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Abstract: In recent years, tracing operating system behavior by recording kernel events has proven to be a particularly ef-

fective tool. However, when used to characterize the system's behavior through time, including its state, the list of state 

transitions that the kernel events represent is not sufficient to characterize the state for the entire data acquisition period. 

The initial operating system state, when tracing starts, is also required. 

The challenge lies in obtaining a complete snapshot of the initial state, while minimizing the impact on the system being 

traced. This impact may be in terms of CPU or disk I/O consumption, instrumentation memory, or burst activity at trace 

start time detrimental to the real-time response. Such impact is especially disturbing on small real-time limited resources 

embedded systems. 

In this paper, we will propose an efficient approach to extract such initial state information and discuss the software mod-

ule we have developed to provide the aforementioned data to the LTTng tracing tool and its accompanying viewer, LTTV. 

This module not only improves LTTV's accuracy by providing the initial state of all processes in the system, but also pro-

vides an inventory of relevant kernel objects at minimal cost, without increasing noticeably the interrupt latency. 

INTRODUCTION 

Tracing operating system behavior through kernel events 
is a powerful tool for finding certain types of performance 
bottlenecks, or debugging complex real time interactions 
between various system entities, among other things. Be-
cause of the large volume of events even for short acquisi-
tion periods, a trace visualization and analysis program is a 
necessary part of a complete trace toolkit. This program 
maintains a representation of the kernel's state throughout 
the data acquisition period, using the events as transition 
points within this state. 

While it is possible to rebuild part of the kernel's state at 
trace startup from certain types of events (for example, if we 
have a “syscall” event at instant t, then we can determine that 
at instant t-1, the system was in user mode), one cannot get a 
complete snapshot of the state at instant t=0 using only later 
events. Consider, for example, a process for which no event 
gets generated during the entire data acquisition period, as is 
often the case for daemons; Such a process would be missing 
from the state maintained by the trace analysis tool. 

Other data may be voluntarily missing from kernel 
events, for efficiency reasons. For example, it would be un-
necessarily costly to include process names in all scheduler-
related events. This means that the names of the processes 
that were running at trace startup are not present in the 
trace's kernel events. 

Thus, to get an accurate picture of the state at every       
instant (including t=0), it is necessary to perform an inven-
tory of the relevant kernel objects that were present at trace  
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startup. This needs to be done efficiently, with the smallest 
impact possible on the instrumented system.  

Previous work 

LTT 

With the first releases of the Linux Trace Toolkit [1], ini-
tial operating system state was determined by navigating the 

/proc directory. Relevant information was parsed by a dae-

mon at trace startup and stored on disk. This approach has 
the drawback of relying on the presence of the /proc filesys-

tem, which may not be present in embedded systems. It also 

means that the daemon has to have intimate knowledge of 
the /proc filesystem's structure and has to open and parse 

several files every time a trace is started. 

Other open-source tracing systems are not designed to 

analyze the kernel state. The focus is either on providing 

fine-grained instrumentation (like KFT[2]) or on gathering 
statistics, for performance analysis (such as LKST's [3] 

lkstlogtools [4]). 

Some closed source products have had to tackle this issue 
as well. QNX's System Profiler [5] uses a strategy similar to 

the one exposed in this paper, reporting part of the initial 

operating system's state through kernel events at trace 
startup. This tool, however, uses process and thread creation 

events when enumerating existing processes and threads. 

Thus, although it may be possible to guess that a given ob-
ject was present at trace startup, one cannot have absolute 

certainty that it is indeed the case. Additionally, no inventory 

is made of other objects, such as file descriptors. Finally, we 
have not been able to observe any run-time events before the 

end of the process and thread enumeration phase, leading us 

to believe that the system as a whole is highly disrupted 
while this inventory is performed. 
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Encompassing Architecture 

The proposed approach, implemented in the statedump 
module is designed to be integrated to the LTTng [6] tracing 
tool. It is a modular design, bringing minor modifications to 
existing kernel code while adding a few modules.  

From a high level point of view, as shown in Fig. (1), 
LTTng is made up of an instrumented kernel, which gener-
ates the data to be analyzed. These events are sent to the 
tracing module, which is responsible for trace management 
and data channel management. The data is then conveyed 
through a fast virtual filesystem to a data acquisition dae-
mon. This daemon simply writes the data to a local filesys-
tem (presumably residing on a disk). A control program 
communicates with the control module to initiate or other-
wise terminate data collection. 

 

 

 

 

 

 

 

Fig. (1). LTTng architecture. 

Implementation 

Architecture 

To adhere to LTTng's modular design philosophy and 
since the statedump is an optional (albeit desirable) compo-
nent, it has been implemented as a kernel module. It is regis-
tered with the tracing module upon insertion and then in-
voked when a new trace is started. 

To greatly simplify things, the statedump module navi-
gates through relevant kernel structures and generates 
LTTng events, just like the kernel instrumentation. The event 
types are different, however, and belong to a statedump fa-
cility. They are listed in Table 1. 

Table 1. Statedump Event Types. 

Event Description 

enumerate_process_state State of all threads and tasks 

enumerate_file_descriptors Active file descriptors for all tasks 

enumerate_modules Loaded kernel modules 

enumerate_vm_maps Virtual memory areas for all tasks 

enumerate_interrupts Interrupts 

statedump_end Signals the end of state dump 

The types of enumerated kernel objects were chosen for 
their expected relevance in understanding complex traces. 
Additionally, the enumerate_process_state event will assist 

LTTV in determining initial operating system state by pro-
viding process names and process state information. The 
statedump_end event marks the end of the state dumping 
phase and is used as a marker to indicate that beyond that 
point, all processes' states can be fully determined. 

Special care has been taken when holding locks, the most 
critical of which is undoubtedly the tasklist_lock, since it 
needs to be acquired by the scheduler to complete its work. 
To this end, the lock is held only when moving through the 
task list. To prevent the task_struct from being freed while 
processes are enumerated, the structure's use count is incre-
mented. 

Processes' States 

Of particular interest are the processes' state at trace 
startup. This includes the process type (normal or kernel 
thread), run status and operating mode. 

The process type information can easily be inferred from 
the kernel's task_struct, looking at the memory space de-
scriptor field, which is set to NULL in the case of kernel 
threads.  

The run status information is obtained from task_struct's 
state & exit_state fields, using the decision tree depicted in 
Fig. (2). Looking at this figure, one can notice that no deci-
sion is made as to which process(es) was(were) running 
when the inventory was performed. Was the statedump 
module guaranteed to run on a single processor system, it 
would have been trivial to identify the running process, the 
only possibility being the statedump module's inventory 
thread. On multiprocessor systems, however, it is not possi-
ble for the statedump module to know which processes, if 
any, are running on the processors other than the one its ac-
quisition thread is currently running on.  

 

 

 

 

 

 

 

 

 

Fig. (2). Process run status decision tree. 

To get around this issue, the module schedules a function 
in a work queue on every processor it is not running on. This 
function simply releases a semaphore held by the statedump 
thread. This way, it is guaranteed that a kernel event has 
been generated by every processor when each of them 
changes its execution flow to the aforementioned function. 
The visualization tool will then have all the information it 
needs to determine what activity was occurring on each 
processor when tracing began. 
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The per-processor scheduled function strategy will also 
be helpful when determining each process's operating mode, 
by providing the guarantee that each processor will have 
been at least once in a state where it was neither in a trap, 
nor in interrupt context. It will then be up to the visualization 
tool, using the various state transition kernel events, to de-
termine what had been the processes' operating mode at trace 
start. 

Visualization Tool Integration 

To simply display the new data without using it to deter-
mine operating system state, no modification to LTTV 
would have been required as it is designed to use the same 
XML-based event descriptions as the other events. This is 
sufficient for enumerate_file_descriptors, enumerate_ mod-
ules, enumerate_vm_maps and enumerate_interrupts events. 

For enumerate_process_state events, however, this is not 
enough since we want the information they contain to be 
taken into account in the kernel's state representation. Thus, 
in line with LTTV's design, we have added callbacks for 
processing these types of events when they are processed 
from input files. This allows to add or update processes to 
the maintained kernel state. 

RESULTS 

All results presented were obtained on a computer run-
ning Linux kernel 2.6.23.1 with a 2,8GHz Pentium4 proces-
sor.  

Initial State 

To assess the statedump module's benefits, we have gath-

ered screen captures of LTTV ignoring (Fig. 3) and taking 

into account (Fig. 4) the enumerate_process_state events. 

From these, one can see how the information presented to 

the user is enriched with process names, parent process iden-

tifiers and the processes' creation time (considered to be the 

time at which the statedump module identified the process). 

Additionally, some processes which were simply not present 

in the graph (since no event associated with them were pre-
sent in the trace) can now be seen. 

Performance Impact 

To measure the module's impact on the instrumented sys-

tem, we have gathered information on global execution time 

increase, as well as system disturbance during data acquisi-
tion. 

We have measured execution time increase for a simple 

reference program, which simply forks 50, 500 or 5000 

times and waits for all forked processes to terminate. Each 

forked process performs enough iterations of a loop so that 

the test globally lasts approximately 10 seconds. We timed 

all 3 variants, with and without the statedump module, 5 

times and averaged the results. To better reflect real-world 

conditions, a dbench session simulating 100 clients was run-

ning in the background when the results were acquired. From 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). LTTV without ltt-statedump events. 
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Table 2, one can see that on average, the test duration is ac-

tually slightly smaller when the module is present. This 

means its presence in the kernel makes no statistically sig-
nificant difference as far as execution time is concerned. 

Table 2. Average Test Duration for a Varying Number of 

Forked Processes 

Nb. Processes 
Avg. Time with Mod-

ule (Seconds) 

Avg. Time Without Mod-

ule (seconds) 

50 11.94 12.08 

500 11.81 11.85 

5000 12.85 13.08 

This matches our expectations. Looking at the event 
timestamps, the statedump_end event is observed on average 
5.44 ms after the start of the trace, with a worst case of 
8.59ms. 

To measure system disturbance, we have measured the 
amount of time spent while holding locks. This has been 

done by sampling the x86 architecture's TSC register before 
acquiring and after releasing locks. We have instrumented 
the main task list lock, the task lock (in task_struct), the in-
terrupt list lock and the tasks' file list lock. The results are 
shown in Table 3 for our reference program and in Table 4 
for a modified version which opens 1000 files before per-
forming the 500 calls to fork(). 

Table 3. Lock Hold Time for 500 Processes 

Lock 
Average Hold Time (Mi-

croseconds) 

Maximum Hold Time (Mi-

croseconds) 

Task list 0.36 18.46 

Task 19.31 885.85 

Interrupts 0.2 9.32 

File list 14.96 246.42 

These results show that the task list hold times are small 
and are not influenced by the amount of data acquired. This 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). LTTV with ltt-statedump events. 
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is explained by the fact that this lock is not held while data is 
being acquired per se, but only when navigating the list. 

Table 4. Lock Hold Time for 500 Processes, Each Having 1000 
Opened Files 

Lock 
Average Hold Time (Mi-

croseconds) 

Maximum Hold Time (Mi-

croseconds) 

Task list 0.35 18.02 

Task 36.94 113,804 

Interrupts 0.15 11.62 

File list 520.63 3,311.74 

Task and interrupt hold times are also very reasonable, 
on average, with the task lock being held for a few tens of 
microseconds. This incurs a negligible impact on operating 
system latency. 

The file list lock hold times, however, are influenced by 
the amount of data acquired. This was to be expected since 
this lock is held throughout the file inventory phase. With an 
average hold time of approximately 520 microseconds for 
processes with plenty of file descriptors, one can think that 
the instrumented system would be disturbed somewhat dur-
ing the data acquisition phase. Taking into account that the 
file descriptor objects are protected by an RCU lock, we be-
lieve that the impact is far less dramatic than it would seem 
at first glance. 

As a reference, the quantity of events generated for our 
test program, both without any files descriptors open and 
with 1000 file descriptors per process, is shown in Table 5. 
Keeping in mind that dbench was running in the background 
when this data was acquired (for both cases), it is expected 
that similar numbers would be encountered on production 
systems. 

CONCLUSION 

Throughout this paper, we have shown how the stat-
edump module integrates easily and elegantly to LTTV and 
LTTng to enrich the data already collected by the instrumen-
tation. Moreover, with the additional data, relevant aspects 
of the system's initial state can now be fully determined. 

All of this additional data has been acquired with a very 
low additional impact on the system and for a very short 
period of time. This way, the statedump module adds real 
benefits at minimal cost. For those rare cases where its use is 
not desired, LTTng and LTTV will still function properly, 
since their modular architecture (and the modifications we 
have made to them) do not depend on statedump. 
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Table 5. Total Number of Objects Enumerated for the Refer-

ence Program (with 500 Processes), with no File De-
scriptors and with 1000 File Descriptors Per Process 

Object No File Descriptors 1000 File Descriptors 

Tasks 785 699 

Vm maps 10,246 11,196 

Interrupts 19 19 

File descriptors 2020 112,718 


