
 The Open Software Engineering Journal, 2008, 2, 1-30 1 

 

 1874-107X/08 2008 Bentham Open 

Open Access 

Adaptability Evaluation at Software Architecture Level 

Pentti Tarvainen* 

VTT Technical Research Centre of Finland, Kaitoväylä 1, P.O. Box 1100, FIN-90571 Oulu, Finland 

Abstract: Quality of software is one of the major issues in software intensive systems and it is important to analyze it as 

early as possible. An increasingly important quality attribute of complex software systems is adaptability. Software archi-

tecture for adaptive software systems should be flexible enough to allow components to change their behaviors depending 

upon the environmental and stakeholders' changes and goals of the system. Evaluating adaptability at software architec-

ture level to identify the weaknesses of the architecture and further to improve adaptability of the architecture are very 

important tasks for software architects today. Our contribution is an Adaptability Evaluation Method (AEM) that defines, 

before system implementation, how adaptability requirements can be negotiated and mapped to the architecture, how they 

can be represented in architectural models, and how the architecture can be evaluated and analyzed in order to validate 

whether or not the requirements are met. AEM fills the gap from requirements engineering to evaluation and provides an 

approach for adaptability evaluation at the software architecture level. In this paper AEM is described and validated with a 

real-world wireless environment control system. Furthermore, adaptability aspects, role of quality attributes, and diversity 

of adaptability definitions at software architecture level are discussed. 

Keywords: Adaptability, adaptation, adaptive software architecture, software quality, software quality attribute. 

INTRODUCTION 

 Today, quality of a software system plays an increasingly 
important role in the domain of software engineering. It is 
commonly accepted that crucial quality attributes, such as 
performance, scalability, reliability, availability, integrabil-
ity, extensibility, and maintainability, as well as adaptability 
are heavily influenced by the software architecture. A sys-
tematic understanding of how architectural design decisions 
affect the system's quality is lacking. To treat software de-
sign as an engineering discipline rather than an art, we need 
the ability to address the quality of the software architecture 
directly on the architecture model level, not simply as it is 
reflected in the implemented system. Quality requirements 
for the final software system can be determined at the soft-
ware architecture level by means of the quality attributes [1, 
2]. Quality goals, quality attributes, quality requirements or, 
non-functional requirements [1, 3-5] answer to the question 
“how well” whereas software functional requirements an-
swer to the question “what” [6].  

 Software architecture is defined as “the fundamental or-
ganization and behavior of a system in terms of components 
and connectors” [1]. Furthermore, in literature, there has 
been defined at least seven different meanings for software 
architecture [6]. In general, architectural models document 
architecture to the body of knowledge for reusing the archi-
tecture at multiple levels of granularity [6-9]. Quite recently 
some guidelines for software architecture documentation, 
such as [8, 10], have emerged [6]. 

 Architecture models are an expression of the earliest de-
sign decisions [1, 8, 9] and a means of abstraction [8, 11] to  
 

 

*Address correspondence to this author at the VTT Technical Research 

Centre of Finland, Kaitoväylä 1, P.O. Box 1100, FIN-90571 Oulu, Finland; 

E-mail: pentti.tarvainen@vtt.fi 

understand the system [6]. Examples of design decisions are 
the decisions such as “we shall separate user interface from 
the rest of the application to make both user interface and 
application itself more easily modifiable” [6]. Expressions of 
the design decisions are many and they may even be as small 
as definition of components and connectors. Furthermore, 
software architecture models can be seen as the language for 
communication [1, 6, 8, 9, 11]. The role of architecture mod-
els is also to provide analysis opportunities at early stages of 
development [6-8]. Architecture model is also an expression 
of the system’s evolution [6-8] and a management instru-
ment [6, 8, 11]. 

 As the meanings of software architecture are many, the 
role of software architect has become very demanding. The 
level of abstraction has risen, required amount of cumulative 
knowledge has exploded and international and multicultural 
environments with geographically distributed development 
sites emphasize an ability to communicate ideas clearly. 
Clements et al. [12] made quite an extensive survey on the 
duties, skills and knowledge required from software archi-
tects today [6]. The survey covered e.g. web pages, books, 
job descriptions and university courses on software architec-
ture. This study considered that software architect and qual-
ity analyst play a role and therefore, the duties of software 
architect include project and requirements management and 
also architecture evaluation and analysis duties. In addition 
to communication skills, an architect needs the skill for ab-
straction, i.e. skills for handling the unknown and skills for 
handling the unexpected. These are two different but related 
skill sets. Skills are important but, useless without competent 
and appropriate knowledge on e.g. computer science, archi-
tecture concepts, technologies and platforms, programming 
and knowledge on organization’s context and management. 

 Technology, environment, and user requirements have  
changed rapidly in the domain of software engineering. Con- 



2    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

sequently, adaptability has become one of the key feature  
and an important factor for survival and success of software  
systems and it attracts the concentration of both; researchers  
and industry. Most essential aspects of the software systems  
adaptation are their (1) ability to observe their runtime be- 
havior and interpret those observations in terms that permit a  
high-level understanding of their status, (2) capability to  
adapt in order to accommodate variable resources, system  
errors, and stakeholders' changing requirements, (3) capabil- 
ity to adapt their functionality, even at runtime, to behavioral  
and structural changes that occur either internally or exter- 
nally in their operating environment and without any exter- 
nal human intervention, and (4) ability to allow components  
to change their pattern depending upon the environmental  
changes and goals of the software system, without changing  
the actual components themselves. In this paper, adaptability  
aspects, role of the quality attributes, and diversity of adapt- 
ability definitions at software architecture level are dis- 
cussed. Because there is no explicit, extensive and concrete  
definition related to the software system and the software  
architecture level adaptability, a new definition for that is  
discussed and proposed. 

 Software architectures for complex software systems 
should be flexible and reflective enough to allow compo-
nents to change their pattern. These environmental changes 
should be realized according to the evolving context and 
execution environment so that software systems can stay 
compliant with the specifications and requirements of the 
software systems. Analyzing the software adaptability at the 
architecture level to identify the weakness of the architecture 
and further to improve adaptability of the architecture are 
very important issues for software professionals today. All of 
adaptability requirement sources should be identified and the 
requirements should be negotiated in a way that the best pos-
sible requirement set can be identified. The problem in 
adaptability of today's software systems should be able to be 
analyzed before system implementation, i.e. when the cor-
rections and modifications are easier and cheaper to perform 
and the design decisions can still be affected.  

 Our contribution is Adaptability Evaluation Method 
(AEM) [13, 14] that defines (1) how adaptability require-
ments can be negotiated and mapped to the architecture, (2) 
how adaptability can be represented in the architecture mod-
els, and (3) how the architecture can be analyzed in order to 
validate whether or not adaptability requirements are met. 
AEM fills the gap between requirements engineering and 
evaluation and provides a systematic framework and nota-
tion extensions, techniques and guidelines for adaptability 
evaluation at the software architecture level. In this paper, 
AEM is described and validated with a real-world wireless 
environment control system. AEM is an integral part of 
QADA

®1
 (Quality-driven Architecture Design and quality 

Analysis) methodology [15] focusing its activities in adapt-
ability-related aspects. QADA

®
 also provides other evalua-

tion methods, e.g. RAP (Reliability and Availability Predic-
tion) [16] and IEE (Extensibility and Integrability Evalua-
tion) [6], for other quality attributes.  

 Quality-driven software architecture development em-
phasizes the importance of quality attributes, wherein quality 

                                                
1 QADA® is registered trademark of VTT, Technical Research Centre of Finland 

attributes refer to the non-functional properties of software 
products. The approach relies on gathering, categorizing and 
documenting quality properties as at least equally important 
requirements as functional requirements and constraints, and 
utilizing the gained knowledge in architectural design. The 
quality-driven design is further complemented with an archi-
tectural analysis. Architectural analysis is about testing the 
architecture model produced in the design, i.e. verifying 
whether the architecture meets the quality goals set in the 
very beginning. These two activities combined together form 
an interacting pair of activities in software architecture de-
velopment. 

 The structure of the paper is as follows. The next section 
discusses briefly about related work. After that, adaptability 
aspects and dimensions, and the role of the quality attributes 
related to adaptability at software architecture level are dis-
cussed. In addition, a definition for the system and the soft-
ware architecture level adaptability is discussed. The next 
section describes the target system and the objectives of the 
case and after that an introduction to AEM is provided. After 
that, the phases and steps of AEM, and how they can be ap-
plied to the case, are described and discussed. Discussion 
summarizes our experiences on using the method and con-
cludes the paper. Finally, in the last section, ideas for future 
work are discussed. 

RELATED WORK 

 There are various quality evaluation methods and tech-
niques available, e.g. for evaluating interoperability [17, 18], 
extensibility [19], architecture mismatches [18, 20] and mul-
tiple quality attributes [21]. Based on our knowledge there is 
no method for adaptability evaluation that would cover soft-
ware development from adaptability requirements specifica-
tion to architecture design and that would enable quality 
evaluation from architecture models. Scenario development 
and scenario evaluation are the common activities for all 
scenario-based methods. The main differences between 
methods are; how early in the software architecture design 
the method is used, what quality attributes the method sup-
ports and how easy it is to apply and integrate to the design 
process [22]. 

 Literature contains many stand-alone techniques pro-
posed to deal with the system or architecture level adaptabil-
ity, but it only contains a few evaluation or analysis methods 
related to the software architecture adaptability. Methodolo-
gies like ATAM [23], ALRRA [24] and ALMA [25] are 
focusing on the quality attributes of software systems like 
performance, modifiability, flexibility, maintainability, port-
ability, variability and trade-offs between them, but none of 
them focuses directly on adaptability characteristic of soft-
ware architectures. In paper [26] a descriptive method for 
analyzing self-adaptive software is proposed. The method 
proposes that self-adaptive software should include at least 
two components: (1) the deliberative component and (2) the 
reactive component. The method is based on feedback con-
trol and feed forward control theory. This method does not 
give the definition for adaptability and does not analyze 
adaptability deeply. The method is only a coarse qualitative 
analysis method. In paper [27] a process oriented metric for 
software architecture adaptability is presented. The method 
analyses the degree of adaptability through the intuitive de-



Adaptability Evaluation at Software Architecture Level The Open Software Engineering Journal, 2008 Volume 2    3 

composition of goals and the intuitive scoring for the goal 
satisfying level of software architecture. The method can 
find some defaults in the architecture, but it depends too 
much on the intuition and the expert expertise, which leads 
to much uncertainty. Paper [28] proposes a quantitative 
evaluation approach based on adaptability scenario profile, 
impact analysis on them and calculation of adaptability de-
gree of them. However, the method does not consider 
evaluation of qualitative aspects of the software architec-
tures.  

ADAPTABILITY RELATED TO SOFTWARE ENGI-

NEERING  

 Because of rapid changes of environment and require-
ments in software engineering, adaptability has become one 

of the key features of software systems and attracts the con-
centration of both; researchers and industry. In this section, 
adaptability aspects, diversity of adaptability definitions, and 
role of quality attributes are discussed. Because there is no 
explicit, extensive, and concrete definition for the software 
system adaptability or the software architecture adaptability, 
a new definition for that is discussed and proposed.  

Adaptability Aspects 

 In literature, adaptability, related to software engineering, 
is considered with the terms of (1) robustness of software, 
(2) internal and external adaptation, (3) runtime and dynamic 
adaptability, (4) resource variability, (5) dynamic reconfigu-
ration, (6) reflective adaptation and (7) self-management, 
which all have a particular impact on system, architecture, 

Table 1. Adaptability Aspects 

Adaptability Aspect  Description Ref. 

Robustness of software Ability of a software system to tolerate some deviations in the environment [29] 

Internal adaptability Ability of a software system to use generic mechanisms such as exception handling, or heartbeat 
mechanisms to trigger application-specific responses to an observed fault 

[17] 

External adaptability Ability of a software system to manage adaptation outside of the system by monitoring various 
systems attributes, such as resource utilization, reliability, and delivered quality of service. 

Monitored information and external mechanisms decide whether the application must be recon-
figured 

[17] 

Runtime adaptability: Ability of a software system to adapt itself to changes that occur either internally or externally in 
its operating environment. 

[30] 

• Behavioral adaptability System structure remains the same while the architectural elements of the system can be modi-
fied or replaced. 

[30] 

• Structural adaptability System behavior remains the same while the configuration of the architectural elements changes. [30] 

Resource variability Ability of a software system to manage resource variability, changing user needs, and system 
faults. 

[31] 

Dynamic adaptability Ability of a software system to adapt to behavioral and structural changes that occur either inter-
nally or externally in their operating environment while the system is running and without bring-

ing it down. Takes into account the evolution of the execution context and environment alterna-
tions. 

[32] 

Dynamic reconfiguration Takes place during maintenance or when a new version of the system is installed. Dynamic 
reconfiguration has to address the issues of structural changes (topology of the application), 
geographical changes (distribution of the components and their localization), interface modifica-

tion (changing the interface of a component), and implementation modification (changing the 
internals of a component, modifying its execution or updating its execution schema). 

[31] 

Reflective adaptation Ability of a software system to exploit computational reflection, which allows a system to ob-
serve and modify the properties of its own behavior, especially those ones that can be observed 

externally, Is a solution to create applications capable to maintain, use or change the representa-
tion of their own designs. 

[33] 

Self-management: Ability of a software system to be efficient without user intervention. [34] 

• Self-adapting Ability of a software system to modify its own behavior in response to changes in its operating 
environment in order to provide and improve functionalities and performances. 

[35] 

• Self-organizing Ability of components of software system to configure autonomously interactions with other 
components, guaranteeing system constraints. 

[36] 

• Self-configuring Ability of a software system to automatically adapt to dynamic changes (i.e. insertion, replace, 
and removal of a component) of the system. 

[37] 

• Self-protecting Ability of a software system to observe external world and notice and react to possible attacks to 
the system. 

[34] 

• Self-healing Ability of a software system to examine, detect, diagnose, react and take corrective actions to the 
software and hardware malfunctions automatically. 

[32] 

• Self-optimizing Ability of a software system to monitor and autonomously optimize system resources. Compo-
nents and systems continually seek opportunities to improve their own performance and effi-
ciency. 

[38] 



4    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

and component dimensions. Table 1 summarizes adaptability 
aspects with their descriptions and example references. 

Role of Quality Attributes 

 Quality of software is one of the major issues in software 
intensive systems and it is important to analyze it as early as 
possible. Analyzing of software quality can be done from the 
descriptions of software architecture by means of quality 
attributes [1, 2]. ISO standard 9126-1 [4] defines a Software 
Quality Model including six main categories of quality at-
tributes as follows: functionality, reliability, usability, effi-
ciency, maintainability and portability. Furthermore, each of 
these quality categories is divided into several sub character-
istics. 

 System requirements are defined as the top level re-
quirement set consisting of software, hardware and mechani-
cal requirements [39]. This paper focuses on software re-
quirements and ignores the other ones. Software require-
ments can be defined as consisting of functional require-
ments and non-functional requirements (NFRs), also referred 
to as quality attributes or system properties [39]. The func-
tional requirements are related to the domain functionality of 
the application. Typically, a functional requirement is im-
plemented by a subsystem or a group of components in the 
software. Quality attributes can be categorized in develop-
ment quality attributes and operational quality attributes 
[39]. Development quality attributes are characteristics of the 
system that are relevant from a software engineering per-
spective, e.g. maintainability, reusability, and flexibility [39]. 
Operational quality attributes are characteristics of the sys-
tem in operation, e.g. performance, reliability, robustness 
and fault-tolerance [39]. Different from functional require-
ments, non-functional requirements can generally not be 
pinpointed to a particular part of the application but are a 
property of the application as a whole. 

 Requirements of software architecture include functional 
requirements and NFRs. NFRs have a critical role in the de-
velopment of a software system as they can be used as selec-
tion criteria to help designers with rational decision-making 
among competing designs, which in turn affects a system's 
implementation. The problem of effectively designing and 
analyze software architecture to meet its NFRs is critical to 
the system's success. The significant benefits of such work 
include detecting and removing defects earlier, reducing de-
velopment time and cost while improving the quality. The 
inherent nature of the NFRs makes their common under-
standing difficult [29]. The problem is compounded by the 
fact that the requirements for any software architecture are 
usually vague about the NFRs that the architecture should 
satisfy and how to analyze the NFRs in the final architecture. 
While there are several NFRs such as performance, main-
tainability, reusability, security, and so on, among the more 
important of the NFRs is adaptability [40].  

 Despite the fact that the categorization into functional 
and non-functional quality attributes are widely approved 
and used in software development, other categorizations are 
represented too [2]. This kind of a categorization is described 
e.g. in [5] defining a framework for representing the design 
process of non-functional requirements (or quality attrib-
utes). However, the framework does not categorize the qual-

ity attributes explicitly but concentrates on recording the 
reasoning process behind the design decisions [2]. 

 With an interpretation discussed so far, the definitions of 
quality attributes and categorization of them to operational 
and development quality attributes can be defined as shown 
in Table 2 and Table 3. 

Table 2. Operational Quality Attributes [2] 

Quality  

Attribute 
Description 

Performance Responsiveness of the system, which means the time 

required to respond to stimuli (events) or the number 

of events processed in some interval of time. 

Security The system’s ability to resist unauthorized attempts at 

usage and denial of service while still providing its 

service to legitimate users. 

Availability Availability measures the proportion of time the sys-

tem is up and running. 

Usability The system’s learnability, efficiency, memorability, 

error avoidance, error handling and satisfaction con-

cerning the users’ actions. 

Scalability The ease with which a system or component can be 

modified to fit the problem area. 

Reliability The ability of the system or component to keep operat-

ing over the time or to perform its required functions 

under stated conditions for a specified period of time. 

Interoperability The ability of a group of parts to exchange information 

and use the one exchanged. 

Adaptability The ability of software to adapt its functionality ac-

cording to the current environment or user.  

 

Table 3. Development Quality Attributes [2] 

Quality 

 Attribute 
Description 

Maintainability The ease with which a software system or component 

can be modified or adapt to a changed environment. 

Flexibility The ease with which a system or component can be 

modified for use in applications or an environment 

other than those for which it was specifically designed. 

Modifiability The ability to make changes quickly and cost-

effectively. 

Extensibility The systems ability to acquire new components. 

Portability The ability of the system to run under different com-

puting systems: hardware, software or combination of 

the two.  

Reusability The system’s structure or some of its components can 

be reused again in future applications. 

Integrability The ability to make the separately developed compo-

nents of the system work correctly together. 

Testability The ease with which software can be made to demon-

strate its faults. 



Adaptability Evaluation at Software Architecture Level The Open Software Engineering Journal, 2008 Volume 2    5 

 The definitions of the quality attributes in Table 2 and 
Table 3 are based on descriptions discussed in [17] extended 
by definitions of the quality attributes named adaptability 
and extensibility. In IEEE Standard 610.12 [41], adaptability 
is defined as a synonym for flexibility and in ISO/IEC 9126-
1 [4], as a sub quality attribute of portability. However, the 
meaning of adaptability, flexibility, portability, and extensi-
bility is clearly different and adaptability exists even in dif-
ferent quality category than the others. According to [2] 
adaptability of software is “the ability of software to adapt its 
functionality according to the current environment or user”, 
whereas the strict meaning of flexibility is about “easy adap-
tation of software to environments other than those for which 
it was specifically designed”. On the other hand, portability 
of software system means the capability of the software 
product to be transferred from environment to other [4], 
whereas extensibility emphasizes the systems capability to 
acquire new components. 

 In Table 2, adaptability is classified to category of opera-
tional quality attributes. On the other hand, Table 3 defines 
two development quality attributes; maintainability and 
modifiability, which both have aspects and references related 
to the characteristics of adaptability or adaptation. Conse-
quently, adaptability is also present in Table 3 in the defini-
tions of maintainability and modifiability in form of devel-
opment characteristics of the quality attributes. As a conclu-
sion, the lists of quality attributes are sensitive to changes in 
a similar way to attractiveness of systems' quality attributes 
[2], and furthermore, adaptability has both operational and 
development characteristics. 

 Although the Software Quality Model [4] includes func-
tionality, i.e. the system's ability to do the work for which it 
was intended, it can be seen as a main category of opera-
tional quality attributes, realizing that functionality cannot be 
considered as an architectural quality attribute [1, 2]. How-
ever, adaptability, as well as interoperability and reliability, 
can be considered as special, newly emerged forms of func-
tionality, the forms that are architectural in nature [2, 17]. 
While the characteristics of software systems are changing 
from monolithic to modular distributed network systems, and 
furthermore, to self-managing nets of adaptive computing 
units, adaptability, as well as interoperability and reliability, 
can be considered as a characterization of qualitative proper-
ties of software systems [2]. 

 With interpretation discussed so far, and because adapt-
ability related to the software systems has operational and 
development characteristics, and furthermore, qualitative 
properties, adaptability can be considered as a sub quality 
attribute of maintainability. In Table 3 maintainability is 
defined as “the ease with which a software system or com-
ponent can be modified or adapt to a changed environment”. 
Modifications may include extensions, porting to different 
computing systems or improvements. Maintainability is also 
affected by other development quality attributes. In Table 3 
modifiability is defined as “an ability of software system to 
make changes quickly and cost-effectively”. Modifiability 
includes adding, deleting and changing software structures 
and therefore, extensibility and portability can be considered 
as a special form of modifiability. In addition, flexibility, 
reusability, testability and integrability contribute to modifi-
ability and therefore they can be defined as sub quality at-

tributes of maintainability. Furthermore, adaptability as well 
as maintainability has an impact on three abstraction levels 
named system, architecture and component dimension. 
Adaptability concerns the whole life cycle of software sys-
tem, and therefore, it exists at all abstraction levels in soft-
ware development. In these dimensions adaptability means 
different things, and therefore, the techniques to achieve it 
also vary. 

Definition of Adaptability 

 In literature, adaptability is defined variously. For exam-
ple, in ISO/IEC 9126-1 [4] the software adaptability has 
been defined as “the capability of the software product to be 
adapted for different specified environments without apply-
ing actions or means other than those provided for this pur-
pose for the software considered”. In [42] adaptability is 
defined as “the system which can adjust its behavior accord-
ing to changing of the environments”. Furthermore, [2] de-
fine adaptability as “the ability of software to adapt its func-
tionality according to the current environment or user”. Al-
though these different notions, there is no explicit, extensive, 
and concrete definition for the software system adaptability 
or the software architecture adaptability. 

 As a conclusion, adaptability, related to software engi-
neering, has many facets, including characteristics from both 
functional and non-functional quality attributes. The latter 
quality attributes (i.e. operational and development quality 
attributes) can be seen as architectural in nature. Conse-
quently, adaptability can be considered as a characterization 
of qualitative property of maintainability of software archi-
tecture and it should be taken into account at architectural 
design phase of the software system. Furthermore, adaptabil-
ity includes runtime requirements of the software system as 
well as changes in requirements of stakeholders' objectives. 
We define the software system or the software architecture 
adaptability as follows: 

 Adaptability of software system or software architecture 
is (1) a qualitative property of its maintainability and (2) an 
ability of its components to adapt their functionality, even at 
runtime, to behavioral and structural changes that occur 
either internally or externally in their operating environment 
and in requirements of stakeholders' objectives. 

 In the definition above, adaptability is related to the ob-
jectives of stakeholders of the system and to the quality at-
tributes of the software architecture. Typical stakeholders are 
customers, business managers, architects and architectural 
evolution strategists of organization. Stakeholders have dif-
ferent viewpoints and demand different adaptable content. 
For example, from the point of view of end-user, adaptability 
may mean that new functions can be added and deployed to 
the system. On the other hand, for the architects, adaptability 
may mean that the system can adapt with different operating 
systems. 

INTRODUCTION TO AEM 

 AEM [13, 14] is an integral part of QADA
®

 (Quality-
driven Architecture Design and quality Analysis) methodol-
ogy [15] specializing its activities in adaptability-related 
aspects. QADA

®
 is a methodology that provides a set of 

methods and techniques to develop high-quality software 
architectures for single systems and system families. The 



6    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

focus of QADA
®

 methodology is on identifying as many as 
possible of the design problems and quality goals in architec-
ture design and analysis. In the design, this is achieved by 
identifying system stakeholders, analyzing target system 
quality goals from the point of view of several stakeholders 
and describing the architecture and quality with models from 
various viewpoints so that the appropriate knowledge 
reaches each stakeholder. The analysis considers quality 
goals of architecture and products from the point of view of 
at least developers, users and customers. QADA

®
 uses qual-

ity requirements as a driving force when selecting software 
structures and it describes the architecture on two abstraction 
levels: conceptual and concrete (Fig. (1)). 

 The conceptual level means design decisions concerning, 
for example, functionality. The concrete level refines the 
conceptual designs in more detailed descriptions. The con-
ceptual and concrete levels consist of four viewpoints: struc-
tural, behavioral, deployment and development. The struc-
tural viewpoint describes the compositional structure of the 
system, whereas the behavioral viewpoint concerns the be-
havioral aspects of the architecture. The deployment view-
point allocates the components to various computing envi-
ronments.  

 Finally, the development viewpoint presents the compo-
nents, their relationships to each other and the actors respon-
sible for their development.  

 AEM means capturing adaptability requirements of the 
software architecture and defines (1) how adaptability re-
quirements can be negotiated and mapped to the architecture, 
(2) how adaptability can be represented in the architecture 
models, and (3) how the architecture can be analyzed in or-

der to validate whether the requirements are met. AEM as-
sists in requirement engineering, architecture modeling and 
adaptability evaluation in the architecture models, ensuring 
that the requirements are met before system implementation. 
AEM consists of three main phases, and they can be applied 
separately to individual systems. Each phase includes several 
steps, which, in turn, consist of a set of activities. These 
three main phases; (1) defining adaptability goals, (2) repre-
senting adaptability in architecture models, and (3) adapt-
ability evaluation, as well as their steps are described more 
detailed in chapter “Applying the Phases to the Case”. 

DESCRIPTION AND OBJECTIVES OF THE CASE  

 The target system of the case has been a wireless envi-
ronment control system (Fig. (2)). The system is used to 
manage the electrical control appliances of doors, windows, 
lights, security systems, elevators, etc., located in the user's 
close surroundings. The target system consists of the Client 
Software installed in the user's mobile phone, and an unlim-
ited number of the Receivers, including their own software 
and hardware. The receivers are connected to the electrical 
appliances with cable and receive control messages from the 
mobile phone via a Bluetooth interface. 

 An objective of the case has been to validate AEM with a 
real-world industrial case, emphasizing (1) the efficiency of 
the design and analysis of the software system architecture to 
meet its adaptability, (2) the software system's adaptability to 
multiple platforms, and (3) how adaptability mechanisms can 
be added to the architectures of software systems. The indus-
trial partner has participated in the case with development 
process of the target system and their objectives have been 
(1) to develop a new adaptable software architecture for the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Abstraction levels and views of QADA
®

 methodology. The conceptual and concrete levels of QADA
®

 consist of four viewpoints. 



Adaptability Evaluation at Software Architecture Level The Open Software Engineering Journal, 2008 Volume 2    7 

existing target system, aimed to run on multiple platforms, 
(2) to advance and improve their current development proc-
ess for adaptable software system architectures, and (3) to 
find a more outlined and controlled way of developing soft-
ware system architectures. 

APPLYING THE PHASES TO THE CASE 

 In this section the phases and steps of AEM, and how 
they can be applied to the case, are described and discussed. 

Phase 1: Defining Adaptability Goals 

 The purpose of the first phase of AEM is to define adapt-
ability goals. This means identifying and negotiating adapt-
ability requirements to find a satisfactory set that is subse-
quently brought further into the architecture design. The first 
phase of AEM includes five steps as follows. 

Identifying Stakeholders and Their Concerns 

 Every system has several stakeholders, i.e. persons in-
volved in system development. Each stakeholder has 
stakeholders’ own interests regarding the system. 
Stakeholders can also be responsible for a set of activities, 
such as requirements specification, architecture design, cod-
ing or testing. The goals of the system stakeholders’ must be 
in accordance with all of the interest groups of the product. 
Stakeholders related to the creation and use of architectural 
descriptions includes the clients, users, architect, developers 
and evaluators. The requirements of all the stakeholders 
must be identified and negotiated. 

 In order to achieve the final adaptability requirements set 
for the system (i.e. the quality goals), in AEM, adaptability 
requirements of all the stakeholders can be identified and 
negotiated by exploiting the i* (“distributed intentionality”) 
framework [43]. The i* framework traces the requirements to 
stakeholders and their dependency relationships and it helps 
to detect where the quality requirements originate and what 
kind of negotiations should take place. In the i* framework 
stakeholders are represented as (social) actors who depend 
on each other for goals to be achieved, tasks to be per-
formed, and resources to be furnished. The i* framework 
includes a graph named Strategic Dependency Model (SDM) 

for describing the network of relationships and dependencies 
among the actors. The type of the dependency describes the 
nature of the agreement as follows: (1) goal dependencies are 
used to represent delegation of responsibility for fulfilling a 
goal, (2) softgoal dependencies are similar to goal dependen-
cies, but their fulfillment cannot be defined precisely, (3) 
task dependencies are used in situations where the actor is 
required to perform a given activity, and (4) resource de-
pendencies require the actor to provide a resource to the 
other actor. Normally, in the i* framework actors are repre-
sented as circles and dependums, i.e. goals, softgoals, tasks 
and resources, are respectively represented as ovals, clouds, 
hexagons and rectangles. Dependencies have the form de-
pender  dependum  dependee.  

 The NFR (Non-Functional Requirement) framework [5] 
refines and extends the i* framework. The NFR framework 
aims to refine the quality requirements, consider different 
design alternatives, perform trade-off analyses and evaluate 
the degree to which the requirements are satisfied. The NFR 
framework utilizes non-functional requirements to drive the 
overall design process. It assists in acquiring and accessing 
the required knowledge of the domain and system. The 
framework identifies the particular NFRs for the domain and 
the possible design alternatives (“operationalizations”) for 
meeting requirements. It also detects the interdependencies 
among NFRs and operationalizations, and assists in the se-
lection of the architectural style among operationalization 
alternatives. 

 The CBSP (Component-Bus-System-Property) method 
[44] aims to reconcile the requirements and architectures 
using intermediate models. The intermediate model is used 
as a bridge while refining and transforming the requirements 
to architectural elements. The method defines five steps from 
the requirement selection to making trade-off choices of ar-
chitectural elements and styles. Each requirement is assessed 
for its relevance to the system architecture’s components, 
connectors and topology of the system.  

 Different sets of quality concerns can be transformed by 
architecture design into different architectural decisions. 
Together the NFR framework and CBSP method can be used 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Overview of the target system. 



8    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

to define, among other things, how adaptability requirements 
lead to different architectural decisions. This is valuable for 
adaptability evaluation. These two approaches are primarily 
aimed at a one-of-a-kind system development. 

 In the case implementation, the SDM graph of the i* 
framework has been exploited to acquire all the change re-
quirements of the stakeholders and their dependency rela-
tionships related to the target system. In the SDM graph (Fig. 
(3)), the stakeholders has been represented as (social) actors 
who depend on each other for goals to be achieved, tasks to 
be performed, and resources to be furnished. UML2 [45] 
notation has been exploited to depict the goals, softgoals, 
tasks and resources of the SDM by using the stereotypes 
<<actor>> and <<dependency>> and tagged values. The 
SDM graph has been utilized in order to acquire 19 change 
requirements relevant to the target system. The change re-
quirements have also been recorded in the table (Table 4) for 
future use. 

Refining Adaptability Requirements 

 After the adaptability requirements are identified and 
negotiated, they must be refined to the final requirements of 
the system that are considered further in the architecture de-
sign. All of the requirements must be provided with the iden-
tification numbers. It is not always possible to implement all 
of the requirements, for example, because time or money. 
Therefore, the importance of each adaptability requirement 
must be defined. In AEM, the importance is expressed by 
using three categories: high, medium and low.  

 In the case implementation, the specification of the final 
set of the adaptability change requirements of the target sys-
tem has been performed by selecting them from the change 
requirements acquired in the previous step. These require-
ments have been highlighted in a table (Table 4) with identi-
fication numbers and other importance category information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Partial view of the Strategic Dependency Model (SDM) graph of the target system.  



Adaptability Evaluation at Software Architecture Level The Open Software Engineering Journal, 2008 Volume 2    9 

Mapping Adaptability Requirements to Functionality 

 According to QADA
®

, the architecture of the system is 
first described at the conceptual level. The main functional-
ity, i.e. “what the system does”, can be considered as a main 
force of the conceptual design. In AEM, mapping of the sys-
tem-specific adaptability requirements to functionality is 
performed case-specifically. One adaptability requirement 

may be mapped to several functional blocks. Additionally, 
adaptability requirements themselves may result in certain 
functionality. In this phase, the architect only has to decide 
which services are responsible for the implementation of 
each of the requirements.  

 In the case implementation, the target system has first 
been decomposed into domains, which then have been de-

Table 4. Change Requirements for the Target System (Adaptability-Related Requirements are Highlighted) 

CR ID Change requirement description 
i* actor 

(Depender) 

i* actor 

(Dependee) 

Type of depend-

ency 
Importance 

CR1 

Add or remove Controlled Device and its UI-icon 

from the system related to doors, windows, eleva-

tors, etc. 

Configurator, 

Integrator 
Client SW Task High 

CR2 
Add the new UI-language for the SW developing 

environment. 
SW Designer Client SW Task 

 

CR3 
Adapt the UI according to different mobile phone 

display sizes and models. 
Client SW 

Mobile Phone Dis-

play 
Task High 

CR4 Control the UI by the human voice commands. User Client SW Task  

CR5 Inform and guide user by human voice. Client SW User Task  

CR6 
Manage user’s privileges and user groups in real-

time. 
Administrator Client SW Task High 

CR7 Change user’s authority. Administrator Client SW Task High 

CR8 

Add new software protocol to control the 3rd party 

devices by means of the serial, USB or CAN inter-

face. 

SW Designer Thor SW Task 

 

CR9 
Add new hardware interface for serial, USB and 

CAN interfaces. 
HW Designer Controlled Device Task 

 

CR10 
Add new baseband hardware for alternative network 

(NW2). 
HW Designer Controlled Device Task 

 

CR11 

Provide reliable and secure messaging protocol for 

Bluetooth and alternative network (NW2) messag-

ing. 

Client SW Thor SW 
Task, 

Recourse 

 

CR12 

Adapt UI in indoor environment based on the loca-

tion changes of the user’s phone among the sur-

rounding Controlled Devices. 

Client SW 
Mobile Phone Dis-

play 
Task High 

CR13 
Localize outdoor users by means of Global Position-

ing System (GPS). 
Client SW GPS 

Task, 

Recourse 

 

CR14 Send location information of Controlled Device. Thor SW Client SW 
Task, 

Recourse 
High 

CR15 Add architectural changes to the system. Architect 
Client SW, 

Thor SW 
Task 

 

CR16 
Establish external device connection by means of 

serial, USB or CAN connection. 
Thor SW 3rd Party Device 

Task, 

Recourse 

 

CR17 
Adapt to different operating systems and hardware 

platforms of mobile phones. 
Client SW Device Platform Recourse Medium 

CR18 
Select connection type between alternative network 

(NW2) and Bluetooth. 
Configurator Client SW Task High 

CR19 Add new screen size for used mobile phone. SW Designer Client SW Task High 

CR20 
Add secure Bluetooth and alternative network 

(NW2) messaging protocol. 
SW Designer Client SW Task 

 



10    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

composed into subsystems. Next, the main functionality of 
the target system has been divided into functional blocks. 
UML2 notation has been exploited in a graphical presenta-
tion. Furthermore, the functional blocks responsible for the 
implementation of each of the adaptability change require-
ment have been identified. One or several adaptability 
change requirements have been mapped to the functional 
blocks with their identification numbers. The results of the 
mapping have been depicted in the form of the table (Table 
5). 

Selecting Architectural Styles and Patterns and Perform-

ing a Trade-Off Analysis 

 In general speaking, the environment for the systematic 
synthesis of architecture level adaptation relies on the fol-
lowing concepts: (1) Software Design Methods, (2) Model-
Driven Architecture (MDA), (3) Architectural Models, (4) 
Architectural Styles, (5) Architectural Style Base, (6) Archi-
tectural Patterns, (7) Social Patterns, (8) Reflective Architec-
tures, (9) Reflective Middlewares, (10) Runtime Reflection, 
(11) Adaptive Middleware, (12) Adaptive QoS Management, 

Table 5. Mapping the Adaptability Change Requirements to Functionality of the Target System 

Domain Subdomain Description of main functionality CR ID 

User Interface • Adds or removes the Controlled Device and its UI-icon for doors, windows, elevators, etc. 

• Adapts the UI according to location changes of the user’s phone among the surrounding Con-

trolled Devices 

• Adapts the screen size based on used mobile phone 

• Manages of user’s privileges and the user groups in real-time 

• Changes user’s authority information 

• Activates/deactivates phone’s display views 

• Delivers the system alerts to active view 

• Receives user entries from phone’s keyboard 

• Keeps up the display data related to the known mobile phones 

• Keeps up the user profile data 

• Draws up the “settings view” onto the phone’s display 

• Draws up the “icon view” onto the phone’s display 

CR1, CR3, 

CR6, CR7, 

CR12, CR17, 

CR18, CR19 

Phone 

Controller 

• Keeps up the phone number database of the target system 

• Manages the phone number database of the target system 

• Manages incoming and outgoing phone calls 

• Keeps up the state of the mobile phone 

CR17 

IR 

Controller 

• Handles switching between the IR-configuration files 

• Parses the needed IR-commands from the given IR-configuration file 

• Stores the IR-configuration files 

CR17 

Client 

Thor 

Controller 

• Handles the external adapter commands,  

• Constructs and holds all the other Bluetooth components of the Controlled Devices 

• Parses incoming Bluetooth messages 

• Generates new Bluetooth message 

• Sends out Bluetooth messages to Bluetooth network 

• Receives in Bluetooth messages from Bluetooth network 

• Generates new alternative network (NW2) message 

• Sends out messages to NW2 

• Receives in messages from NW2 network 

• Keeps up the database related to the known Controlled Devices and their attributes 

• Manages opening and closing the Bluetooth sockets 

CR1, CR12, 

CR17, CR18 

Controlled 

Device 

 • Handles Bluetooth and NW2 connections 

• Sends out location information at regular short time intervals 

• Delivers actions to the I/O-relays 

• Stores the system settings while the Controlled Device is turned off 

CR12, CR14, 

CR18 



Adaptability Evaluation at Software Architecture Level The Open Software Engineering Journal, 2008 Volume 2    11 

(13) Component Models, (14) Component-Based Architec-
tures, (15) Adaptive Component Interfaces, (16) Connectors, 
and (17) Unified Modeling Language 2.0 (UML2).  

 Software systems can be built from one or several archi-
tectural styles. For example, even if the main style is layered 
the blackboard style can still appear in one of the architec-
tural layers. In the beginning of architecture modeling, the 
dominant architectural style must at least be selected. When 
the dominant style is decided upon, the other architectural 
styles and patterns can be selected for the smaller parts of the 
architecture where they may be beneficial. According to 
QADA

®
, the architectural modeling is begun from concep-

tual architecture. In the conceptual structural view (Fig. (1)), 
the functionality, i.e. services or utilities, are organized ac-
cording to the selected architectural style.  

 The different adaptability requirements should be trans-
formed to the design decisions or architectural styles and 
patterns in a predefined way. The different design alterna-
tives can be searched for, for example, from a style base [46] 
that represents the mapping between the quality attributes 
and design decisions. In addition, architectural patterns [47, 
48] and social patterns [49] can be transformed to the design 
decisions. The effect of architectural patterns on quality at-
tributes is discussed in several studies, such as [47, 50-52]. 
Each architectural pattern helps to achieve specific global 
system property, for example, adaptability of distributed 
system. 

 Social Patterns are idioms inspired by social and inten-
tional characteristics used to design the details of system 
architecture. Architectures like Multi-Agent Systems (MAS) 
Architectures appear to be more appropriate than traditional 
ones for building latest generation software that is typically 
concurrent, distributed, and dynamic [49]. MAS could be 
seen as a social organization of autonomous software entities 
(agents) that can flexibly achieve agreed-upon intentions by 
interacting with one another. MAS do allow dynamic and 
evolving structures which can change at runtime to benefit 
from the capabilities of new system entities or replace obso-
lete ones. Since the fundamental concepts of Multi-Agent 
Systems are social and intentional, rather than object, func-
tional or implementation-oriented, the design of MAS Archi-
tectures should be eased by using Social Patterns rather than 
Object-Oriented Design Patterns [49]. A social organization-
based MAS development can help matching the system ar-
chitecture with its operational environment [49]. The choice 
of these styles and patterns is not necessarily final, but rather 
iterative, as more exact designs are made later. 

 Adaptability levels of the systems define how important 
the achievements of adaptability requirements are to that 
specific system. For example, in the high adaptability level, 
adaptability of the system must be guaranteed using the best 
possible design techniques. The cost and effort of the design 
is normally higher in the case of high adaptability level sys-
tems, whereas in the case of normal and low adaptability 
level systems the simpler and inexpensive design techniques 
are used. 

 There is always a risk that adaptability requirements will 
conflict with other quality requirements. This might even 
result in all of the important requirements not being met in 
the architecture. The purpose of the trade-off analysis is to 

guarantee the best requirements set considering all of the 
quality requirements. The NFR framework [5] is one method 
for the negotiation of various conflicting quality attributes 
and evaluating the criticality of quality requirements. The 
NFR framework is a process oriented approach that treats 
quality requirements as soft goals, i.e. the quality goals, to be 
achieved [5]. By using the NFR framework, the requirements 
with the affected stakeholders can be renegotiated and a so-
lution can be found that makes acceptable trade-offs for all 
of the stakeholders. As a consequence of the trade-off analy-
sis, the resulting problems of the analysis must be identified 
and solved. 

 In the case implementation, the architectural styles and 
patterns suitable for the case purposes have been selected as 
follows: (1) the Layers Pattern [47] and the Microkernel Pat-
tern [47] to depict the layers of the architectures, (2) General 
Communication Middleware (GCM) [53] to solve the adap-
tive middleware issues, (3) a component-based architecture 
paradigm [54] to depict the architectures, and (4) connectors 
[55] to depict the relationships between the architecture 
components. Furthermore, the technological approaches de-
scribed in Table 6 have been exploited and used in the case 
implementation. 

 Because the case has not been defined to consider quality 
attributes other than adaptability, a detailed trade-off analysis 
for the target system has not been seen essential and it has 
not been performed. 

Defining Criteria for Adaptability Evaluation 

 In AEM, adaptability evaluation criteria are categorized 
into four evaluation levels: Level 1, product line adaptability 
requirements; Level 2, system-specific adaptability require-
ments of high importance; Level 3, system-specific adapt-
ability requirements of medium importance; and Level 4, 
system-specific adaptability requirements of low importance.  

 In the case implementation, adaptability evaluation crite-
ria for the selected adaptability change requirements of the 
target system have been defined to be at level 2 or 3. 

Phase 2: Representing Adaptability in Architectural 
Models 

 The second phase of AEM provides guidelines for how to 
model adaptability in software architecture in a way that 
adaptability analysis can be performed directly from the ar-
chitecture. The abstraction levels of QADA® are used in 
adaptability modeling in two ways. First, adaptability of the 
system is described at the conceptual level, and second, 
adaptability of the system is described at the concrete level. 
Adaptability appears in architectural models in two ways: (1) 
adaptability aspects are attached to the architectural ele-
ments, and (2) adaptability requirements result in certain 
design decisions and functionality. The design decisions 
should be documented; especially the qualitative analysis 
relies on documented design rationale. The abstraction levels 
of QADA

®
 are utilized in adaptability modeling. If the de-

sign rationale is documented and there is a mapping between 
each design decision and adaptability requirements, it can be 
verified that the requirements are met in the architecture 
level by following the guidelines of third phase of AEM. The 
second phase of AEM includes the following three steps. 



12    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

Mapping Adaptability to Conceptual Architectural Ele-
ments 

 After the architectural style is selected at the conceptual 
architectural level, adaptability requirements are brought to 
the architectural models. In this step, the requirements are 
attached to the architectural elements in the conceptual views 
of QADA

®
 (Fig. (1)). This means that the requirements are 

transformed to the required responsibilities of the architec-
tural elements, i.e. the components and connectors. In archi-

tecture, the required adaptability guides the design of con-
crete architecture and helps to make the design decisions. By 
mapping adaptability requirements to the system behavior in 
behavioral view, the requirements have an influence on the 
dynamic aspects of the system. The fourth view of QADA

®
, 

i.e. the development view, is used in AEM to organize the 
design work.  

 The conceptual structural view represents the static rela-
tionships of the architectural elements, i.e. components or 

Table 6. Technological Approaches Exploited in the Case Implementation 

Technological  

approach 
Description 

Usage in the case 

implementation 
General ref. 

Software  

Design Methods 

Emphasize 

• quality requirements,  

• abstraction levels,  

• architectural viewpoints, and  

• architectural views 

as a driving force when selecting software structures. 

QADA® [15] [23-25] 

Architectural 
Patterns 

• Map the quality requirements to architecture design, 

• Provides a solution for a particular problem and is thus a realization of a style or 

styles, 

• Describe how to build a software system and represent the highest-level patterns in 
the pattern system, 

• Express fundamental structural organization schemas for software systems 

The Layers Pattern 
[47], 

The Microkernel 
Pattern [47] 

[47, 48, 52] 

Adaptive  

Middleware 

• Is based on underlying components and network services, 

• Is used to implement adaptive behavior, for example, to deal with performance al-
ternations, security needs, hardware failures, network outages, fault tolerance, etc., 

• Reflection is used to gather contextual information so that the middleware services 

can be adapted according to the context of execution 

General Communica-
tion Middleware, 

GCM [53] 

[31, 56, 57] 

Component-
Based  

Architectures 

• Provide interaction interfaces between clients, containers, components and concen-
trators, 

• Describe the prerequisites for each component, 

• Specify how some services can be statically plugged into components, 

• Separate application programming from deployment, 

• Allow component programmers to give information about which services to use, 

• Customize the deployment descriptor in order to adapt the component to the speci-
ficity of the runtime environment (transaction, persistency, security, database sup-

port, etc.) 

To depict the archi-
tecture 

[31, 54, 58] 

Connectors • Are special kind of components that are used to connect components that interact 
with each other, 

• Encapsulate component responsibilities and interdependencies for various kinds of 
collaborations as system level architectural patterns, 

• Is a lightweight component which functions as a glue of components and induces a 

low overload, 

• Support generation of connectors according to the description of elementary serv-
ices and aspects 

To depict the archi-
tecture component 

relations 

 

[31, 55, 59, 
60] 

Unified Modeling 
Language 

(UML2) 

• Is a standard and widely accepted modeling language, 

• The concept of profiles is suitable for the context of adaptability, Adaptability 
properties could be represented in architecture with the help of a profile tailored 

especially for this quality attribute, 

• Can be extended by specific profiles to support certain quality aspects, 

• Profile is a stereotyped package that contains model elements that have been cus-
tomized for a specific domain or purpose by extending the meta-model using 

stereotypes, tagged definitions, and constraints, 

• Includes the profiles for modeling quality attributes in architecture have been sug-
gested, such as a UML2 profile for Schedulability, Performance and Time,  

• Includes a profile for modeling the Quality-of-Service and Fault Tolerance 

To depict the archi-
tecture in the differ-

ent views, abstraction 
level and class level 

 

[45] 



Adaptability Evaluation at Software Architecture Level The Open Software Engineering Journal, 2008 Volume 2    13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Partial view of the final component diagram of the target system software architecture with NW2 connection (A3).  



14    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

services and connectors. The mapping of each adaptability 
requirement to functionality is performed when defining the 
quality goals. This enabled the tracing of the requirements to 
the architecture. Now, vice versa, all adaptability require-
ments are defined for each architectural element. This en-
ables bidirectional requirements tracing from the architecture 
to the requirements. By using UML2 notation, the static 
structure of the system can be represented, for example, by 
using a component diagram or a composite structure dia-
gram. Typically, the exact means and techniques to imple-
ment the requirements are not yet defined, but the definition 
helps one to define what is required from the system and its 
elements. Adaptability requirements and design rationale are 
written inside the architectural elements. 

 The conceptual behavioral view helps one to understand 
the dynamic aspects of the system. The view represents the 
dynamic relationships of the architectural elements. Accord-
ing to QADA

®
, the behavior of the system is described at the 

conceptual level as abstract descriptions of collaboration that 
describe the interactions between the architectural elements. 
The state diagrams or message sequence diagrams of UML2 
notation can be used to describe the interactions between the 
architectural elements. 

 The conceptual deployment view allocates units of de-
ployment to physical computing units. In the deployment 
diagram of UML2, architectural elements are described as 
deployment nodes or units of deployment with types and 
relationships. Adaptability is denoted by attaching the re-
quirements to nodes and relationships. 

 The conceptual development view does not itself assist in 
adaptability representation. However, the view helps one to 
detect which architectural elements and services have to be 
developed, which can be found in the asset repository and 
the ones that have to be bought. 

 In the case implementation, the conceptual deployment 
view for the target system architecture has been designed and 
depicted by using UML2 notation. The physical computing 
units have been depicted as nodes in the diagram. The rela-
tionships between the nodes have been described and their 
services have been depicted in a layered style. The Kernel 
solution has been exploited to hide the used hardware (HW) 
and the system services from the upper services of the do-
mains. A possible solution for this has been the J2ME [61] or 
the Microkernel Pattern [47]. GCM has been exploited to 
provide the adaptive communication middleware solution for 
the mobile phone Client Software and the Receiver Software 
of the target system.  

 Next, the conceptual structural view of the existing target 
system software architecture (A1) has been represented as a 
component diagram by using UML2 notation. In a similar 
manner, the component diagrams for the two new target sys-
tem software architectures with a Bluetooth connection (A2) 
and with both an alternative wireless network (NW2) and a 
Bluetooth connection (A3) (Fig. (4)) have been developed 
and depicted. The adaptability change requirements and de-
sign rationale have been written inside the architectural ele-
ments, i.e. the components and connectors. The main func-
tionality of the components has been denoted to the diagrams 
as stereotypes. To depict the required adaptability in dia-
grams A2 and A3, the necessary new components, the com-

ponents needed to modify them and the connectors between 
them have been denoted with different symbol colors. The 
conceptual behavioral and development views have not been 
used in the case implementation because they have not seen 
to bring any additional value to the case work. 

Mapping from Conceptual Architecture to Concrete Ar-
chitecture 

 When mapping adaptability requirements to the concep-
tual architecture, the results of adaptability requirements are 
reflected in the concrete architecture. The traceability of 
adaptability requirements to the conceptual architecture and 
the concrete architecture must be ensured. The conceptual 
architectural elements, i.e. services, are more logical model-
ing elements than the concrete implementation components. 
Thus, one conceptual service may result in several concrete 
components, or one concrete component may contribute to 
the implementation of one or more conceptual services. The 
mapping between conceptual and concrete architecture must 
be documented to trace adaptability requirements to the con-
crete architectural level. The different design alternatives can 
be searched again from a style base [46] that represents the 
mapping between the quality attributes and design decisions. 
In addition, architectural patterns [47, 48] and social patterns 
[49] can be transformed to the design decisions. 

 In the case implementation, the mapping from the con-
ceptual architecture to the concrete architecture has been 
straightforward: one concrete component responds to one 
conceptual component. The adaptability-related change re-
quirements have been associated for each architectural com-
ponent and connector involved in adaptability. In addition, 
an essential implementation activity, i.e. addition, modifica-
tion, or deletion, has been associated for each architectural 
component and connector involved in adaptability. The re-
sults of the mapping have been depicted in the form of a ta-
ble (Table 7). 

Mapping Adaptability to Concrete Architectural Ele-
ments 

 In AEM, adaptability requirements are attached to the 
architectural components in the concrete views of QADA

®
 

(Fig. (1)). The concrete view is used in adaptability analysis 
and is therefore especially tailored to the needs of the analy-
sis. The requirements are attached to architectural elements 
in the structural and deployment views and are represented in 
the concrete architecture using the concrete structural and 
deployment views. In the architecture, adaptability guides 
the design of concrete components or represents the proper-
ties of the existing components, i.e. components in the asset 
repository or the Commercial Off-The-Shelf (COTS) com-
ponents, which can be used. The behavioral view assists in 
the modeling of the behavior of the components and the sys-
tems. The development view refines the allocation that is 
defined in the conceptual development view to concrete 
components. 

 The concrete structural view is used to describe the con-
crete components and interfaces needed for corresponding 
conceptual architecture. Therefore, the view decomposes the 
conceptual architecture into lower aggregation levels. The 
component diagram or composite structure diagram of 
UML2 notation can be used in order to describe the structure 



Adaptability Evaluation at Software Architecture Level The Open Software Engineering Journal, 2008 Volume 2    15 

Table 7. Mapping the Adaptability Change Requirements to the Architectural Elements of the Target System (A3) 

Component Interfaces 

Domain 
Sub- 

domain ID and name 

a
d

d
. 

m
o

d
. 

d
e
l. Name 

a
d

d
. 

m
o

d
. 

d
e
l. 

Change 

requirement ID 

UserEntry    Not relevant in adaptability 

SystemAlerts  

(PhoneDisplay) 
   Not relevant in adaptability 

SystemAlerts  

(MessageObserver) 
   Not relevant in adaptability 

SettingsView  X  
CR1, CR3, CR6, CR7, CR12, CR17, 

CR18, CR19 

IconView  X  
CR1, CR3, CR6, CR7, CR12, CR17, 

CR18, CR19 

DispaySize X   CR3, CR17, CR19 

UserProfile X   CR6, CR7, CR17 

c1: ViewManager  

X 

 

ActiveThorItems X   CR1, CR12, CR17 

DispaySize  

(ViewManager) 
X   CR3, CR17, CR19 

DispaySize  

(SettingsView) 
X   CR3, CR17, CR19 

c4: DispayParameters 

X 

  

DispaySize  

(IconView) 
X   CR3, CR17, CR19 

c5: UserProfileHolder X   UserProfile X   CR6, CR7, CR17 

SettingsView  X  CR1, CR3, CR12, CR17 

IRController  X  CR17 

DispaySize X   CR1, CR3, CR12, CR17, CR19 

ActiveView  X  CR1, CR3, CR12, CR17 

c2: SettingsView  

X 

 

ThorItemHolder  X  CR1, CR12, CR17 

IconView  

(MessageObserver) 
 X  CR1, CR3, CR12, CR17 

ContactsArray  X  CR17 

IconView  

(AdapterController) 
 X  CR1, CR3, CR12, CR17 

ThorItemHolder  X  CR1, CR12, CR17 

IRController  X  CR17 

DispaySize X   CR1, CR3, CR12, CR17, CR19 

IconView  

(ViewManager) 
 X  CR17 

User 

Interface 

 

c3: IconView  

X 

 

ActiveView  X  CR1, CR3, CR12, CR17 

PhoneBook    CR17 

ConnectCall    CR17 

Client 

 

Phone 

Controller 

 

c6:AddressBook  

Manager 

   

ContactsArray    CR17 



16    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

(Table 7). Contd… 

ConnectCall    CR17 

PhoneModuleAPI    CR17  

c7: PhoneCallHandler    

MessageObserver    CR17 

IRController (Set-
tingsView) 

   CR17 

IRController  

(IconView) 
   CR17 

ThorManager    CR17 

c8: IRController    

IRCodePraser    CR17 

IRCodePraser    CR17 c9: IRCodeParser    

IRConfigFiles    CR17 

IR 

Controller 

 

c10: IRConfiguration-
Files 

   
IRConfigFiles    CR17 

AdapterController    CR17 

IconView    CR17 

c11: AdapterController    

ThorManager    CR17 

MessageObserver    CR17 

ThorManager 

(AdapterController) 
   CR17 

ThorInterface  X  CR12, CR17, CR18 

ThorItemHolder    CR17 

c12: ThorManager  

X 

 

ThorManager  

(IRController) 
   CR17 

ThorInterface  X  CR12, CR17, CR18 

ActiveThorItems  X  CR12, CR17 

c13: ThorInterface  

X 

 

NetworkInterface  X  CR17, CR18 

ThorItemHolder 
(ThorManager) 

 X  CR17 

ThorItemHolder (Set-
tingsView) 

 X  CR1, CR12, CR17 

c14: ThorItemHolder    

ThorItemHolder (Icon-
View) 

 X  CR1, CR12, CR17 

NetworkInterface X   CR12, CR17, CR18 

SocketsEngine  X  CR12, CR17, CR18 

c15: NetworkInterface 

X 

  

AirInterface X   CR12, CR17, CR18  

ActiveThorItems (Thor-
Interface) 

X   CR12, CR17 
c17: ActiveThorItem-

Holder 
X 

  

ActiveThorItems 
(ViewManager) 

X   CR12, CR17 

SocketsEngine  X  CR12, CR17 c16: SocketsEngine  
X 

 

OpenSockets    CR17 

BluetoothSockets  X  CR17 

 

Thor 

Controller 

 

c18: BluetoothSockets  
X 

 

AirInterface  X  CR17 

 

 

 

 

 



Adaptability Evaluation at Software Architecture Level The Open Software Engineering Journal, 2008 Volume 2    17 

(Table 7). Contd… 

AirInterface     c20: IR-Sender  

X 

 

UART  X  Not relevant in adaptability 

AirInterface X   CR12, CR14 

ThorLocation X   CR12, CR14 

NetworkController X   CR12, CR14 

PSKeys X   CR12 

I/O-Relays X   CR12 

c22: NetworkController 

X 

  

UART X   Not relevant in adaptability 

ThorLocation X   CR12, CR14 

AirInterface X   CR12, CR14 

UART (implement) X   Not relevant in adaptability 

c19: ThorLocation 

Sender 

X 

  

UART (required) X   Not relevant in adaptability 

AirInterface  X  CR12, CR14 

UART (implement) X   Not relevant in adaptability 

UART (required) X   Not relevant in adaptability 

c21: WrapThor  

Controller 

 

X 

 

NetworkController  X  CR18 

c23: PersistentStore  X  PSKeys  X  CR12 

c24: 6 x Relay    I/O-Relays     

I/O-Relays  

(NetworkController) 
 X  Not relevant in adaptability 

Controlled 

Device 

 

c25: I/O-Relays  

X 

 

I/O-Relays  

(6 x Relay)  
    

 
of the system. The adaptability requirements are attached to 
the architectural elements by using the same criteria as in 
conceptual levels. The concrete structural view also reveals 
the interfaces of the components. Interfaces must be de-
scribed in a way that enables the estimation of the interoper-
ability of components. 

 In the concrete behavioral view, the state diagrams or 
message sequence diagrams of UML2 notation can be used 
to describe the interactions between components. For each 
new component, the state diagram must be defined to de-
scribe the internal states and state transition. The message 
sequence diagram is used to derive input messages for 
adaptability analysis. Also, the activity diagram is required 
to derive a model for adaptability analysis. An activity dia-
gram typically represents the operational work flows of a 
system. 

 The concrete deployment view is used to describe the 
concrete hardware and software components, the relation-
ships between the hardware components, and the relation-
ships between the software and hardware components. How-
ever, AEM concentrates on software systems; therefore this 
portion is limited. 

 The concrete development view links the architectural 
views to the repository of common assets. Thus, the compo-

nents that already exist can be linked to the concrete compo-
nents that they realize. When more detailed description of 
the architecture components and their interfaces are needed, 
they can be developed and depicted as class diagrams. 

 In the case implementation, the mapping from the con-
ceptual architecture to the concrete architecture has been 
straightforward; one concrete architectural element corre-
sponds to one conceptual architectural element. However, 
more detailed description of the architecture components and 
their interfaces has been needed. The components and their 
interfaces, related to the adaptability change requirements, 
have been developed and depicted as class diagrams by us-
ing UML2 notation (an example is given in Fig. (5)).  

 Furthermore, adaptability of the components has been 
realized by the structure of their interfaces and the communi-
cation messaging abstraction between them. For example, 
GCM (Fig. (6)) consists of two main parts: message structure 
and middleware for processing the messages providing a 
communication abstraction for application messaging [53]. 
The main rationale for introducing the communication ab-
straction for application messaging is to enhance adaptability 
and facilitate development of the application. GCM is de-
signed for processing GCM messages. It facilitates the de-
velopment of the distributed applications by providing to 



18    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Class diagram of the Network Interface (c15). 

adopt middleware communication service removing the need 
for application specific communication implementations 
[53]. The difference between GCM and other known com-
munication middleware solutions is that GCM constitutes a 
transport-independent communication abstraction, making it 
widely reusable in a variety of applications [53]. GCM solu-
tion of the target system software architecture has been mes-

sage oriented and GCM messages have been defined in ob-
ject oriented fashion. GCM message structure has been dy-
namic consisting of message body (GCM_Message) and 
message elements (GCM_MessageElement) [53]. New mes-
sage elements for different kind of data have been introduced 
to GCM message structure by extending 
GCM_MessageElement -class [53]. GCM messages use 



Adaptability Evaluation at Software Architecture Level The Open Software Engineering Journal, 2008 Volume 2    19 

identifiers of the target system software for addressing. 
These are simply text format IDs that will be compared for 
correct delivery at the middleware [53]. 

 GCM of the target system software architecture has been 
defined in UML2 as reusable entity for processing GCM 
messages. GCM provides one interface to utilize, and one to 
implement. GCM implements the receiver interface 
(GCM_Message Receiver) for receiving messages, connec-
tion state information, and returned messages in case of un-
successful sending [53].  

 The receiver interface has been utilized as call-back inter-
face by GCM and must therefore be registered at the mid-
dleware. The application is able to register or unregister ob-
ject instances implementing the receiver interface by using 
the service interface (GCM_ServiceInterface) [53]. The serv-
ice interface also contains the main functionality of GCM, 
i.e. message sending.  

 GCM of the target system architecture shares similarities 
with most of the communication software including the same 
basic functionality like send and receive buffers. In case of 
sudden disconnection the send buffer can be cleared and all 
unsent GCM messages can returned to the application via the 
receive interface [53]. If required, parallelism within the 
middleware may be provided by using worker threads and 

dynamic thread pool within GCM_Receiver -component for 
delivering received GCM messages [53]. This way the dead-
locks caused by blocking applications and single thread de-
livery can be avoided [53]. 

 GCM architecture contains two interfaces for achieving 
the data transport independence; one for sending messages 
into the network (GCM_ TransportSendInterface) and an-
other for receiving them from the network 
(GCM_TransportReceive Interface) [53]. With these inter-
faces GCM is able to accommodate transport implementa-
tions using e.g. TCP/IP (Transmission Control Proto-
col/Internet Protocol) for transfer of the messages. The dif-
ferent communication paradigms are not reflected to GCM 
middleware architecture making GCM middleware commu-
nication paradigm transparent and leaving the selection of 
applied communication paradigm and connection manage-
ment for the transport implementation [53]. 

 The concrete behavioral and development views have not 
been used in the case implementation because they have not 
been seen to bring any additional value for the case work. 

Phase 3: Evaluation of Adaptability 

 The third phase of AEM is about analyzing the candidate 
architectures to validate whether or not adaptability require-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Class Diagram of GCM message structure. 



20    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

ments are met. Adaptability evaluation is performed by using 
quantitative and qualitative analyses.  

 The quantitative adaptability analysis evaluates the archi-
tecture adaptability based on adaptability scenario profile 
and impact analysis of a system based on its structure in 
terms of composition, i.e. components and their interactions. 
This analysis requires that the structure of the system is 
known, both the static aspects represented by its components 
and the dynamic aspects represented by the execution fre-
quency of each component and each interaction between 
components. The quantitative approach also assumes that the 
behavior of the components and component interactions are 
known.  

 Qualitative analysis is complementary to the quantitative 
one and can be applied without knowing the behavior of 
components. The analysis consists of reasoning the design 
decisions, e.g., architectural styles and patterns and their 
support for adaptability requirements. Finally, decision mak-
ing is performed based on the analyses. 

Quantitative Analysis 

 The purpose of the quantitative analysis is to provide a 
systematic adaptability evaluation approach to support archi-
tecture improving and decision making for choosing among 
candidate architectures. 

 AEM adopts the Quantitative Evaluation Approach in-
troduced in [28] for evaluation of quantitative adaptability of 
the architectures. In AEM, quantitative analysis is driven by 
stakeholders’ adaptability goals, including the following four 
steps: (1) developing an Adaptability Scenario Profile (ASP) 
for each of the candidate architecture, based on the system’s 

adaptability goals, (2) performing an impact analysis under 
the scenario profile, (3) applying the metric and calculating 
the value of adaptability degree, and (4) analyzing the results 
of adaptability evaluation.  

 Scenarios are one of the effective techniques in architec-
ture analysis [28, 62]. An adaptability scenario covers a typi-
cal use for the system related to adaptability, system behav-
ior for abnormal conditions and potential future changes to 
the system. Adaptability scenario is a description of the sys-
tem behavior driven by the change requirement, including 
the use of the system, the reaction to the change requirement 
and potential future changes, all of which are related to 
adaptability. The ASP is a set of related adaptability scenar-
ios. 

 In the case implementation, the ASP of the target system 
has been developed by defining the scenarios for all the 
adaptability-related change requirements and recording them 
in the table (Table 8) with the change requirement identifica-
tion, the related information on the scenario identification 
(Sk), the estimated probability of the scenario (PSk), scenario 
description, and the evaluation criteria. 

 Once the ASP has been available, the impact analysis for 
each of the adaptability scenarios has been performed by 
exploiting the Class Point [63] (CP) method and the Class 
Point Calculation Worksheet (CPCW) (Table 13).  

 In the CP size estimation, the design specifications have 
first been analyzed in order to identify and classify the 
classes [63]. The Problem Domain Type (PDT) component 
contains classes representing real-world entities in the sys-
tem’s application domain. The classes of the Human Interac-
tion Type (HIT) are designed to satisfy the need for informa-

Table 8. Adaptability Scenario Profile (ASP) for the Target System 

Change  

req. ID  
Sk PSk Scenario description 

Evaluation 

criteria 

CR1 S1 0,15 

Configurator of the system adds or removes the information related to the Controlled Device (i.e. doors, win-

dows, elevators, etc.) to or from the configuration file of the system by sending the change request message to 

the Client Software. At the same time, Configurator adds or removes the Controlled Device UI-icon on or 

from the Mobile Phone Display by sending the change request message to the Client Software. 

Level 2 

CR3, 

CR19 
S3 0,15 

The Client SW adapts the mobile phone display size by sending the change request message to the Mobile 

Phone Display and by using the display size parameters of the mobile phones added by SW Designer. 
Level 2 

CR6 S6 0,15 
Administrator of the system manages the user’s privileges and the user groups of the system in real-time by 

sending the related information to the user profile files stored by the Client SW. 
Level 2 

CR7 S7 0,15 
Administrator of the system maintains the user’s authority information in real-time by sending the related 

information to the user profile files stored by the Client SW. 
Level 2 

CR12, 

CR14 
S12 0,15 

In indoor environment, the Client SW adapts in real-time the information related to the Controlled Devices on 

the user’s mobile phone display by receiving the location information messages from the Controlled Devices 

and by sending the change request messages to the Mobile Phone Display. The location information message 

is sent in real-time by the Controlled Device at regular short intervals and when the range of the Bluetooth or 

the alternative network connection is valid. 

Level 2 

CR17 S17 0,10 
The Client SW adapts to the different OS and HW platforms of the mobile devices by using layered architec-

ture and the Kernel solution to hide the Client SW from the OS and the HW.  
Level 3 

CR18 S18 0,15 
Configurator of the system selects the connection type between alternative network and Bluetooth by sending 

the corresponding request message to the Client SW. 
Level 2 



Adaptability Evaluation at Software Architecture Level The Open Software Engineering Journal, 2008 Volume 2    21 

Table 9. Measuring Criteria for the Target System Architecture (A3) 

Component Interfaces 

Number of classes Domain Sub-domain 

ID and name 

PDT HIT DMT TMT 

N

S

R 

Name NEM NOA 

UserEntry 1 0 

SystemAlerts  

(PhoneDisplay) 
1 0 

SystemAlerts  

(MessageObserver) 
1 0 

SettingsView 3 1 

IconView 3 1 

DispaySize 

UserProfile 

c1:ViewManager 0 0 0 2 8 

ActiveThorItems 

7 0 

DispaySize (ViewMan-

ager) 

DispaySize (Set-

tingsView) 

c4:DispayParameters 0 0 1 1 3 

DispaySize (IconView) 

7 0 

c5:UserProfileHolder 0 0 1 1 1 UserProfileHolder 7 0 

SettingsView 4 0 

IRController 1 0 

DispaySize 7 0 

ActiveView 2 0 

c2:SettingsView 0 1 1 4 5 

ThorItemHolder 3 0 

IconView  

(MessageObserver) 
1 0 

ContactsArray 2 0 

IconView  

(AdapterController) 
7 0 

ThorItemHolder 4 0 

IRController 2 0 

DispaySize 7 0 

IconView  

(ViewManager) 
4 0 

User 

Interface 

c3:IconView 0 1 1 5 8 

ActiveView 2 0 

PhoneBook 4 1 

ConnectCall 3 0 

c6: AddressBook  

Manager 

0 0 1 1 3 

ContactsArray 3 0 

ConnectCall 3 0 

Client 

Phone 

Controller 

c7:PhoneCallHandler 0 0 0 1 3 

PhoneModuleAPI 4 1 



22    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

(Table 9). Contd….. 

       MessageObserver 1 0 

IRController  

(SettingsView) 
2 0 

IRController  

(IconView) 
2 0 

ThorManager 3 0 

c8:IRController 0 0 2 4 4 

IRCodePraser 3 0 

IRCodePraser 2 0 c9:IRCodeParser 0 0 0 2 2 

IRConfigFiles 2 0 

IR 

Controller 

c10:IRConfiguratio 

Files 

0 0 1 1 1 
IRConfigFiles 3 0 

AdapterController 4 0 

IconView 3 0 

c11:Adapter 

Controller 

0 0 1 1 3 

ThorManager 3 0 

MessageObserver 1 0 

ThorManager  

(AdapterController) 
3 0 

ThorInterface 7 0 

ThorItemHolder 5 0 

c12:ThorManager 0 0 1 2 5 

ThorManager (IRControl-

ler) 
3 0 

ThorInterface 3 0 

ActiveThorItems 7 0 

c13:ThorInterface 0 0 0 2 3 

NetworkInterface 7 0 

ThorItemHolder  

(ThorManager) 
3 0 

ThorItemHolder  

(SettingsView) 
10 0 

c14:ThorItemHolder 1 0 1 2 3 

ThorItemHolder (Icon-

View) 
10 0 

NetworkInterface 7 0 

SocketsEngine 2 0 

AirInterface 6 0 

c15:NetworkInterface 0 0 3 13 3 

GCM_Message 15 10 

ActiveThorItems (Thor-

Interface) 
7 0 

c17:ActiveThorItem 

Holder 

1 0 1 2 3 

ActiveThorItems  

(ViewManager) 
10 0 

SocketsEngine 7 0 c16:SocketsEngine 0 0 0 1 2 

OpenSockets 7 0 

BluetoothSockets 7 0 

 

Thor 

Controller 

c18:BluetoothSockets 0 0 0 2 2 

AirInterface 3 0 



Adaptability Evaluation at Software Architecture Level The Open Software Engineering Journal, 2008 Volume 2    23 

(Table 9). Contd….. 

AirInterface 1 0 c20:IR-Sender 0 0 0 1 2 

UART 4 0 

AirInterface 6 0 

ThorLocation 0 

NetworkController 
2 

0 

PSKeys 0 

I/O-Relays 0 

UART 

7 

0 

c22:Network 

Controller 

0 0 3 13 6 

GCM_Message 15 10 

ThorLocation 7 0 

AirInterface 6 0 

UART (implement) 2 0 

c19:ThorLocation 

Sender 

0 0 1 2 4 

UART (required) 2 0 

AirInterface 7 0 

UART (implement) 0 

UART (required) 0 

c21:WrapThor 

Controller 

0 0 1 2 3 

NetworkController 

7 

0 

c23:PersistentStore 0 0 1 1 1 PSKeys 7 0 

c24:6 x Relay 0 0 1 1  I/O-Relays 1 0 

I/O-Relays  

(NetworkController) 
7 0 

Controlled 

Device 

 

c25:I/O-Relays 0 0 1 1 2 

I/O-Relays (6 x Relay)  6 0 

 

tion visualization and human interaction. The Data Manage-
ment Type (DMT) component encompasses the classes that 
offer functionality for data storage and retrieval. The Task 
Management Type (TMT) classes are designed for purposes 
of task management and communication between subsys-
tems and external systems.  

 Second, the behavior of each class has been taken into 
account in order to evaluate its complexity level (low, aver-
age or high). The Number of External Methods (NEM) 
measures the size of the interface of a class and is deter-
mined by the number of locally defined public methods [63]. 
The Number of Services Requested (NSR) provides a meas-
ure of the interconnection of the system components and is 
determined by the number of different services requested 
from other classes [63]. The Number of Attributes (NOA) 
has also been taken into account in order to evaluate the 
complexity level of a class [63]. For example, if a class had 
more than nine NEM and the NSR value was not less than 2, 
and NOA was bigger than or equal to ten, a high complexity 
level has been assigned. 

 In the case implementation, the CP measuring criteria for 
each component and the connector of the candidate architec-
tures A1, A2 and A3, has been collected and recorded in 
form of a table (an example is given in Table 9).  

 Once the complexity level of each identified class has 
been established, the Total Unadjusted Class Point (TUPC) 
has been computed as the weighted total of the four compo-
nents of the application [63]: 

ij

j

ij

i

xwTUCP =

==

3

1

4

1  

where xij is the number of classes of component type i (PDT, 
HIT, DMT, TMT) with complexity level j, and wij is the em-
pirical weighting value for type i and complexity level j.  

 Next, the Technical Complexity Factor (TCF) has been 
determined by assigning the degree of influence (ranging 
from 0 to 5) that 18 general system characteristics had on the 
application [63]. The estimates given for the degrees of in-
fluence have been recorded in the Processing Complexity 
Table in the CPCW (Table 13). The sum of the influence 
degrees related to such general system characteristics forms 
the Total Degree of Influence (TDI), which is used to deter-
mine the TCF based on the following formula [63]:  

)01,0(55,0 TDITCF +=
 

 The final value of the CP for each component and con-
nectors has been obtained by multiplying the TUPC value by 
TCF [63]:  



24    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

TCFTUCPCP =
 

 Two metrics have been used for architecture adaptability: 
IOSA (Impact On the Software Architecture) and ADSA 
(Adaptability Degree of the Software Architecture) to meas-
ure the impact on the architectures [28]. The IOSA has been 
calculated by summing the CP values in each adaptability 
scenario [28]: 

))()((
1

sksk

S

k

k TCPCCPPSIOSA +=

=

 (1) 

where |S| is the number of adaptability scenario, PSk is the 
estimated probability of adaptability scenario Sk based on 
adaptability evaluation criteria, CP is the impact analysis 
result of Sk, and Csk and Tsk are the set of impacted compo-
nents and connectors Sk respectively.  

 The application of the IOSA is that the degree of adapt-
ability has an inverse relationship to the value of IOSA, so 
the ADSA is defined as [28]: 

1, >= NNADSA IOSA
                  (2) 

 From equation 1, the range of IOSA is [0, ], so the range 
of ADSA is [1,0], 1 means that the architecture is totally 
adaptable in all dimensions and 0 means that architecture is 
not adaptable to any change requirement. In order to make 
the value of ADSA spread equally throughout the range, the 
value of N must be close to 1. After some experiments, we 
define N = 1.01. Based on the value of ADSA the architect 
can decide which candidate architecture is more adaptable to 
stakeholders’ adaptability goals and in which dimensions the 
architecture is adaptable. In addition, the architect can iden-
tify the weaknesses of the architectures to support architec-
ture improvement. However, the architectures must be de-
signed for same system or the value of ADSA is meaningless.  

 In the case implementation, the impact analysis has been 
decided to perform in two phases; firstly without the NW2 
connection and secondly with it. Table 10 summarizes the 
results of the impact analysis for the architecture A1 based 
on the required changes of the architecture A2. The scenario 
S18 and the connector t15-22 have not been realized in this 
phase. Table 11 summarizes the results of the impact analy-
sis for the architecture A2 based on the required changes of 

Table 10. Impact Analysis and ADSA for the Target System Software Architecture (A1) 

Target of the 

component changes 

The target of the  

connector changes Scenario PS CP 

c(add) c(mod) c(del) t(add) t(mod) t(del) 

IOSA N ADSA 

S1 0,15 105,66  

c1 

c2 

c3 

  
t1-2  

t1-3 
  15,85 

S3 0,15 115,29 c4 

c1 

c2 

c3 

 

t1-4 

t2-4 

t3-4 

t1-3   17,29 

S6 0,15 72,72 c5 
c1 

c3 
 t1-5 t1-3   10,91 

S7 0,15 72,72 c5 
c1 

c3 
 t1-5 t1-3   10,91 

S12 0,15 524,84 

c15 

c17 

c19 

c22 

c1 

c3 

c12 

c13 

c16 

c20 

c21 

c23 

c25 

 

t13-17 

t19-22  

t15-22*) 

t1-3  

t1-17 

t13-12 

t12-15 

t15-16 

t22-20 

t22-23 

t22-25 

  78,73 

S17 0,10 0,00 
The Kernel solution realizes 

the scenario S17 
      0,00 

S18 0,15 0,00 
The scenario S18 is realized in 

the next phase 
      0,00 

  

 1,00 891,23             133,68 1,010 0,264 

*) NW2 connector t15-22 is realized in the next phase. 



Adaptability Evaluation at Software Architecture Level The Open Software Engineering Journal, 2008 Volume 2    25 

the final architecture A3. The scenario S18 and the connector 
t15-22 have now been realized. 

 In the case implementation, both of the metrics IOSA and 
ADSA have been calculated to measure the impact on the 
target system architectures A1, A2, and A3. The results of 
the quantitative analysis are shown in Table 12. 

 The results reveal that the architecture A1 is poorly adap-
tive in the required dimensions described in Table 4. The 
architecture A2 is adaptive in required dimensions of CR1, 
CR3, CR6, CR7, CR12, CR14, CR17, and CR19, but not in 
CR18 because the connector t15-22 has not been implemented 
yet. However, the architecture A2 is feasible when NW2 
connection has not been required to implement. If NW2 con-
nection is decided to implement later, it will be a relatively 
easy task because the value of ADSA is on high level. When 
the case is an issue, it’s obvious, that the value for ADSA for 
the final architecture A3 is one, meaning that the architecture 
is adaptive in all the required dimensions. 

Qualitative Analysis 

 The qualitative analysis is about tracking adaptability 
requirements. In AEM, the qualitative analysis relies on 
documented design rationale that must be included or ac-
companied in the architectural models. If this is not the case, 
then the analysis relies heavily on the architects' tacit knowl-
edge. The process of qualitative analysis can be partly auto-
mated, for example by automating the report generation. The 
main parts of the analysis still require a human analyzer. The 

bidirectional requirement tracking is about tracking the re-
quirements to the architecture and the properties of the archi-
tecture to the requirements. The tracking is performed based 
on the requirement numbers that are associated to architec-
tural elements by using adaptability profiles. Adaptability 
profile maps the requirements to the architecture at the con-
ceptual level and describes how these requirements are taken 
into account at the concrete level. Therefore, the qualitative 
analysis verifies that each requirement has been taken into 
account in the architecture design. When analyzing the archi-
tecture and its components, the tracking is performed vice 
versa; from concrete architecture to the conceptual and fur-
thermore to requirements. 

 Design rationale can be associated with individual com-
ponents, with individual connections, and a set of compo-
nents and their connections. The analyzer compares the de-
sign decisions with adaptability requirements and analyzes 
how those requirements are met in the architecture. The ana-
lyzer also has to decide if the requirements are met sufficient 
enough, and to examine how to meet requirements better and 
how well all of these decisions work together. For comparing 
two different architectures, the qualitative analysis must be 
performed for each of the designs, and thereafter a numerical 
indicator for the coverage of requirements is used, but also 
human judgment regarding the proposed solutions has to be 
applied. 

 The objective of the qualitative analysis is to determine 
and to identify problems that may occur when certain adapt-

Table 11. Impact Analysis and ADSA for the Target System Software Architecture (A2) 

Target of the 

component changes 

The target of the 

connector changes Scenario PS CP 

c(add) c(mod) c(del) t(add) t(mod) t(del) 

IOSA N ADSA 

S1 0,15 0,00             0,00     

S3 0,15 0,00             0,00     

S6 0,15 0,00             0,00     

S7 0,15 0,00             0,00     

S12 0,15 19,04   
c15 

c22 
  t15-22     2,86     

S17 0,10 0,00             0,00     

S18 0,15 56,16   
c1 

c2 
    t1-2   8,42     

  1,00 75,20             11,28 1,010 0,894 

Table 12. Results of the Quantitative Analysis of the Target System Software Architectures 

Architecture Description Dimensions ADSA 

A1 The Target System (existing architecture) Non 0,264 

A2 The Target System (without NW2 connection) 
CR1, CR3, CR6, CR7, CR12 (t15-22 is not implemented), 

CR14, CR17, CR19 
0,894 

A3 The Target System (with NW2 connection) CR1, CR3, CR6, CR7, CR12, CR14 CR17, CR18, CR19 1,000 



26    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

Table 13. Class Point Calculation Worksheet 

Class Point Calculation Worksheet Date: dd.mm.yyyy 

Application:  The Target System 

Company: A Ltd. 

Component: NetworkInterface / A1 / without NW2 connection 

Component ID: C15 

Prepared by: PVT 

Reviewed by: JMA Date: dd.mm.yyyy 

Class Point Count 

Complexity Level 
Class Type of System Component  

Low Average High Total 

PDT Problem Domain 0 3 0 0 6 0 0 10 0 0 

HIT Human Interaction 0 4 0 0 7 0 0 12 0 0 

DMT Data Management 0 5 0 0 8 0 3 13 39 39 

TMT Task Management 0 4 0 0 6 0 11 9 99 99 

TUCP Total Unadjusted Class Point                                                                    138 

Processing Complexity (PC) 

ID General System Characteristic DI ID General System Characteristic DI 

PC1 Data Communications 5 PC10 Reusability 5 

PC2 Distributed Functions 0 PC11 Installation Ease 5 

PC3 Performance 5 PC12 Operational Ease 5 

PC4 Heavily Used Configurations 0 PC13 Multiple Sites 5 

PC5 Transaction Rate 5 PC14 Facilitation of Change 4 

PC6 Online Data Entry 0 PC15 System Survivability 5 

PC7 End-User Efficiency 0 PC16 Rapid Prototyping 5 

PC8 Online Update 5 PC17 Multi-user Interactivity 5 

PC9 Complex Processing 5 PC18 Multiple Interfaces 0 

 TDI Total Degree of Influence 64 

Technical Complexity Factor (TCF) and Class Point Measure (CP) 

TCF Technical Complexity Factor ( = 0.55 + (0.01 x TDI)  1,19 

CP Class Point Measure ( = TUCP x TCF) 164,22 

Evaluation criteria for Complexity Level and Processing Complexity 

NSR: 2   

NEM: 24   

NOA: 10 

 

  

0-2 NSR 0-5 NOA 6-9 NOA 10 NOA  NSR = Number of Services Requested 

0-4 NEM Low Low Average  NEM = Number of External Methods 

5-8 NEM Low Average High  NOA = Number of Attributes 

 9 NEM Average High High   

3-4 NSR 0-4 NOA 5-8 NOA  9 NOA   

0-3 NEM Low Low Average  Degree of Influence (DI) values: 

4-7 NEM Low Average High  0 = Not present or no influence 

 8 NEM Average High High  1 = Insignificant influence 

 5 NSR 0-3 NOA 4-7 NOA  8 NOA  2 = Moderate influence 

0-2 NEM Low Low Average  3 = Average influence 

3-6 NEM Low Average High  4 = Significant influence 

 7 NEM Average High High  5 = Strong influence, throughout 

 

 

 



Adaptability Evaluation at Software Architecture Level The Open Software Engineering Journal, 2008 Volume 2    27 

ability requirements are not met in the architecture. Thus, 
architect must pay attention to the parts of the architecture 
that require an enhancement to meet adaptability require-
ments in this particular architecture, without changing the 
architectural style. 

 In the case implementation, the architectures A2 and A3 
have been designed in a component, layered, and Object 
Oriented (OO) fashion, and they both exploit GCM architec-
ture to provide an adaptive middleware solution. The Kernel 
solution for both of the architectures has also been applied to 
provide platform independence of the Client Software of the 
target system. 

Decision Making Based on the Analysis 

 If the result of the qualitative and/or quantitative adapt-
ability analysis reveals that the particular architecture is not 
sufficient enough for adaptability requirements, the architect 
has two choices: (1) keep the architecture and increase 
adaptability of components and their interactions. This can 
be performed by choosing components with higher adapt-
ability, by implementing higher adaptable components by 
eliminating software defects in their implementation, and by 
deploying software on more adaptable hardware, and (2) 
change the architecture by using different architectural styles 
and patterns, and by introducing new adaptability mecha-
nisms. 

 AEM enables adaptability analysis to be performed sys-
tematic and iterative way for each architectural choice. The 
results of the analysis of different architectural choices must 
be evaluated against adaptability evaluation criteria and 
against each other. Human analysis is required to decide 
which architectural alternative meets the requirements best.  

 In the case implementation, the architecture A2 is feasi-
ble when the alternative wireless network connection is not 
required to be implemented because the value of ADSA is on 
a high level. The final architecture, A3, is useful when both 
of the network connections are required to be implemented. 

CONCLUDING REMARKS 

 Adaptability, related to software engineering, is consid-
ered with different terms (Table 1). The runtime adaptability 
is the ability of a software system to adapt itself to changes 
that occur either internally or externally in its operating envi-
ronment. A software system can either change its behavior or 
its structure. The dynamic adaptability of a software system 
is the system ability to adapt the behavior of applications to 
the alternations in their environment without reconfiguration. 
The dynamic adaptability is especially suitable when fast and 
frequent reactions are required. Dynamic adaptation of run-
time software system depends on monitoring, interpretation, 
and reconfiguration. A reflective system maintains at the 
runtime data structures that materialize some aspects of the 
system itself. Reflection means that an explicit, runtime rep-
resentation of system behavior is maintained, which reflects 
the actual system behavior in the sense that changes in the 
latter are materialized in the meta-level description. Self-
management is the ability of a software system to be effi-
cient without user intervention. 

 Quality of software is one of the major issues in software 
intensive systems and it is important to analyze it as early as 

possible. It is widely accepted that quality requirements for 
the final software system can be determined at the software 
architecture level by means of the quality attributes. The 
operational quality attributes (Table 2) are characteristics of 
the system in operation, e.g. performance, reliability, and 
robustness. The development quality attributes (Table 3) are 
characteristics of the system that are relevant from a software 
engineering perspective, e.g. maintainability, reusability, and 
flexibility. Adaptability concerns the whole life cycle of 
software system, and therefore, it exists at all abstraction 
levels in software development. In these dimensions adapt-
ability means different things, and therefore, techniques to 
achieve it also vary. 

 Adaptability has many facets and it is defined with dif-
ferent ways. In the discussed definition for adaptability of 
software system and software architecture, adaptability is 
related to the objectives of the stakeholders of the system 
and to the quality attributes of the software architecture. 
Typical stakeholders are customers, business managers, ar-
chitects and architectural evolution strategists of the organi-
zation. Stakeholders have different viewpoints and demand 
different adaptable content. Adaptability of software archi-
tecture is meaningful in specified context, i.e. software archi-
tecture is adaptable to specified change requirements.  

 An objective of the case study has been in validation of 
Adaptability Evaluation Method (AEM) by means of a real 
world industrial case. The method has been assisted in re-
quirement engineering, architecture modeling and adaptabil-
ity evaluation from the architectural models. The case results 
has been revealed that AEM can be used (1) in requirements 
engineering, (2) in designing, negotiating and mapping 
adaptability requirements to the software architectures, and 
(3) in an adaptability evaluation of the architectures.  

 The strengths of AEM are largely social. The method 
assists to focus attention on the important details of the ar-
chitecture, and allows stakeholders to ignore less critical 
areas. In the case implementation, the most important source 
for defining adaptability-related requirements has been pro-
vided by the interviews of the development staff of the in-
dustrial partner. Weekly meetings have been provided as a 
successful means of clarifying the meaning of the adaptabil-
ity-related requirements and achieving a common under-
standing among the development staff of the target system. 
Total of six weeks have been used for gathering, defining, 
and evaluating the adaptability-related issues of the target 
system. 

 In the case implementation, adaptability evaluation has 
been performed with a scenario-based analysis at the archi-
tecture level. The exploitation of scenarios has been proven 
to be an important tool for both communication among a 
team of developers and for communication between a devel-
opment team and upper-level managers. Architectural de-
scriptions have been played an important role in scenario-
based evaluation. Therefore, it has been important that archi-
tectural descriptions have been designed to serve quality 
evaluation, thanks to the various viewpoints of QADA

®
 that 

are especially designed for quality evaluation. Each of the 
viewpoints focuses on specific quality attributes. In the case 
implementation, the most important viewpoints for adapt-
ability evaluation have been concrete structural and concrete 
deployment. In adaptability degree comparing, the architec-



28    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

tures to be evaluated must be designed for same system by 
means of different architectural styles, or the results are 
meaningless. The more detailed the description of the archi-
tecture, the more accurate is its evaluation results. The re-
quired adaptability for the target system has been achieved. 

 The industrial partner has participated in the case with 
developing process of the environment control system. An 
objective of them has been to develop new adaptable soft-
ware architecture for multiple platforms, based on existing 
version of the product. Furthermore, other objectives of them 
have been to advance and to improve their current develop-
ing process related to architectures of adaptable software 
system, and find out more outlined and more controlled way 
to develop software system architectures. Furthermore, case 
objectives of them have also been to deliver research mate-
rial for purposes of the case and to discover professional 
view to analyze the software architecture of the target sys-
tem. To keep observed material near by practice, the indus-
trial partner has decided to design new version of the target 
system hand in hand with the case implementation. After 
analyzing earlier version of the product, and specifying the 
change requirements for new version of the target system, 
the industrial partner has discovered a lot of proposals to 
resolve architectural problems especially in network level. 
As a result of the case, the industrial partner has received 
architectural design documents of the target system on the 
component level, and networking components even on class 
level, both depicted by UML2 notation. From project man-
agement point of view, the industrial partner has discovered 
also new usable methods to estimate needed working hours 
to implement a single part of a system or even a system as a 
whole. After all, the industrial partner has much been 
chuffed about the results of the case: they have been able to 
help research partner in practical case work and they have 
achieved the objectives they have set for the case. In the 
case, two new usable and adaptable software architectures 
for the target system for multiple platforms have been devel-
oped. In addition, improvements for current developing 
process related to the adaptable software architectures of the 
industrial partner have been provided by following the 
phases and steps of AEM. 

FUTURE WORK 

 We will continue the research work related to adaptabil-
ity issues at architecture level. The next step of this work is 
to validate AEM with other concrete industrial cases, i.e. 
with the cases focusing on adaptability issues of Service Ar-
chitectures, Product Line and Product Family Architectures. 
Validation of the method will emphasize the special charac-
teristics of these kinds of architectures.  

 In the case implementation, adaptability degree has been 
calculated by means of Excel sheets. However, better tool 
support is needed to facilitate this work. We aim to develop a 
tool for this purpose in the near future. For example, the tool 
would calculate adaptability degree of software architecture 
directly from the architecture diagrams developed by the 
UML2 notation. Furthermore, the tool would have connec-
tion to the stylebase to facilitate software architect in selec-
tion of different architectural styles and patterns related to 
adaptability. 

 

ACKNOWLEDGEMENTS 

 This research work is mainly conducted in the MERLIN 
project under the ITEA cluster projects of the EUREKA 
network and financially supported by Tekes (the National 
Technology Agency of Finland). Furthermore, the work is 
partially conducted in the EU funded SMEPP project. 

REFERENCES  

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in 

Practice. Massachusetts: Addison-Wesley, 2003, pp. 512.  
[2] M. Matinlassi, and E. Niemelä, ”The impact of maintainability on 

component-based software systems”, in Proceedings of the 29th 
EUROMICRO Conference (EUROMICRO’03), ”New Waves in 

System Architecture”, 2003, pp. 25-32.  
[3] R. L. Glass, Software Conflict - Essays on the Art and Science of 

Software Engineering. New Jersey: Yourdon, 1991, pp. 367.  
[4] ISO/IEC Std. 9126-1, ”Software engineering - product quality - 

part 1: Quality model”, International Organization for Standardiza-
tion / International Electrotechnical Commission, Tech. Rep. TR 

9126-1:2001(E), 2001.  
[5] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional 

Requirements in Software Engineering. Boston, Dordrecht: Kluwer 
Academic Publishers, 1999, pp. 476.  

[6] K. Henttonen, M. Matinlassi, E. Niemelä, and T. Kanstrén, ”Inte-
grability and Extensibility Evaluation from Software Architectural 

Models – A Case Study”, Open Software Eng. J., vol. 1, pp. 1-20, 
2007.  

[7] D. Garlan, ”Software architecture: A roadmap”, in The Future of 
Software Engineering A. Finkelstein, Ed. New York: ACM Press, 

2000, pp. 93-101.  
[8] IEEE Std. 1471-2000, ”Recommended Practice for Architectural 

Description of Software-Intensive Systems”, IEEE, Institute of 
Electrical and Electronics Engineers Inc., pp. 29, 2000.  

[9] K. Smolander, ”Four metaphors of architecture in software organi-
zations: Finding out the meaning of architecture in practice”, in 

Empirical Software Engineering International Symposium, 2002 
[10] N. Rozanski, and E. Woods, Systems Architecture: Working with 

Stakeholders using Viewpoints and Perspectives. New York: 
Addison-Wesley Professional, 2005, pp. 546.  

[11] van der Raadt, B., J. Soetendal, M. Perdeck, and H. van Vliet, 
”Polyphony in architecture”, in The 26th International Conference 

on Software Engineering, 2004 
[12] P. Clements, R. Kazman, M. Klein, D. Devesh, S. Reddy, and P. 

Verma, ”The duties, skills, and knowledge of software architects”, 
in The Working IEEE/IFIP Conference on Software Architecture 

(WICSA), 2007, pp. 20.  
[13] P. Tarvainen, ”An approach to evaluate the adaptability of software 

architectures”, in Proceedings of the 5th Workshop on System 
Testing and Validation (STV 2007), Held in Conjunction with the 

20th International Conference on Software & Systems Engineering 
and their Applications (ICSSEA 2007), 2007, pp. 9-21.  

[14] P. Tarvainen, ”Adaptability evaluation of software architectures; A 
case study”, in Proceedings of the First IEEE International Work-

shop on Software Engineering for Adaptive Software Systems 
(SEASS 2007), Held in Conjunction with the 31st Annual IEEE In-

ternational Computer Software and Applications Conference 
(COMPSAC 2007), Volume 2, 2007, pp. 579-584.  

[15] M. Matinlassi, E. Niemelä, and L. Dobrica, Quality-Driven Archi-
tecture Design and Quality Analysis Method, A Revolutionary Ini-

tiation Approach to a Product Line Architecture. Espoo: VTT Pub-
lication 456, VTT Technical Research Centre of Finland, 2002, pp. 

138.  
[16] A. Immonen, ”A method for predicting reliability and availability 

at the architectural level”, in Research Issues in Software Product-
Lines - Engineering and Management T. Käkölä and J. C. Dueñas, 

Eds. Heidelberg: Springer-Verlag, 2006, pp. 391-446.  
[17] L. Davis, R. F. Gamble, and J. Payton, ”The Impact of Component 

Architectures on Interoperability”, J. Syst. Software, vol. 61, no.1, 
pp. 31-45, 2002.  

[18] A. Egyed, N. Medvidovic, and C. Gacek, ”Component based per-
spective on software mismatch detection and resolution”, in The 

IEE Proceedings Software, 2000, pp. 225-236.  
 

 



Adaptability Evaluation at Software Architecture Level The Open Software Engineering Journal, 2008 Volume 2    29 

[19] D. Batory, C. Johnson, B. MacDonald, and D. von Heeder, 

”Achieving Extensibility through Product Lines and Domain Spe-
cific Languages: A Case Study”, ACM Trans. Software Eng., vol. 

11, no.2, pp. 191-214, 2002.  
[20] D. Garlan, R. Allen, and J. Ockerbloom, ”Architectural mismatch 

or why it is so hard to build systems out of existing parts”, in The 
17th International Conference on Software Engineering, 1995 

[21] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. 
Carriere, ”The architecture trade-off analysis method”, in The 4th 

IEEE International Conference on Engineering of Complex Com-
puter Systems, 1998 

[22] L. Dobrica, and E. Niemelä, ”A Survey on Software Architecture 
Analysis Methods”, IEEE Trans. Software Eng., vol. 28, no.7, pp. 

638-653, 2002.  
[23] R. Kazman, M. Klein, and P. Clements, ”ATAMSM: Method for 

architecture evaluation”, Carnegie Mellon University, Software 
Engineering Institute, Tech. Rep. CMU/SEI-2000-TR-004 ESC-

TR-2000-004, 2000.  
[24] S. M. Yacoub, and H. H. Ammar, ”A Methodology for Architec-

ture-Level Reliability Risk Analysis”, IEEE Trans.Software Eng., 
vol. 28, no.6, pp. 529-547, 2002.  

[25] P. Bengtsson, N. Lassing, J. Bosch, and H. Van Vliet, ”Architec-
ture-Level Modifiability Analysis (ALMA)”, J. Syst. Software, vol. 

69, no.1-2, pp. 129-147, 2004.  
[26] A. C. Meng, ”On evaluating self-adaptive software”, in Proceed-

ings of the 1st International Workshop on Self-Adaptive Software 
(IWSAS 2000), 2000, pp. 65-74.  

[27] L. Chung and N. Subramanian, ”Process-oriented metrics for soft-
ware architecture adaptability”, in Proceedings of the IEEE Interna-

tional Conference on Requirements Engineering, 2001, pp. 310-
311.  

[28] Xia Liu, and Qing Wang, ”Study on application of a quantitative 
evaluation approach for software architecture adaptability”, in Pro-

ceedings of the 5th International Conference on Quality Software 
(QSIC 2005), 2005, pp. 265-272.  

[29] N. Subramanian, and L. Chung, ”Metrics for software adaptabil-
ity”, in Proceedings of the International Conference on Software 

Quality Management (SQM 2001), 2001, pp. 95-108.  
[30] R. de Lemos, ”A co-operative object-oriented architecture for adap-

tive systems”, in Proceedings of the 7th IEEE International Confer-
ence and Workshop on Engineering of Computer Based Systems 

(ECBS 2000), 2000, pp. 120-128.  
[31] M. Aksit, and Z. Choukair, ”Dynamic, adaptive and reconfigurable 

systems overview and prospective vision”, in Proceedings of the 
23rd International Conference on Distributed Computing Systems 

Workshops, 2003, pp. 84-89.  
[32] J. M. Cobleigh, B. S. Lerner, L. J. Osterwell, and A. Wise, ”Con-

tainment units: A hierarchically composable architecture for adap-
tive systems”, in Proceedings of the ACM SIGSOFT Symposium 

on the Foundations of Software Engineering, 2002, pp. 159-165.  
[33] M. Roman, F. Kon, and R. H. Campbell, ”Reflective Middleware: 

From Your Desk to Your Hand”, IEEE Distributed Systems Online 
(Special Issue on Reflective Middleware), vol. 2, no.5, pp. 13, 

2001.  
[34] Y. Zhang, A. Liu, and W. Qu, ”Software architecture design of an 

autonomic system”, in Proceedings of the 5th Australasian Work-
shop on Software and System Architectures (AWSA 2004), 2004, 

pp. 5-11.  
[35] L. Andrade, and J. L. Fiadeiro, ”An architectural approach to auto-

adaptive systems”, in Proceedings of the 22nd International Con-
ference on Distributed Computing Systems (ICDCS), 2002, pp. 

439-444.  
[36] K. Herrmann, ”Meshmd1- a middleware for self-organization in ad 

hoc networks”, in Proceedings of the 23rd International Confer-
ence, Distributed Computing Systems Workshops, 2003, pp. 446-

451.  
[37] P. K. McKinley, E. P. Kasten, S. M. Sadjadi, and Z. Zhou, ”Realiz-

ing multi-dimensional software adaptation”, in Proceedings of the 
ACM Workshop on Self-Healing, Adaptive and Self-MANaged 

Systems (SHAMAN), Held in Conjunction with the 16th Annual 
ACM International Conference on Supercomputing, 2002, pp. 8.  

[38] M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty, C. Schmidt, 
G. Zhang, L. Zhen, M. Parashar, B. Khargharia, and S. Hariri, 

”Automate: Enabling autonomic applications on the grid”, in Pro-
ceedings of the 5th Annual International Workshop on Autonomic 

Computing Workshop, Active Middleware Services, 2003, pp. 48-

57.  
[39] J. Bosch, and P. Molin, ”Software architecture design: Evaluation 

and transformation”, in Proceedings of the IEEE Engineering of 
Computer Based Systems Symposium (ECBS'99), 1999, pp. 4-10.  

[40] N. Subramanian, and L. Chung, ”Architecture-driven embedded 
systems adaptation for supporting vocabulary evolution”, in Pro-

ceedings of the International Symposium on Principles of Software 
Evolution, 2000, pp. 144-153.  

[41] IEEE Std. 610.12-1990, ”Standard Glossary of Software Engineer-
ing Terminology”, IEEE, Inst. Elect. Electron. Eng. Inc., pp. 84, 

1990.  
[42] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. John-

son, N. Medvidovc, A. Quilici, D. S. Rosenblum, and A. L. Wolf, 
”An Architecture-based Approach to Self-adaptive Software”, 

IEEE Intell. Syst. Appl., vol. 14, no.3, pp. 54-62, 1999.  
[43] L. Chung, D. Gross, and E. Yu, ”Architectural design to meet 

stakeholders requirements”, in Proceedings of the TC2 First Work-
ing IFIP Conference on Software Architecture (WICSA1), 1999, 

pp. 545-564.  
[44] P. Grünbacher, A. Egyed, and N. Medvidovic, ”Reconciling Soft-

ware Requirements and Architectures with Intermediate Models”, 
Software Syst. Model., vol. 3, no.3, pp. 235-253, 2004.  

[45] OMG, Unified Modeling Language: Superstructure Version 2.0. 
Needham, MA, U.S.A.: Object Management Group, 2005, pp. 710.  

[46] E. Niemelä, J. Kalaoja, and P. Lago, ”Toward an Architectural 
Knowledge Base for Wireless Service Engineering”, IEEE Trans-

actions on Software Eng., vol. 31, no.5, pp. 361-379, 2005.  
[47] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and M. 

Stal, Pattern Orient Software Arch. A System of Patterns, vol. 1, 
Chichester: John Wiley & Sons, 1996, pp. 476.  

[48] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture: Patterns for Concurrent and Net-

worked Objects., vol. 2, New York: Wiley & Sons, 2000, pp. 666.  
[49] T. T. Do, M. Kolp, and A. Pirotte, ”Social patterns for designing 

multi-agent systems”, in Proceedings of the 15th International Con-
ference on Software Engineering and Knowledge Engineering 

(SEKE'03), 2003, pp. 103-110.  
[50] J. Bosch, Design and use of Software Architectures: Adopting and 

Evolving a Product Line Approach. Harlow: Addison-Wesley, 
2000, pp. 368.  

[51] M. Shaw, and D. Garlan, Software Architecture: Perspectives on 
an Emerging Discipline, 1st Ed. New Jersey: Prentice Hall, 1996, 

pp. 242.  
[52] B. P. Douglass, Doing Hard Time: Developing Real-Time Systems 

with UML, Objects, Frameworks, and Patterns. Boston, MA: 
Addison-Wesley Professional, 1999, pp. 800.  

[53] D. Pakkala, P. Pääkkönen, and M. Sihvonen, ”A generic communi-
cation middleware architecture for distributed application and serv-

ice messaging”, in Proceedings of the Joint International Confer-
ence on Autonomic and Autonomous Systems and International 

Conference on Networking and Services (ICAS/ICNS 2005), 2005, 
pp. 22-30.  

[54] WWW-pages of Object Management Group (OMG). (2008, Mar. 
16). CORBA component model, v.4.0. Available: 

http://www.omg.org/technology/documents/formal/ compo-
nents.htm 

[55] S. W. Cheng, D. Garlan, B. Schmerl, P. Steenkiste, and N. Hu, 
”Software architecture-based adaptation for grid computing”, in 

Proceedings of the 11th IEEE International Symposium on High 
Performance Distributed Computing (HPDC-11 2002), 2002, pp. 

389-398.  
[56] L. Dobrica, and E. Niemelä, ”Adaptive middleware services”, in 

Proceedings of the IASTED’02 International Conference, Applied 
Informatics (AI), 2002, pp. 137-142.  

[57] D. Garlan, S. W. Cheng, and B. Schmerl, ”Increasing system de-
pendability through architecture-based self-repair”, in Architecting 

Dependable Systems , vol. 2677 of LNCS, R. d. Lemos, C. Gacek 
and A. Romanovsky, Eds. Berlin, Heidelberg: Springer-Verlag, 

2003, pp. 33-38.  
[58] WWW-pages of Sun Microsystems. (2008, Mar. 16). Desktop java, 

java beans. Available: http://java.sun.com/ products/javabeans/ 
[59] D. O. Keck, and P. J. Kuehn, ”The Feature and Service Interaction 

Problem in Telecommunications Systems: A Survey”, IEEE Trans. 
Software Eng., vol. 24, no.10, pp. 779-796, 1998.  



30    The Open Software Engineering Journal, 2008, Volume 2 Pentti Tarvainen 

[60] Z. Morley, M. Eric, A. Brewer, and R. H. Katz, ”Fault-tolerant, 

scalable, wide-area internet service composition”, Berkeley, Cali-
fornia, University of California, Computer Science Division, Tech. 

Rep. UCB/CSD-1-1129, 2001.  
[61] WWW-pages of Sun Developer Network (SDN). (2008, Mar. 16). 

The Java ME platform. Available: http://java. 
sun.com/javame/index.jsp 

[62] M. A. Babar, and I. Gorton, ”Comparison of scenario-based soft-

ware architecture evaluation methods”, in Proceedings of the 11th 
Asia-Pacific Software Engineering Conference (APSEC), 2004, pp. 

600-607.  
[63] G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello, ”Class 

Point: An Approach for the Size Estimation of Object-Oriented 
Systems”, IEEE Trans. Software Eng., vol. 31, no.1, pp. 52-74, 

2005.  

 

 

Received: March 14, 2008 Revised: April 30, 2008 Accepted: April 30, 2008 

 

© Pentti Tarvainen; Licensee Bentham Open. 
 

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/license/by/2.5/), which 
permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited. 




