domain analysis is to iden-
tify quality goals whose influence on the family architecture
is the largest. Goals that are not domain specific (I3, I4 and
E3) have the highest impact and are capable of breaking the
entire software architecture in the case of conflict. Goals
such as E1 and I1, which apply to basic functions on storing

Extended
Tooling

Environment

Advanced
End User

Plug-in
Integrator

Support for diverse
modelling tools (I1)

Integrability with
other plug-ins as

black box (12)

Support for building
downstream
plug -ins (E2)

Extension
Points

Capacity to store
new types of

data models (E1)

Substitutability
of third-party

components (15)

Access
Points

Support for paraller

of plug -ins (E3)
development

Style Confirmance
of Product Family
Architecture (14)

Expandable Plug-in
Architecture (E3)Project

Leader

Basic Tools

End User

Support for parallel
development of

subcomponents(16)

Committer

Plug-in
Extender

Integrability and Extensibility Evaluation from Software The Open Software Engineering Journal, 2007, Volume 1 11

Table 3. Mapping of the IE Goals into Domains/Components of the Core Plug-In

Functional

Domain
Component Responsibility of Component Domain-Specific Goals

Database

Schema
Store architecture and design patterns

I1 & E1: Support storing any data model independently

of its internal structure

MySQL Facade
Provide a simplified library for reading and writing to

the remove database

I5: Encapsulate MySQL specific functionality and hide

it beyond a generic interface Data Management

Model
Provide a run-time storage object and an interface for

managing the pattern database

I1: Support managing heterogeneous data models

I6: Communicate with View (refresh requests) via a

pre-defined interface

View
Provide a graphical user interface (GUI) for browsing

and updating the patter repository.

I6: Communicate with Controller via a pre-defined

interface
User

Interface

Controller
Map input signals from the user interface into the ap-

plication response.

I6: Communicate with Model via a pre-defined inter-

face

Access Points
Provide programming interface which allows other

plug-ins to calls the functions of Stylebase for Eclipse

I2: Provide access points to MySQL Façade, Model

and Controller components
Programming

Interface Extension

Points

Provide extensible programming interface which al-

lows other plug-ins to enhance the functionality of the

Stylebase for Eclipse

E2: Provide extension points for adding new models

and GUI elements

Other System
Provide a small library of static system functions ac-

cessed from different parts of the core plug-in

I2: Support lazy initialization of dependent plug-ins

where appropriate

Table 4. Goals that Apply to the Entire Architecture

Scope Goals

Product Family

Architecture

13: Product family architecture must consist of

several loosely couple plug-ins rather than few

large ones.

14: Architectural style selected for each plug-in

must confirm with styles of other plug-ins in

the product family.

Plug-in Architecture E3: Each plug-in must implement an architec-

tural style that supports extensibility.

and retrieving data, also have a significant influence. On the
other hand, we can notice that goals E2 and I2, for example,
apply to limited points in the architecture. In case of con-
flicts, there would be no need to re-design the whole soft-
ware architecture and therefore we can state that these goals
have smaller influence.

PRIORITIZING QUALITY GOALS AND DEFINING

CRITERIA

 The hierarchical domain analysis and variability analysis
are used to prioritize the quality goals. In this case study, the
goal I1 stood out as the most important from the view point
of stakeholders (see Table 2). Hierarchical domain analysis
(see Table 3 and Table 4) ranked the goals I3, I4 and E3 as
the most crucial.

 At the end of this phase, one needs to decide which qual-
ity goals are selected for evaluation. In commercial projects,

Table 5. Strategy/Criteria for Each Quality Goal

Goal Solution Strategy

/ Technical Criteria

I1 • generic database fields

• reusable, type-safe data structures

I2 • comprehensive and easy-to-use programming interface

(API) for each plug-in

• selecting architectural patterns that support integrability

I3 • low coupling and dynamic binding of plug-ins

• localizing dependency on other plug-ins

• small plug-in size

I4 • using only few styles and patterns product family wide,

providing clear design rationales for them

I5 • localizing dependency on third-party subcomponents

• selecting design patterns which support integrability

I6 • maximum cohesion of subcomponents

• low coupling of subcomponents, inter-component commu-

nication via controlled interfaces

• small component size

E1 • generic database fields

• reusable, type-safe data structures

E2 • implementing comprehensive set of extension points

E3 • selecting architectural styles and design patterns which

support extensibility

12 The Open Software Engineering Journal, 2007, Volume 1 Henttonen et al.

cost factors have obviously impact on how many quality
goals are considered important enough to be evaluated. The
goals can be grouped into categories according to their sig-
nificance and the evaluation should always start from the
most important ones.

 In this case study, the target system is relatively small
and the list of quality goals did not grow too extensive. It
was therefore decided to evaluate all quality goals. Table 5
summarizes solution strategies for each quality goal. The
strategies constitute the technical evaluation criteria and shall
be discussed in detail later on.

SCENARIO MODELING

 As explained previously, the IEE method is a scenario
based evaluation method. The scenarios are created by con-
sidering possible ways in which the product might be inte-
grated or extended in the future. Since it is clearly infeasible
to identify and include all possible scenarios, we defined
three scenarios which represent the following categories: (1)
replacing existing components, (2) adding new features by
building a dependent plug-in and (3) adding new functional-
ity by integrating with another plug-in. This section de-
scribes three scenarios which cover the evaluation of the nine
quality goals defined previously.

Scenario 1: Replacing a Third Party Component with
Variants

 The current version of the Stylebase for Eclipse relies on
MySQL database for storing patterns. Therefore all users are
required to install MySQL which, according to feedback
from the community, makes the installation process too
time-consuming and error-prone. In this scenario, a new
variation point is introduced into the Stylebase for Eclipse
product family. Product variant A will be based on a MySQL
while product variant B shall be based on a relational data-
base product such as HSQLDB, which can be embedded into
a Java application in a way invisible to the end-user. Variant
C shall be based on a file database. All the products shall
offer essentially the same functionality.

 As previously illustrated by the current architecture of
Stylebase for Eclipse (see Fig. 3), the Model component is
divided into two parts: the Model Administrator and the
Container. The primary function of the Model Administrator
is to update the Container and construct SQL strings. The
scenario requires that functionality common for all products
(i.e updating the Container) is detached from the Model Ad-
ministrator. Once this is done, one can make one Model
Administrator for constructing SQL strings (for products A
and B) and another for constructing XML queries (for prod-
uct C).

 In the Eclipse framework, functional variability is typi-
cally implemented by splitting one plug-in into several de-
pendent plug-ins [47]. The plug-ins are then bunched to-
gether to create the desired functionality for each ver-
sion/product. Fig. (6) illustrates how plug-ins should be
combined to create product variants A, B and C as defined
previously. The division contributes to modularity as re-
quired by the goal I3.

 IE quality goals require a comprehensive set of access
and extension points, which are the only points of communi-
cation between plug-ins. Therefore, two new extension

points must be added: (1) an extension for adding new
“Model Administrators” to the Core Plug-in and (2) an ex-
tension point for adding support to new SQL clients

6
 to the

SQL DB Plug-in.

Fig. (6). Composition of each product variant in the Stylebase

product family.

 A new Model Administrator class can implement the
same interface as the old class and thereby conforms per-
fectly to the existing architectural style. Similarly, it is easy
to add support for a new relational database because func-
tionality specific to the MySQL Client is encapsulated in a
Façade [27] class which implements a generic interface. The
Façade can be quickly transformed into an Adapter [27].
However, there is more than just adapting interfaces. While
vast majority of used SQL statements are such that they can
be understood by any relational database product, there may
be exceptions. For example, the syntax of an SQL clause
which performs full text searches on MySQL is not sup-
ported by other database products. The issue needs to be
addressed, for example by sub classing the Model Adminis-
trator inside the SQL DB Plug-in.

 Fig. (7) presents the new structure of the product family
architecture. The plug-ins communicate with each other via
access points (AP) and extension points (EP). The new com-
ponents added in this scenario are highlighted with red color
while the yellow color identifies the old components which
have been modified and/or relocated. The green components
remain unchanged in this scenario.

Scenario 2: Building a Custom Extension to Enhance the
Functionality of an Existing Service

 In this scenario, the core capabilities of the Stylebase for
Eclipse are enhanced. The tool is made capable of storing
and browsing reference architectures (see e.g. [23]) in addi-
tion to design patterns and architectural patterns. Further-

6 A third-party plug-in to support Oracle client is included in Figure 7 as an example on
how the SQL Client Extension point may be used.

XOM Object Model

Product Variant A

Core Plug-in

SQL DB Plug-in

MySQL JDBC Client

Product Variant B

Core Plug-in

SQL DB Plug-in

HSQLDB JDBC Clint

Product Variant C

Core Plug-in

XML File DB Plug-in

Integrability and Extensibility Evaluation from Software The Open Software Engineering Journal, 2007, Volume 1 13

more, DBMS based product variants A and B (see scenario
1) shall store relationships between architectural models and
perform searches on them. For example, a user may want to
list architecture patterns used in a particular reference archi-
tecture or search for design patterns associated with a par-
ticular architecture pattern.

 Firstly, possible changes to the database schema need to
be examined. The existing database schema is illustrated in
(Fig. 2) (see section “Software Architecture of the Stylebase
for Eclipse”). Because data model of each pattern is stored in
XML format into a large text field, the database schema does
not anyhow restrict the type of model being stored. The “pat-
terns” table can thus store reference architectures without
any modifications; it could be obviously renamed as “styles”
to describe the new content. In addition, a new table is

needed to store the relationships between styles and patters.
Fig. (8) illustrates the database schema after a new table
called “Style Relations” has been added.

 The structure of the Container component in the core
plug-in reflects to that of the database schema. It only con-
tains basic fields – such as ID, name and description – which
are required by patterns and reference architectures alike.
Large text and binary fields are not stored in the run-time
container but fetched from database per request. Reference
architectures can thus be stored into the same container and
managed by the same model administrator classes as pat-
terns.

 In the previous scenario, SQL Plug-in and XML File DB
Plug-in were assumed to provide the same operations and

Fig. (7). Replacing existing component with optional variants.

Core Plug-in

Controller view

Model

Container

Model Handler

QualityAttributes[*]

Patterns[*]

Model Admin EP

Model Admin AP

SQL DB Plug-in

SQL Model Admin

DB Client Adapter

HSQLDB JDBC Client MySQL JDBC Client

SQL Database AP
Oracle Client

SQL Client EP

Oracle Adapter

Oracle Support Plug-in

XOM Object Model

XOM Facade

XML File DB Plug-in

XML Model Admin

14 The Open Software Engineering Journal, 2007, Volume 1 Henttonen et al.

thus implement the same interface. This scenario introduces
new functional variability as only SQL based product should
detect relationships between models. There are two alterna-
tive solutions. Firstly, the SQL/XML plug-ins can implement
different interfaces and, in this case, an Adapter class should
be added to the core plug-in. Secondly, new operations can
be encapsulated into a separate plug-in which enhances the
functionality of the SQL plug-in. The last mentioned solu-

tion was selected, because this scenario also introduces en-
hancements to the view and controller components. Consid-
ering that not all products in the product family use the fea-
tures, it is not desirable to include them into the core plug-in.

 The new plug-in shall also follow the Model-View-
Controller architecture. The plug-in needs a view component
for implementing new GUI elements and relies on the GUI
extension point for attaching these enhancements to the core
plug-in. The Model component of a new plug-in will store
and manage the data on style relations. It provides content
for the View component, together with the Model of the core
plug-in. The dependent plug-in also implements its own SQL
Model Admin which enhances the one of the SQL Plug-in.
Fig. (9) illustrates the structure of the new plug-in and how it
communicates with other plug-ins (UML2 component dia-
gram). The red color highlights the components added in this
scenario.

Scenario 3: Adding New Functionality by Integrating
with Another Plug-In

 In order to provide more benefits to the end-users, pat-
terns and styles stored in the stylebase should be easily ex-
ported and used in combination with other plug-ins. In this
scenario, we integrate Stylebase for Eclipse with the Eclipse
Modeling Framework.

 The first consideration is the interoperability of data

models. The Eclipse Modeling Framework relies on an
Eclipse UML data model called “eCore” which is part of the

Eclipse UML2 metamodel framework. Practically, every

UML modeling tool on the market produces a different type

Fig. (8). New table is added to the database schema.

Fig. (9). Adding new features by building a dependent plug-in.

Style Relations

PK
PK

Style id1
Style id2

PK

Styles

id

PK id PK
PK

Quality Attributes
Quality Relations

attribute id
pattern id

viewController

Core Plug-in

Model

Model Admin EP

Model Admin AP

SQL DB Plug-in

SQL Database AP

SQL Model Admin

Model Handler

Relations [*]

Model

Container

Model APView EP

Style Relations Plug-in

ViewController

Integrability and Extensibility Evaluation from Software The Open Software Engineering Journal, 2007, Volume 1 15

of data model. There is no widely accepted standard which

would be specific enough to ensure compliance. A few mod-

eling tools (e.g. Rational Rose and Topcased) can generate
Ecore models, but many others (e.g. ArgoUML, Start UML)

cannot. Therefore we first have to implement an additional

component which can perform conversion from heterogene-
ous data models to the “eCore” model and back.

 The converter component is not only required by EMF
integration but by the whole product family. The converter is

needed, for example, to enable the users of heterogeneous

modeling tools to share the same knowledge base. Model
conversion can thus be regarded as one of the most essential

components of the Stylebase product family. Despite of its

central role, we decided to model the converter as a separate
plug-in. This would facilitate parallel development and allow

the converter to be used in combination with any other plug-

in, which, in turn, could attract other communities to share
the development effort.

 In addition to the model conversion, Stylebase for
Eclipse needs to open or create an EMF project and launch
the EMF Editor. This is done by using a customizable wizard
provided by the programming interface of EMF. If the files
are edited with the EMF, the Stylebase for Eclipse should be
capable of loading updated patterns back to the knowledge
base. This is done by using Eclipse resource handling capa-
bilities together with a component called EMF Model Ex-
porter.

 Fig. (10) illustrates the new structure of the product fam-
ily architecture. The components implemented in this sce-
nario are highlighted with red color. The support for EMF is
again encapsulated into a separate plug-in. The EMF Support
Plug-in has its own View and Control components, but relies
on the Model component of the core plug-in. The View
component implements one or two menu items which extend
the context menu of the main view. The Controller retrieves
desired patterns from the Model component and passes them
to the EMF Adapter. The EMF Adapter uses the Conversion

Fig. (10). Adding new functionality by integrating with EMF.

Stylebase for Eclipse

Core Plug-in

Model Controller View

View EPModel AP
Converter 1 Converter 3

Converter 2Adapter

EMF Support Plug-in

ControllerEMF Adapter

Converter AP

View

Resources AP

Model Exporter APProject Wizard AP

Eclipse Modelling Framework Eclipse Platform

Conversion Plug-in

16 The Open Software Engineering Journal, 2007, Volume 1 Henttonen et al.

Plug-in to translate pattern’s data model into eCore format
and then sends it to the Eclipse Modeling Framework for
processing. The Conversion Plug-in contains a number of
actual converters, which translate an Ecore data model into a
format understood by a particular UML tool and then back.
There is one converter for each model type. Because indi-
vidual converters may come from a third party, one cannot
count on them to implement the same interface and, conse-
quently, an Adapter is needed.

QUALITY EVALUATION

 Once we have modeled the architecture to support the IE
evaluation, we must evaluate how the quality goals are met
in the architecture. The evaluation is based on the scenario
modeling illustrated above. The format used in reporting the
evaluation results is specified as following:

• Identifier and name of the quality goal

• Goal definition: What is the concrete definition for this
quality goal?

• Strategy: How do we plan to achieve the goal?

• Evaluation on how current architecture supports the
quality goal

• Status: How well is the goal achieved? (fully/mostly/
partially/not achieved)

I1: Support for Heterogeneous Modeling Tools

Goal Definition

 Stylebase for Eclipse can be used in combination with
heterogeneous modeling tools.

Strategy

 Database stores the XML representation of each data
model in one last text field, thus being unaware of its internal
structure. Runtime data structures are equally generic.

Evaluation

 In the current version of the Stylebase for Eclipse, the
support for heterogeneous modeling tools is implemented
solely on the database level. In the 2

nd
 scenario we saw that

database schema and other memory objects are ignorant to
the internal structure of a data model and, consequently, can
store the output of any modeling tool. This enables users to
use the Stylebase for Eclipse with a modeling tool of their
choice. However, the 3

rd
 scenario disclosed that the origi-

nally defined implementation strategy is not fully sufficient.
Users wishing to share data have to agree on the use of the
same modeling tool. This reduces integrability with other
plug-ins and decreases the usefulness of the global knowl-
edge base. In order to fully achieve this goal, architecture
must provide framework for building converters.

Status

 The goal is partially achieved.

I2: Integrability with Third-Party Plug-Ins

Goal Definition

 Plug-ins in the product family can be integrated with
third-party plug-ins with minimum development effort and
as “blax box” components.

Strategy

 Each plug-in must implement comprehensive and learn-
able programming interface, i.e. access points.

Evaluation

 The current set of access points is sufficient for integrat-

ing the core plug-in with other plug-ins in the modeled sce-

narios. The core plug-in implements three access points: one
for sending GUI events programmatically to Controller, one

for reading and updating data in the Model and one for SQL-

level access to stylebase. Access points contain a compre-
hensive set of functions because they are derived from inter-

nal component interfaces illustrated in (Fig. 3). Even though

the Controller access point is not used in any scenario, it
proves to be useful when one wants to launch already built

functionality from the user interface of another plug-in. In

fact, this is exactly how the Project Wizard access point of
the Eclipse Modelling Framework is used in the 3

rd
 scenario.

Status

 The goal is fully achieved.

I3: Support for Parallel Development of Plug-Ins

Goal Definition

 Product family architecture consists of several plug-ins
which can be developed independently of each other.

Strategy

 Plug-ins are reasonably small in size. They should com-
municate only via the pre-defined access points and exten-

sion points, thus enabling dynamic binding.

Evaluation

 The current version of the Stylebase for Eclipse contains

only two plug-ins. The core plug-in uses an access point to

utilize the functionality of the help plug-in as illustrated in
(Fig. 3). Even though the current core plug-in seems rea-

sonably small, the 1
st
 scenario proved that it might become

necessary to split it into even smaller parts (see the evalua-
tion of the goal I8). However, the current plug-in composi-

tion seems practical for the time being. The requirement was

also taken into account while modeling the scenarios. There-
fore, several new plug-ins were introduced and access and

extension points were defined for communication. The goal

is easy to achieve because Eclipse supports loose coupling
and dynamic binding of plug-ins by design.

Status

 The goal is fully achieved.

I4: Style Conformance of Product Family Architecture

Goal Definition

 The architectural styles of plug-ins in the product family
conform to each other. The product family architecture is
simple and learnable.

Strategy

 Only one or few styles are used product family wide, and

the main patterns are used several times. Rationale for used

patterns and styles is presented.

Integrability and Extensibility Evaluation from Software The Open Software Engineering Journal, 2007, Volume 1 17

Evaluation

 The Model-View-Controller has been selected as the

main architectural style of the core plug-in for reasons ex-
plained previously (see section “Software Architecture of the

Stylebase for Eclipse”). The modifications made in the sce-

narios do not force changes in the selected style. In fact, sce-
narios 2 and 3 demonstrate that dependent plug-ins can adapt

the same architectural style and the style conformance in the

product family is thereby maintained. The Adapter and Fa-
cade patterns, which efficiently support integrability and

extensibility, can be used product family wide.

Status

 The goal is fully achieved.

I5: Substitutability of the Third Party Subcomponents

Goal Definition

 Third party subcomponents can be replaced with mini-

mum development effort / without changing the existing
architectural style.

Strategy

 Dependencies on third-party subcomponents are local-
ized. Design patterns which support integrability are used.

Evaluation

 The third party subcomponent – MySQL database – is
replaced in the first scenario. MySQL can be replaced with

another relational database with relatively small develop-

ment effort. This is because MySQL specific functionality is
encapsulated into one class (Facade) and hidden beyond a

generic interface. Facade can easily be transformed into an

Adapter to provide support for other types of SQL clients. In
practice, there is a problem in the fact that the syntax of

some SQL clauses may not be supported by all database

products. The current version does not implement any struc-
ture for solving the issue. The scenario reveals another prob-

lem when replacing MySQL database with a file database. In

the current version, the Model Administrator class takes care
of both updating the Container and constructing SQL state-

ments. It is therefore an unnecessarily hard work to divide it

into two plug-ins as in scenario 1. In both cases, the primary
architectural style remains intact.

Status

 The goal is partially achieved.

I6: Support for Parallel Development of Subcomponents

Goal Definition

 Each plug-in consists of several subcomponents which
can be developed independently from each other, but still
operate as a coherent whole.

Strategy

 Subcomponents are reasonably small in size and commu-

nicate via controlled interfaces.

Evaluation

 As illustrated by (Fig. 3), all components of the core

plug-in communicate via controlled interfaces. As long as

the plug-in size is kept small (see goal I3), the individual

subcomponents are not likely to grow too large either. In all

scenarios, new features are implemented as dependent plug-
ins and therefore the size of core components remains small

and parallel development is facilitated. However, the model-

ing of the 2
nd

 scenario indicates that - unless a new plug-in is
introduced – adding a new feature would affect each compo-

nent of the core plug-in: the Model, View and Controller. In

fact, most new features would include a new user interface
element (View), reaction to the input from the user interface

(Controller) and modifying information in a new way

(Model). Therefore a very small enhancement – such as add-
ing a button for loading quality attributes from text file –

would require updating all three components. In the Model-

View-Controller architecture, simultaneous development of
main components may not be straightforward, which high-

lights the importance of the goal I3.

Status

 The goal is mostly achieved.

E1: Capacity to Store Completely New Types of Data
Models

Goal Definition

 In addition to patterns, the knowledge base supports stor-
ing of various types of architectural styles, e.g. macro, micro
and reference architectures plus other, so far undefined,
types of styles and patterns.

Strategy

 Database stores the XML representation of each data
model in one large text field, thus being unaware of its struc-
ture. Runtime memory structures are equally generic.

Evaluation

 This goal was already included in the initial requirement
specification of the Stylebase for Eclipse [43]. The strategy
for the goal is exactly the same as the one used to ensure
support for heterogeneous data models in the goal I3. Sce-
nario 3 demonstrates that database and other memory objects
do not anyhow dictate on the structure of a model being
stored. This ensures that the database can store new types of
patterns and styles without any changes to the database
schema.

Status

 The goal is fully achieved.

E2: Support for Building Downstream Plug-Ins

Goal Definition

 Dependent plug-ins can be built without touching the
source code of the core plug-in / without detailed knowledge
of its internal workings.

Strategy

 Each plug-in implements a comprehensive set of exten-
sion points for downstream plug-ins to use.

Evaluation

 The scenarios demonstrate that the current set of exten-

sion points is not optimal. The core plug-in implements two

18 The Open Software Engineering Journal, 2007, Volume 1 Henttonen et al.

extension points: one is for enhancing user interface with

new views or menu items and another one is for adding new

types of Model objects. The View Extension Point is used in
both 2

nd
 and 3

rd
 scenario. The 2

nd
 scenario suggests that the

Model Extension Point may not be needed because the cur-

rent memory object is flexible enough to store practically
any kind of data model. In turn, the first scenario indicates

that two new extension points should be added: one for add-

ing support to heterogeneous SQL clients and another one
adding new types of Model Administrators.

Status

 The goal is partially achieved.

E3: Expandable Plug-In Architecture

Goal Definition

 Architecture of each plug-in can be extended with mini-
mum development effort without changing the existing ar-
chitectural style.

Strategy

 Architectural styles and design practices which support
extensibility are used.

Evaluation

 Scenarios demonstrate that there is no need to change the
selected architectural style when adding new features or
services. On the contrary, the Model-View-Controller
(MVC) architecture promotes extensibility. In MVC archi-
tecture, same views may be used to show data from different
models. For example, in the 2

nd
 scenario, the Style Relations

Plug-in can reuse views of the core plug-in for showing its
own information. Because MVC allows multiple representa-
tions of the same information, Style Relations Plug-in can
also implement views which show content from the Model
of the core plug-in. Furthermore, dependent plug-ins, which
adapt the same architectural style, do not need to implement
all three components – Model, View and Controller – inde-
pendently. They can rely on one or more respective compo-
nents of a core plug-in as in the 3

rd
 scenario.

 On the design level, Facade pattern is used to reduce de-

pendencies of outside code on the inner workings of a com-

ponent or software library. When the wrapper needs to sup-
port polymorphic behavior, Facade can easily be transformed

to an Adapter. Expanding of the architecture is also eased by

that fact that subcomponents communicate via controlled
interfaces. For example, we noticed in the 1

st
 scenario that a

new type of Model Administrator class can be hidden behind

an existing interface which saves development effort.

Status

 The goal is fully achieved.

Summary of Evaluation Results

 The evaluation revealed that five of the nine quality goals
were fully implemented in the architecture. One quality was

covered mostly and three were covered only partly by the

architecture. Table 6 summarizes the results of the IE evalua-
tion and shows which of the modeled scenarios where used

in the evaluation of each quality goal.

Improvement Suggestions

 The first scenario demonstrated that two new extension

points should be added. Firstly, there should be an extension

point for adding support to new types of SQL clients. This is
because some users may want to integrate the Stylebase for

Eclipse with their own relational database system rather than

install MySQL. An extension point for adding a new type of
Model Administrator class would also be desirable – and, in

fact, compulsorily, if the primary Model Administrator is

relocated into a separate plug-in as in the scenario 1. It was
also demonstrated that the Model Administrator needs to be

divided into two separate parts. One should be responsible

for building SQL statements and another one for updating
the Container component. In the future, the product is likely

to need to support other types of databases than SQL ones

and therefore it is necessary to separate the SQL statement
construction from the core functionality. The reconstruction

of the Model Administrator is important also because SQL

clauses may be specific to one particular database product.

Table 6. Results of IE Evaluation Summarized

Quality Goal
Scenarios

 1 2 3
Status

I1: Support for heterogeneous modeling tools X X X Partially

I2: Integrability with other plug-ins as “black box” X X X Fully

I3: Support for parallel development of plug-ins X - - Fully

I4: Style conformance of product family architecture X X X Fully

I5: Substitutability of third party subcomponents X - - Partially

I6: Support for parallel development of subcomponents - X - Mostly

E1: Capacity to store entirely new types of data models - X - Fully

E2: Support for building downstream plug-ins X X X Partially

E3: Easily expandable plug-in architecture X X X Fully

Integrability and Extensibility Evaluation from Software The Open Software Engineering Journal, 2007, Volume 1 19

 As highlighted by the 3rd scenario, it is evident that
product must implement a framework for building converters
which translate a data model generated by one modeling tool
into a format understood by another tool. While the commu-
nity does not have resources to implement converters from
every tool to another, a good framework should encourage
users to implement their own and hopefully contribute them
back to the community. In order to maximize outside partici-
pation, the converter component must be combinable with
any Eclipse plug-in, not just Stylebase for Eclipse.

DISCUSSION AND CONCLUSIONS

 Integrability and extensibility might be the most impor-
tant evolution qualities of future product families. This is
because future software systems will mainly be based on
collaborative software development, where several partners
are developing complex products together, each of them fo-
cusing on their own competencies and the parts of the sys-
tems that provide profit and added value to the company.
Needs for integrability of product families arise from the
extended use of the third party components and services.
Extensibility is required because of rapidly changing markets
and the need for innovative new products in order to com-
pete successfully in the market. The significance of extensi-
bility and integrability is especially highlighted in open
source software development because of its collaborative
nature and de-centralized requirements engineering process.

 The IEE method (together with the QRF method) covers
all the phases of software family engineering that are related
to architecture development: specification of the quality
goals, transferring quality goals to architectural models, and
evaluating how the defined quality goals are achieved by the
architecture. Each phase comprises a set of steps and a num-
ber of specific activities that have to be carried out during the
phase. In this paper, we addressed how to apply the IEE
method in the context of open source software.

 The results of applying the IEE method to the case study
show that most of the quality goals were met. Three qualities
were covered only partly by the architecture. The evaluation
brought concrete benefits by revealing areas in which the
existing architecture must be improved. For example, the
first scenario demonstrated that two new extension points
should be added. It was also demonstrated that the Model
Administrator needs to be divided into two separate parts.
The 3rd scenario made it evident that the product must im-
plement a framework for building converters which translate
a data model generated by one modeling tool into a format
understood by another tool.

 The IEE method is intended for evaluating integrability
and extensibility on the architecture level (i.e. from models)
and not on the implementation level (i.e. from source code).
However, the modeling of the first change scenario demon-
strated that sometimes code level issues may have significant
impact on IE qualities. When replacing MySQL database
client with variants, it was noted that all database servers
may not support the SQL syntax used. This issue is undoubt-
edly important but cannot be seen from ordinary architec-
tural models. Therefore, a comprehensive architectural mis-
match analysis [13] is needed to verify both syntactic and
semantic compliance of interfaces. Otherwise, certain im-
plementation issues may go unnoticed when evaluating inte-
grability and extensibility from architectural models.

 The method is aimed for cost effective and repeated use
by software architects. According to our experience, the sce-
nario modeling is laborious in the beginning (i.e. before an
architecture gets used to the technique), but becomes fast and
easy by rehearsing. In order to make this paper accessible,
the scenarios were explained in detail. In practice, an experi-
enced architect can model scenarios rather quickly and then
proceed to the evaluation phase. The scenario models may
also be reused as design documents later on (i.e. if a scenario
realizes there is a ready implementation plan at hand).

 The case study started from a single product considered
as a key product, around which the family was initiated.
Thus, there is no experience on how effective the method is
when it is systematically applied during the whole life cycle
of a product family. In the latter case, the method may be
used even hundreds of times in different situations. If the
evaluation is made systematically and the evaluation results
are stored in a knowledge base, e.g. in a stylebase, the col-
lected experience can be reused in architecture development.
This may lead to a situation in which the architecture meets
its quality goals already after the first iteration, which means
cost effective development of high quality products and
more evolvable product families.

ABBREVIATIONS

AP = Access Point

DBMS = Database Management System

EMF = Eclipse Modeling Framework

EP = Extension Point

GUI = Graphical User Interface

HTML = Hypertext Markup Language

IDE = Integrated Development Environment

IF = Interface

IE = Integrability and Extensibility

IEE = Integrability and Extensibility Evaluation

MVC = Model-View-Controller

OS = Operating System

OSS = Open Source Software

QADA = Quality-Driven Architecture Design and
Analysis

SQL = Structured Query Language

SW = Software

XML = Extensible Markup Language

UML = Unified Modeling Language

ACKNOWLEDGEMENTS

 The publication of this paper has been supported by the
Eureka ITEA research project COSI funded by the National
Technology Agency (Tekes) and VTT Technical Research
Centre of Finland.

REFERENCES

[1] M.G. Hardy, ”COTS components in software development” in

Computer Science Discipline Seminar Conference (CSSI 3901),
2000.

20 The Open Software Engineering Journal, 2007, Volume 1 Henttonen et al.

[2] C. Ncube, and M. Maiden, ”COTS software selection: the need to

make tradeoffs between system requirements, architectures and
COTS/components” in Workshop on Continuing Collaborations for

Successful COTS Development, 2000.
[3] A. Immonen, E. Niemelä and M. Matinlassi, ”Evaluating the

integrability of COTS components - the product family viewpoint”
in Commercial off the Shelf Components and Systems, S. Beydeda

and V. Gruhn, Eds. , New York: Springer Verlag, 2005.
[4] E. Niemelä. ”Strategies of product family architecture develop-

ment” in The 9th International Software Product Line Conference,
2005.

[5] Open Source Initiative, “Open source definition”, http://www.
opensource.org/docs/definition.php [Accessed June 2007].

[6] N. Vainio, and T. Vaden, ”Sociology of Free and Open Source
Software Communities: Motivations and Structures” in Multidisci-

plinary Views to Open Source Software Business, N. Helender and
H. Martin-Vanhanen, Eds., Tampere: Tampere University of Tech-

nology and the University of Tampere, 2006, pp. 10-19.
[7] E. Raymond. The Cathedral and the Bazaar. Sepastobol: O'Reilly,

2001.
[8] J. Robbins, ”OSSE practices by adopting OSSE tools”, Perspec-

tives on Free and Open Source Software , J. Feller, Ed., Massachu-
setts: MIT Press, pp. 245-254.

[9] W. Scacci, ”Understanding the requirements for developing open
source software systems”, IEEE Proceedings Software, vol. 149, no

1, 2002, pp. 24-39.
[10] L. Davis, R.F. Gamble, and J. Payton, ”The impact of component

architectures on interoperability”, The Journal of Systems and
Software, vol. 61, 2002, pp. 31-45.

[11] A. Egyed, N. Medvidovic, and C. Gacek, ”Component based per-
spective on software mismatch detection and resolution”, IEE Pro-

ceedings Software, vol. 147, no 6, 2000, pp. 225-236.
[12] D. Batory., C. Johnson, B. MacDonald, and D. von Heeder,

”Achieving extensibility through product lines and domain specific
languages: a case study”, ACM Transaction on Software Engineer-

ing and Methodology, vol. 11, no. 2, 2002, pp. 191-214.
[13] D. Garlan, R. Allen, and J. Ockerbloom, ”Architectural mismatch

or why it is so hard to build systems out of existing parts”, in The
17th International Conference on Software Engineering, 1995.

[14] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J.
Carriere, ”The architecture trade-off analysis method” in The 4th

IEEE International Conference on Engineering of Complex Com-
puter Systems, 1998.

[15] L. Dobrica, E. Niemelä ,” A Survey on Software Architecture
Analysis Methods”, IEEE Transactions on Software Engineering,

vol. 28, no. 7, 2002 pp. 638-653.
[16] E. Niemelä, M. Matinlassi, “ Quality evaluation by QADA” in

5th working IEEE/IFIP Conference on Software Architecture
(WICSA) , 2005.

[17] A. Immonen,“A Method for predicting reliability and availability at
architectural level” in Software Product Lines: Research Issues in

Engineering and Management”. T. Käkölä, J.C. Duenas, Eds., New
York: Springer, pp. 373-422.

[18] P. Tarvainen, “Adaptability evaluation of software architectures: a
case study” in Computer Software and Applications Conference,

2007.
[19] D. Garlan, "Software architecture: a roadmap" in The Future of

Software Engineering, A. Finkelstein, Ed., New York: ACM Press,
2000, pp. 93 - 101.

[20] IEEE Std-1471-2000, IEEE Recommended Practice for Architec-
tural Descriptions of Software-Intensive Systems, 2000.

[21] K. Smolander, “Four metaphors of architecture in software organi-
zations: finding out the meaning of architecture in practice” in Em-

pirical Software Engineering International Symposium, 2002.
[22] N. Rozanski, E. Woods. Systems Architecture: Working With

Stakeholders Using Viewpoints and Perspectives. New York:
Addison-Wesley Professional, 2005.

[23] L. Bass, P. Clements, and R. Kazman. Software architecture in
practice. Massachusetts: Addison-Wesley, 1998

[24] B. van der Raadt, J. Soetendal, M. Perdeck, and H. van Vliet, "Po-

lyphony in architecture" in The 26th International Conference on
Software Engineering, 2004.

[25] P. Clements, R. Kazman, M. Klein, D. Devesh, S. Reddy, and P.
Verma, “The duties, skills, and knowledge of software architects”,

in The Working IEEE/IFIP Conference on Software Architecture
(WICSA), 2007.

[26] F. Bushmann., R. Meunier, H. Rohnert, P. Sammerlad, and M.
Stall. Pattern Oriented Software Architecture: A System of Pat-

terns. Chichester: John Wiley & Sons Ltd, 1996.
[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object Oriented Software, Massachusetts:
Addison Wesley, 1994.

[28] L. Bass, P. Clements, and R. Kazman, Software architecture in
practice. Second Edition. Boston: Pearson Education Inc., 2004.

[29] R.L Glass, Software conflict - Essays on the Art and Science of
Software Engineering, New Jersey: Prentice-Hall Inc., 1991.

[30] ISO-9126-1. Software engineering - product quality - part 1: Qual-
ity model. ISO/IEC, 2001.

[31] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non-functional
requirements in software engineering. Boston: Kluwer Academic

Publishers, 2001.
[32] L. Dobrica, and E. Niemelä, ”Attribute-based product-line architec-

ture development for embedded systems” in The 3rd Australasian
Workshop on Software and Systems Architectures, 2000, pp. 76 –

88.
[33] K. Kronlöf, Method integration: Concepts and case studies. Chich-

ester: John Wiley & Sons, 1993.
[34] E. Niemelä, and A. Immonen. ”Capturing quality requirements of

product family architecture”, Information and Software Technol-
ogy, vol. 49 no. 11-12, 2007, pp. 1107-1120.

[35] D. Birsan, ”On plug-ins and extensible architectures”, Queue ,
2005. vol. 3 no. 2, pp.40-46.

[36] E. Clayberg, and D. Rubel. Eclipse. Building Commercial Quality
Plug-ins. Massachusetts: Pearson Education Inc, 2006.

[37] M. Matinlassi, E. Niemelä, and L. Dobrica. Quality-Driven Archi-
tecture Design and Quality Analysis Method. A Revolutionary Ini-

tiation Approach to a Product Line Architecture. Espoo, Finland:
VTT Publications, 2002.

[38] J. Merilinna. A Tool for Quality Driven Architecture Model Trans-
formation. Espoo: VTT Publications, 2005.

[39] J. Merilinna, and E. Niemelä, “A stylebase as a tool for modelling
of quality-driven software architecture” in the proceedings of the

Estonian Academy of Sciences, Special issue on Programming
Languages and Software, vol. 11 no 4, 2005.

[40] SourceForge.net, “Stylebase download statistics”,
http://sourceforge.net/project/showfiles.php?group_id=178714

[Accessed 15 September 2007]
[41] K. Henttonen, and M. Matinlassi, ”Contributing to Eclipse: A Case

Study” in The 2007 Conference on Software Engineering
(SE2007), 2007.

[42] C. Griffin, “Tranformations in Eclipse” in The 18th European
Conference on Object-Oriented Programming, 2004.

[43] K. Henttonen. Stylebase for Eclipse. An Open Source Tool to Sup-
port the Modelling of Quality Driven Software Architecture. VTT

Research Notes 2387. Espoo: VTT Technical Research Centre of
Finland, 2007.

[44] M. Fleury, and J. Lindfors, ”Enabling component architectures in
JVMX”, Java Online [Online], January 2001. Available at

http://www.onjava.com/pub/a/ onjava/2001/02/01/jmx.html
[45] R. Goldman, and R. Gabriel. Innovation Happens Elsewhere. Open

Source as Business Strategy. San Francisco: Elsevier, 2005.
[46] E. Yu, "Towards modelling and reasoning support for early-phase

requirements engineering" in Third IEEE Internation Symbosium
on Requirements Engineering, 1997.

[47] E. Gamma, and K. Beck. Contributing to Eclipse Principles, Pat-
terns, and Plug-Ins, Boston: Addison Wesley, 2004.

Received: August 15, 2007 Revised: October 09, 2007 Accepted: October 11, 2007

