
40 The Open Software Engineering Journal, 2008, 2, 40-44

 1874-107X/08 2008 Bentham Open

Open Access

Tracing Time Operating System State Determination

Jean-Hugues Deschênes, Mathieu Desnoyers and Michel R. Dagenais*

 Department of Computer and Software Engineering, Ecole Polytechnique, P.O. Box 6079, Station Downtown, Mont-
real, Quebec, Canada, H3C 3A7, Canada

Abstract: In recent years, tracing operating system behavior by recording kernel events has proven to be a particularly ef-

fective tool. However, when used to characterize the system's behavior through time, including its state, the list of state

transitions that the kernel events represent is not sufficient to characterize the state for the entire data acquisition period.

The initial operating system state, when tracing starts, is also required.

The challenge lies in obtaining a complete snapshot of the initial state, while minimizing the impact on the system being

traced. This impact may be in terms of CPU or disk I/O consumption, instrumentation memory, or burst activity at trace

start time detrimental to the real-time response. Such impact is especially disturbing on small real-time limited resources

embedded systems.

In this paper, we will propose an efficient approach to extract such initial state information and discuss the software mod-

ule we have developed to provide the aforementioned data to the LTTng tracing tool and its accompanying viewer, LTTV.

This module not only improves LTTV's accuracy by providing the initial state of all processes in the system, but also pro-

vides an inventory of relevant kernel objects at minimal cost, without increasing noticeably the interrupt latency.

INTRODUCTION

Tracing operating system behavior through kernel events
is a powerful tool for finding certain types of performance
bottlenecks, or debugging complex real time interactions
between various system entities, among other things. Be-
cause of the large volume of events even for short acquisi-
tion periods, a trace visualization and analysis program is a
necessary part of a complete trace toolkit. This program
maintains a representation of the kernel's state throughout
the data acquisition period, using the events as transition
points within this state.

While it is possible to rebuild part of the kernel's state at
trace startup from certain types of events (for example, if we
have a “syscall” event at instant t, then we can determine that
at instant t-1, the system was in user mode), one cannot get a
complete snapshot of the state at instant t=0 using only later
events. Consider, for example, a process for which no event
gets generated during the entire data acquisition period, as is
often the case for daemons; Such a process would be missing
from the state maintained by the trace analysis tool.

Other data may be voluntarily missing from kernel
events, for efficiency reasons. For example, it would be un-
necessarily costly to include process names in all scheduler-
related events. This means that the names of the processes
that were running at trace startup are not present in the
trace's kernel events.

Thus, to get an accurate picture of the state at every
instant (including t=0), it is necessary to perform an inven-
tory of the relevant kernel objects that were present at trace

*Address correspondence to this author at the Department of Computer and
Software Engineering, Ecole Polytechnique, P.O. Box 6079, Station Down-
town, Montreal, Quebec, Canada, H3C 3A7, Canada; Tel: 1-514-340-4711;
Fax: 1-514-340-5139; E-mail: michel.dagenais@polymtl.ca

startup. This needs to be done efficiently, with the smallest
impact possible on the instrumented system.

Previous work

LTT

With the first releases of the Linux Trace Toolkit [1], ini-
tial operating system state was determined by navigating the

/proc directory. Relevant information was parsed by a dae-

mon at trace startup and stored on disk. This approach has
the drawback of relying on the presence of the /proc filesys-

tem, which may not be present in embedded systems. It also

means that the daemon has to have intimate knowledge of
the /proc filesystem's structure and has to open and parse

several files every time a trace is started.

Other open-source tracing systems are not designed to

analyze the kernel state. The focus is either on providing

fine-grained instrumentation (like KFT[2]) or on gathering
statistics, for performance analysis (such as LKST's [3]

lkstlogtools [4]).

Some closed source products have had to tackle this issue
as well. QNX's System Profiler [5] uses a strategy similar to

the one exposed in this paper, reporting part of the initial

operating system's state through kernel events at trace
startup. This tool, however, uses process and thread creation

events when enumerating existing processes and threads.

Thus, although it may be possible to guess that a given ob-
ject was present at trace startup, one cannot have absolute

certainty that it is indeed the case. Additionally, no inventory

is made of other objects, such as file descriptors. Finally, we
have not been able to observe any run-time events before the

end of the process and thread enumeration phase, leading us

to believe that the system as a whole is highly disrupted
while this inventory is performed.

Tracing Time Operating System State Determination The Open Software Engineering Journal, 2008, Volume 2 41

Encompassing Architecture

The proposed approach, implemented in the statedump
module is designed to be integrated to the LTTng [6] tracing
tool. It is a modular design, bringing minor modifications to
existing kernel code while adding a few modules.

From a high level point of view, as shown in Fig. (1),
LTTng is made up of an instrumented kernel, which gener-
ates the data to be analyzed. These events are sent to the
tracing module, which is responsible for trace management
and data channel management. The data is then conveyed
through a fast virtual filesystem to a data acquisition dae-
mon. This daemon simply writes the data to a local filesys-
tem (presumably residing on a disk). A control program
communicates with the control module to initiate or other-
wise terminate data collection.

Fig. (1). LTTng architecture.

Implementation

Architecture

To adhere to LTTng's modular design philosophy and
since the statedump is an optional (albeit desirable) compo-
nent, it has been implemented as a kernel module. It is regis-
tered with the tracing module upon insertion and then in-
voked when a new trace is started.

To greatly simplify things, the statedump module navi-
gates through relevant kernel structures and generates
LTTng events, just like the kernel instrumentation. The event
types are different, however, and belong to a statedump fa-
cility. They are listed in Table 1.

Table 1. Statedump Event Types.

Event Description

enumerate_process_state State of all threads and tasks

enumerate_file_descriptors Active file descriptors for all tasks

enumerate_modules Loaded kernel modules

enumerate_vm_maps Virtual memory areas for all tasks

enumerate_interrupts Interrupts

statedump_end Signals the end of state dump

The types of enumerated kernel objects were chosen for
their expected relevance in understanding complex traces.
Additionally, the enumerate_process_state event will assist

LTTV in determining initial operating system state by pro-
viding process names and process state information. The
statedump_end event marks the end of the state dumping
phase and is used as a marker to indicate that beyond that
point, all processes' states can be fully determined.

Special care has been taken when holding locks, the most
critical of which is undoubtedly the tasklist_lock, since it
needs to be acquired by the scheduler to complete its work.
To this end, the lock is held only when moving through the
task list. To prevent the task_struct from being freed while
processes are enumerated, the structure's use count is incre-
mented.

Processes' States

Of particular interest are the processes' state at trace
startup. This includes the process type (normal or kernel
thread), run status and operating mode.

The process type information can easily be inferred from
the kernel's task_struct, looking at the memory space de-
scriptor field, which is set to NULL in the case of kernel
threads.

The run status information is obtained from task_struct's
state & exit_state fields, using the decision tree depicted in
Fig. (2). Looking at this figure, one can notice that no deci-
sion is made as to which process(es) was(were) running
when the inventory was performed. Was the statedump
module guaranteed to run on a single processor system, it
would have been trivial to identify the running process, the
only possibility being the statedump module's inventory
thread. On multiprocessor systems, however, it is not possi-
ble for the statedump module to know which processes, if
any, are running on the processors other than the one its ac-
quisition thread is currently running on.

Fig. (2). Process run status decision tree.

To get around this issue, the module schedules a function
in a work queue on every processor it is not running on. This
function simply releases a semaphore held by the statedump
thread. This way, it is guaranteed that a kernel event has
been generated by every processor when each of them
changes its execution flow to the aforementioned function.
The visualization tool will then have all the information it
needs to determine what activity was occurring on each
processor when tracing began.

42 The Open Software Engineering Journal, 2008, Volume 2 Deschênes et al.

The per-processor scheduled function strategy will also
be helpful when determining each process's operating mode,
by providing the guarantee that each processor will have
been at least once in a state where it was neither in a trap,
nor in interrupt context. It will then be up to the visualization
tool, using the various state transition kernel events, to de-
termine what had been the processes' operating mode at trace
start.

Visualization Tool Integration

To simply display the new data without using it to deter-
mine operating system state, no modification to LTTV
would have been required as it is designed to use the same
XML-based event descriptions as the other events. This is
sufficient for enumerate_file_descriptors, enumerate_ mod-
ules, enumerate_vm_maps and enumerate_interrupts events.

For enumerate_process_state events, however, this is not
enough since we want the information they contain to be
taken into account in the kernel's state representation. Thus,
in line with LTTV's design, we have added callbacks for
processing these types of events when they are processed
from input files. This allows to add or update processes to
the maintained kernel state.

RESULTS

All results presented were obtained on a computer run-
ning Linux kernel 2.6.23.1 with a 2,8GHz Pentium4 proces-
sor.

Initial State

To assess the statedump module's benefits, we have gath-

ered screen captures of LTTV ignoring (Fig. 3) and taking

into account (Fig. 4) the enumerate_process_state events.

From these, one can see how the information presented to

the user is enriched with process names, parent process iden-

tifiers and the processes' creation time (considered to be the

time at which the statedump module identified the process).

Additionally, some processes which were simply not present

in the graph (since no event associated with them were pre-
sent in the trace) can now be seen.

Performance Impact

To measure the module's impact on the instrumented sys-

tem, we have gathered information on global execution time

increase, as well as system disturbance during data acquisi-
tion.

We have measured execution time increase for a simple

reference program, which simply forks 50, 500 or 5000

times and waits for all forked processes to terminate. Each

forked process performs enough iterations of a loop so that

the test globally lasts approximately 10 seconds. We timed

all 3 variants, with and without the statedump module, 5

times and averaged the results. To better reflect real-world

conditions, a dbench session simulating 100 clients was run-

ning in the background when the results were acquired. From

Fig. (3). LTTV without ltt-statedump events.

Tracing Time Operating System State Determination The Open Software Engineering Journal, 2008, Volume 2 43

Table 2, one can see that on average, the test duration is ac-

tually slightly smaller when the module is present. This

means its presence in the kernel makes no statistically sig-
nificant difference as far as execution time is concerned.

Table 2. Average Test Duration for a Varying Number of

Forked Processes

Nb. Processes
Avg. Time with Mod-

ule (Seconds)

Avg. Time Without Mod-

ule (seconds)

50 11.94 12.08

500 11.81 11.85

5000 12.85 13.08

This matches our expectations. Looking at the event
timestamps, the statedump_end event is observed on average
5.44 ms after the start of the trace, with a worst case of
8.59ms.

To measure system disturbance, we have measured the
amount of time spent while holding locks. This has been

done by sampling the x86 architecture's TSC register before
acquiring and after releasing locks. We have instrumented
the main task list lock, the task lock (in task_struct), the in-
terrupt list lock and the tasks' file list lock. The results are
shown in Table 3 for our reference program and in Table 4
for a modified version which opens 1000 files before per-
forming the 500 calls to fork().

Table 3. Lock Hold Time for 500 Processes

Lock
Average Hold Time (Mi-

croseconds)

Maximum Hold Time (Mi-

croseconds)

Task list 0.36 18.46

Task 19.31 885.85

Interrupts 0.2 9.32

File list 14.96 246.42

These results show that the task list hold times are small
and are not influenced by the amount of data acquired. This

Fig. (4). LTTV with ltt-statedump events.

44 The Open Software Engineering Journal, 2008, Volume 2 Deschênes et al.

is explained by the fact that this lock is not held while data is
being acquired per se, but only when navigating the list.

Table 4. Lock Hold Time for 500 Processes, Each Having 1000
Opened Files

Lock
Average Hold Time (Mi-

croseconds)

Maximum Hold Time (Mi-

croseconds)

Task list 0.35 18.02

Task 36.94 113,804

Interrupts 0.15 11.62

File list 520.63 3,311.74

Task and interrupt hold times are also very reasonable,
on average, with the task lock being held for a few tens of
microseconds. This incurs a negligible impact on operating
system latency.

The file list lock hold times, however, are influenced by
the amount of data acquired. This was to be expected since
this lock is held throughout the file inventory phase. With an
average hold time of approximately 520 microseconds for
processes with plenty of file descriptors, one can think that
the instrumented system would be disturbed somewhat dur-
ing the data acquisition phase. Taking into account that the
file descriptor objects are protected by an RCU lock, we be-
lieve that the impact is far less dramatic than it would seem
at first glance.

As a reference, the quantity of events generated for our
test program, both without any files descriptors open and
with 1000 file descriptors per process, is shown in Table 5.
Keeping in mind that dbench was running in the background
when this data was acquired (for both cases), it is expected
that similar numbers would be encountered on production
systems.

CONCLUSION

Throughout this paper, we have shown how the stat-
edump module integrates easily and elegantly to LTTV and
LTTng to enrich the data already collected by the instrumen-
tation. Moreover, with the additional data, relevant aspects
of the system's initial state can now be fully determined.

All of this additional data has been acquired with a very
low additional impact on the system and for a very short
period of time. This way, the statedump module adds real
benefits at minimal cost. For those rare cases where its use is
not desired, LTTng and LTTV will still function properly,
since their modular architecture (and the modifications we
have made to them) do not depend on statedump.

ACKNOWLEDGMENTS

The financial support of the Natural Sciences and Engi-
neering Research Council of Canada is gratefully acknowl-
edged.

REFERENCES

[1] K. Yaghmour, and M. R. Dagenais, "Measuring and characterizing

system behavior using kernel-level event logging", Proceedings of
the USENIX Annual 2000 Technical Conference, San Diego, Cali-

fornia, USA, June 2000, pp. 13-26.
[2] Tim Bird, “Learning the kernel and finding performance problems

with KFI”, Proceedings of the Consumer Electronics Linux Forum
International Technical Conference, Yokohama, Japan, June 2005.

[3] LKST, “Linux Kernel State Tracer”, http://lkst.sf.net/, viewed on
September 18, 2008.

[4] Hitachi, “LKST Log Tools' Manual”, http://downloads.sourceforge.
net/lkst/lkstlogtools-1.2.0-en.pdf, viewed on September 18, 2008,

2006.
[5] QNX, “The System Profiler User Guide”, http://www.qnx.com/

developers/docs/6.3.0SP3/ide_en/user_guide/sysprof.html, viewed
on September 18, 2008, 2004-2008.

[6] M. Desnoyers, and M.R. Dagenais, “Low disturbance embedded
system tracing with Linux Trace Toolkit Next Generation”, Pro-

ceedings of the 2006 Consumer Electronics Linux Forum, San
Jose, California, USA, April 2006.

Received: September 20, 2008 Revised: November 06, 2008 Accepted: December 05, 2008

© Deschênes et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

Table 5. Total Number of Objects Enumerated for the Refer-

ence Program (with 500 Processes), with no File De-
scriptors and with 1000 File Descriptors Per Process

Object No File Descriptors 1000 File Descriptors

Tasks 785 699

Vm maps 10,246 11,196

Interrupts 19 19

File descriptors 2020 112,718

