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Abstract: Carbon nanotubes are of great interest because of unique physical (mechanical, electrical, thermal, and chemi-
cal) properties. Especially their large elastic modulus and breaking strength make them highly attractive for their use as 
reinforced agents for traditional as well as conductive polymers forming a new class of multifunctional advanced carbon 
composites-nanocomposites. This is in addition to high electrical conductivity achieved through lower percolation thresh-
olds for multitude of applications. Polyaniline (PANI) has a high potential due to its ease of synthesis, excellent environ-
mental and thermal stability and reversible control of its electrical properties. A variant of PANI doped with DNNSA (di-
nonyl napththalene sulfonic acid) facilitates more promise by making it soluble and easily processable. In this work, 
DNNSA-PANI is used as a matrix for both the single- and multiwalled carbon nanotubes as nanoscale reinforced agents. 
The films were prepared with varying nanotube contents synthesized by spin-cast preceded by ultrasonic mixing of the 
constituents for a few hours. They were characterized using complementary analytical tools include scanning electron mi-
croscopy, atomic force microscopy, X-Ray diffraction, visible micro-Raman spectroscopy and room temperature dc elec-
trical conductivity. These techniques reveal their morphology and microscopic structure and physical properties that help 
to establish process-microstructure-property relationship. The resulting nanocomposites possess enhanced or new sets of 
physical properties. However, because of occasional presence of inhomogeneities, the interfacial interactions and physical 
properties are ‘site-selective’ revealed using Raman spectroscopy ascribed to the charge transfer. The present work also 
discusses some of the findings in light of self-alignment of nanotubes in polymer matrix and their optical and electrical 
properties keeping in view of their applications ranging printable organic electronic and sensor devices, electrodes for fuel 
cell and high-energy density Li batteries, biosensing platform, space and naval uses. 

INTRODUCTION 

 Carbon is a unique element that serves as a fertile play-
ground for a variety of nanoscale structures with varying 
morphology, geometry and topology [1-3]. The discovery of 
carbon nanotubes (CNTs, here onwards) has generated 
enormous and sustained interest in nanoscience as well as 
nanotechnologies. CNTs can be divided into two main cate-
gories: single-walled carbon nanotubes (SWNT) and multi-
walled carbon nanotubes (MWNT) depending upon the 
number of rolled up layers [4]. CNTs have shown excep-
tional electrical, mechanical and thermal properties, which 
are attractive for several potential applications ranging from 
nanoelectronics to mechanical and biomedical devices [5, 6]. 
While SWNT follow ballistic transport, these one-
dimensional quantum nanowires plays a significant role as 
interconnects in microelectronics and active components in 
optoelectronic nano-devices. In addition, their orientation 
with respect to substrate has an important impact on the per-
formance of these devices. On the other hand, MWNT which 
are predominantly metallic character can be used for print-
able organic electronic devices and as novel platforms for 
nanomechanical devices [7, 8]. The exceptional Young’s 
modulus of SWNT has prompted intensive studies of  
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forming nanocomposites with polymers for printable organic 
electronics as well as space and naval applications [9, 10]. 
However, the use of CNTs as reinforced agents in polymer 
matrix forming potential nanocomposites in practical appli-
cations has been largely limited by their relatively poor proc-
essability. Since they are practically insoluble and infusible, 
it leads to either aggregation or segregation thus resulting in 
nanoscale inhomogeneous samples [11]. Several groups 
across the world have attempted to mitigate this challenge by 
functionalizing these nanotubes using a variety of chemical 
groups, for instance [12-14]. 

 As a result of the first report concerning the preparation 
of a CNTs/polymer composite [15] many efforts have been 
made to combine CNTs and polymers to produce functional 
nanocomposites with superior properties [16-20]. Apart from 
possible improvements in the mechanical and electrical 
properties of polymers, the formation of CNTs/polymer 
composites has been explored and still an ongoing effort for 
an effective incorporation of CNTs for the successful devel-
opment of practical optical and electronic devices [21-23]. 
Composite materials based on the coupling of conducting 
organic polymers (COPs) and CNTs have shown that they 
possess properties of the individual components with a syn-
ergistic effect [24]. In this context, a special attention has 
been paid to the following COPs: polyaniline (PANI) [25-
27] polypyrrole (PPy) [28], poly[3-(2-hydroxyethyl)-2,5-
thienylene] (PHET) [7], polythiophene (PT) [29], poly (3,4-
ethylenedioxy thiophene) (PEDOT) [30] poly (p-phenylene 
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vinylene) (PPV) [31] and poly (m-phenylene vinylene-co-
2,5-dioctoxy-p-phenylene) (PmPV) [32]. 

 The combination of CNTs with COPs offers an attractive 
route to reinforce polymer matrix as well as to introduce 
novel physical properties based on morphological modifica-
tion and/or electronic interaction between the individual 
components [21, 31]. Since doped conjugated polymers are 
the prototypical organic semiconductors, their choice as a 
starting point for conducting materials in organic electronics 
is apparent. Although when heavily doped they exhibit me-
tallic state/phase with main drawbacks of insolubility and 
ease of oxidation [33, 34]. Therefore the reinforced agent in 
nanocomposites not only enables easier processing and re-
duces component weight, but it also provides value-added 
physical properties including optical clarity, increased flame-

resistance, resistance to oxidation and ablation and reduced 
gas permeability. 

 Among many COPs above mentioned, polyaniline 
(PANI) is unique because of its environmental and thermal 
stability and reversible electrical conductivity. The latter is 
controlled by well-known techniques of either chemical or 
electrochemical doping include the charge transfer reaction 
with the conjugated backbone and protonation of the nitro-
gen, respectively [35]. The conductivity of PANI is con-
trolled by complete protonation with functionalized sulfonic 
acids [36]. Generally, the emeraldine base (EB) and emerald-
ine salt (ES, both polaronic and/or bipolaronic) forms of 
PANI can be interchanged by doping and de-doping with 
acid and base (Fig. 1) [37]. In this report, we present our 
recent results on the microscopic structure and physical 

 

Fig. (1). (a) Shown are the chemical structure and the formula for PANI. Aniline monomer and polymer exist in a variety of molecular struc-
tures. R and R’ represents hydrogen and/or alkyl or alkoxy functional groups containing between 1 and about 6 carbon atoms a piece. A rep-
resent an anion and x is an integer (b) molecular structure with molecular formula for DNNSA and (c) Schematic of doped PANI with 
DNNSA as a solubilizing side chain along the conducting path and (Courtesy of Crosslink Inc.). 
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properties of DNNSA doped polyaniline-carbon nanotubes 
as self-assembled potential nanocomposites. In particular, we 
report some of the insights into the nanotube-polymer inter-
face/interphase analyses using vibrational spectroscopy such 
as micro-Raman spectroscopy. 

EXPERIMENTAL DETAILS 

 The polyaniline solution was prepared through emulsion 
polymerization following the procedure outlined in US Pat-
ent No. 5,863,465 with DNNSA dopant as a solubilizing side 
chain. Fig. (1) shows chemical structure and formula) [38]. 
Carbon Nanotubes Inc. (CNI) manufactured the SWNT used 
in the present study via a high-pressure fabrication method 
(HiPCO® SWNT) [39]. The MWNT were prepared using 
thermal chemical vapor deposition. We found that excellent 
dispersions of the nanotubes in DNNSA-PANI could be pro-
duced following two different procedures. The nanotubes 
could either be directly ultrasonicated into the DNNSA-
PANI solution or the dispersion of ultrasonicated nanotubes 
with xylene is sonicated with the DNNSA-PANI solution for 
a few hours. The results are reported for the former process-
ing procedure for its ease and simplicity. Structural and 
physical property such as conductivity of the PANI-NT 
composites were measured by coating films of approxi-
mately 0.5 μm thickness onto Si and glass slide with varying 
fractions of both the kinds of nanotubes (SWNT; 2.5 and 
4.0wt.% and MWNT; 0.25 and 0.50 wt.%). Fig. (2) shows a 
flow diagram for preparation of nanocomposite films on a 
commercial Si. For surface morphological characterizations, 
we have used optical microscopy, scanning electron micros-
copy (JEOL Model 3400) and atomic force microscopy 
(AFM Veeco Instruments, Model Dimension 31). X-Ray 
diffraction measurements were performed using Siemens 
5000 diffractometer to determine the lattice structure and 
spacing. 

 

Fig. (2). Flow diagram of processing scheme for synthesizing con-
ducting polymer-nanotube composite films. 

 We measured high-resolution Raman spectra with a typi-
cal 1.25-m, f/11 double monochromator, equipped with 2400 
grating g/mm, ion-etched Super-Notch-Plus filter, Ar+ laser 
operating at L = 514.5 nm (EL = 2.41 eV) and at a power < 
10 mW to avoid local laser heating with beam spot size 
about < 5 micron, with a resolution of ~ 2-4 cm-1. Data was 
acquired using Spectra Max software for Windows. All of 
the Raman spectra were recorded between a frequency range 
of 1000-3000 cm-1 in backscattered configuration and were  
 

analyzed using Jandel Scientific Peakfit software (v. 4.0) 
based on Marquardt-Levenberg method [40]. For room tem-
perature dc resistivity measurements, silver paint was used 
as ohmic contacts. The electrical properties including I-V 
and dc electrical conductivity was measured using a standard 
two-probe and four-probe method. 

RESULTS AND DISCUSSION 

 In Figs. (3) and (4), we display a series of optical micros-
copy, SEM and AFM images revealing the surface morphol-
ogy of DNNSA-PANI/CNT composite films. The films 
show globular or cobbled stone-like morphology and spheri-
cal aggolmerates that becomes much apparent in 2D and 3D 
AFM images. The images also show that the films are rela-
tively inhomogeneous and the nanotubes seem to appear 
poorly dispersed as anticipated. It requires further attention 
in terms of improving the processability of as-deposited al-
beit ultrasonicated nanotubes in conducting polymers. One 
of the approaches we adopted to enhance the solubility 
and/or dispersion of nanotubes is to functionalize them cova-
lent or non-covalently. This approach seemed to improve the 
homogeneity and structural integrity. Fig. (5) shows possible 
arrangements of nanotubes incorporation in conducting 
polymer chains including self-assembled folded chain (Fig. 
5a) and locally functionalized folded chain (Fig. 5b). From 
our microscopy images, it is apparent that the former applies 
to our nanocomposite samples. 

 

Fig. (3). Optical micrographs for DNNSA-PANI, MW and SW 
nanotubes incorporated films. The green solution in the vial is 
DNNSA-PANI. 

 X-Ray diffraction (XRD) is used to determine the crystal 
structure of the solid materials. Fig. (6) shows XRD diffrac-
tograms for DNNSA-PANI and nanocomposites with vary-
ing nanotube concentration. Besides characteristic peaks at 
27o related to graphitic (002) plane and at 5o relating (11)  
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Fig. (4). (a-c) SEM images and (d-f) 2D and 3D AFM micrographs in 10 m x 10 m area showing the globular/spherical surface morphol-
ogy for PANI-DNNSA, 0.25 wt.% MW and 2.5 wt.% SW nanocomposite films. 

 

 

 

(a)

(b)

(c)

(d)

(e)

(f)



44    The Open Spectroscopy Journal, 2008, Volume 2 Gupta and Ding 

structure in SWNT (although weak), we also observe bands 
at 2  = 13.60o and 15.0o possibly related to DNNSA-PANI 
and composites. The position, width and shift of these bands 
are a direct measure of inter-planar spacing, crystallite size 
and stress/strain, respectively. Through careful fitting and 
further analyses using Bragg’s law 2dSin = m  and Debye-

Scherrer L =
K

bCos
 formulae, where K(Debye-Scherrer 

constant) = 0.94,  = 1.5405 Å (Cu K ) and b is the full-
width at half maximum of the peak, we found a systematic 
variation for the lattice spacing (d) and crystallite size (L) in 
the following order: (d)PANI/SW < (d)PANI/MW < (d) < (d)PANI 
and (L)PANI/SW < (L)PANI/MW < (L)PANI. In addition, the sharp-
ness of these bands is reflective of high crystallinity, rela-
tively high electrical conductivity and expanded coil of 
polymer matrix. However, whether it is caused by the pres-
ence of greater excess of DNNSA in the PANI and/or pres-
ence of nanotubes, is yet to be determined. Nevertheless, 
these observations demonstrate the importance of the hith-
erto unrecognized importance of the molecular conforma-
tions of a conducting polymer in conjunction with carbon 
nanotubes determining its electronic and electrical properties 
as well as morphology discussed below. 

 Raman spectroscopy (RS) has emerged as a powerful 
analytical tool for the structural characterization of carbon-
based and other technologically important materials. RS is 
based on the inelastic light scattering that provides informa-
tion about lattice vibrations (or phonons) of the probed mate-
rial because of its sensitivity to changes in the atomic struc-
ture. The significance of RS experimental technique has in-
creased substantially since it has proved helpful in under-
standing thus establishing the correlation between the vibra-
tional properties and the microstructure of diverse nanoscale 
carbon materials [41]. The main reasons for this are the 
strong Raman response to the -states due to resonance en-
hancement, its simplicity for the high-symmetry nanotubes, 
easy access and non-invasive nature. 

 Fig. (7) compares the first-order Raman spectra of repre-
sentative multi-wall (MWNT) and single-wall nanotubes 
(SWNT) with different loading fractions of DNNSA-PANI. 
In the first-order, prominent Raman bands of interest in the  
 

 

Fig. (6). X-Ray diffractograms showing the characteristic peaks and 
comparisons between the DNNSA-PANI/SW and DNNSA-
PANI/MW nanocomposites. 

high frequency regime for all of the samples are D and G 
bands occurring at ~1340 cm-1 (1350 cm-1) and ~1580 cm-1 
(1593 cm-1), respectively [42]. For a realistic comparison the  
 

 

Fig. (5). Schematic of possible arrangements of nanotubes incorporation in conducting polymer chains forming potential nanocomposites (a) 
self-assembled in folded chain and (b) locally functionalized in folded chain. The symbols have their meaning as shown. 
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Fig. (7). Shown are the first-order visible micro-Raman spectra for 
all of the DNNSA-PANI-NT samples depicting the significant fea-
ture including D and G bands along with several others characteris-
tic bands for DNNSA-PANI. 

spectra were normalized with respect to the intense high fre-
quency band (i.e. G band) and they are vertically shifted for 
clarity. The high-frequency band known as the tangential 
displacement mode (TDM) can be decomposed into two 
main peaks around 1562 cm-1 and 1593 cm-1 (T2 and T3, re-
spectively) with a shoulder at ~ 1550 cm-1 (T1) for SWNT 
(Fig. 7b). [Note that the T band is equivalent to the G band]. 
These features have been assigned to the E2g symmetry mode 
of graphite that results from the splitting of intra-layer 
stretching mode. The latter arises due to a curvature induced 
re-hybridization ( *- *) in smaller diameter nanotubes [43]. 
In fact, the re-hybridization of the *- * orbital strengthens 
the C-C bond which yields relatively high elastic constants 
for the SWNT. The Raman modes for SWNT seem to be 
quite narrow and sharp indicating high uniformity, low level 
of impurities, smaller diameter distribution and primarily a 
semiconducting nature. This is in contrast to MWNT, which 
tend to be metallic and usually broader with substantial  
 

impurity [42]. The D peak of the sp2-bonded carbon materi-
als is the disorder-activated band and it arises from the in-
plane substitutional hetero-atoms, vacancies, grain bounda-
ries or other defects, all of which lower the translational 
symmetry and violate momentum conservation. Due to sev-
eral concentric tubules in MWNT, this peak tends to gain 
intensity. 

 Excitation wavelength of 514.5 nm preferentially excites 
semiconducting tubes for SWNT and only fewer metallic 
and secondary tubes having smaller diameter such as in dou-
ble-walled carbon nanotubes (DWNT). It is due to the reso-
nant Raman scattering process via E22

SS branch in van Hove 
singularities present in the electronic density of states 
(EDOS) for SWNT (Fig. 7b). The line broadening has been 
attributed to Fano resonance arising due to electron-phonon 
coupling (EPC) [44]. Generally, both the MWNT and SWNT 
exhibit a rather complicated spectral behavior depending on 
the loading in the COP, where a variety of covalent bonding 
may be formed. The presence of bands near 1500 and 1600 
cm-1 indicates clear benzoid and quinoid ring vibrations, 
thereby indicating the oxidation state of ES polyaniline [45]. 
Several other bands belonging to DNNSA-PANI shown in 
Fig. (7) are also labeled following Ref. [45]. 

 The characteristics of the Raman spectral features have 
been identified and detailed quantitative analysis in terms of 
the highest frequency band position and the intensity ratio of 
D to G band (ID/IG) is provided in Fig. (8) for all of the spec-
tra. There are strong correlations between the microstructural 
changes due to nanotubes incorporation that were deduced 
from the Raman spectral features. Generally speaking, shift 
(either increase or decrease) in the highest frequency G band 
is a measure of (a) different sp2 Cconfiguration (since G band 
is due to sp2 sites only and refers to C-C stretching mode); 
(b) curvature induced re-hybridization and (probably) mixed 
hybridized character and (c) compressive or tensile 
stress/strain, which ranges from 1580 1605 cm-1 for 
MWNT and 1592 1604 cm-1 for SWNT nanocomposites. 
The position of the D band also changes as shown in insets 
of Fig. (8a, 8b) and they deserve much needed attention as 
their variation can be utilized to evaluate mechanical defor-
mations in carbon nanotube-polymer nanocomposites. Quali-
tatively, the intensity ratio (ID/IG) is a measure of phase pu-
rity (or, degree of disorder). The relative increase of intensity 
ratio for DNNSA-PANI/SW (0.1  0.35) as compared to 
DNNSA-PANI/MW (0.84  0.74) indicates a concomitant 
increase in defects and surface functionalization of SWNT 
with sulfonic group of DNNSA-PANI or possibly others thus 
reflective of a strong interaction with the host material sys-
tem. Moreover, it is worthy to note that DNNSA-PANI/NT 
is not a simple material rather a hybrid electronic structure 
which is not a simple sum of the individual components. 
Such materials offer a great promise as sensors because the 
attached functionality may be tailored for specific chemical 
or biological analytes, as elucidated in Ref. [46]. This is not 
only the change in the electronic conductivity and corre-
sponding EDOS, but also some kind of chemical doping due 
to charge transfer via sulfonic group from the surface of the 
nanotubes resulting in electrical conductivity variations. 

 Second-order Raman spectroscopy also provides infor-
mation about mechanical deformation and the Raman spectra  
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(a) 

 

(b) 

 

Fig. (8). Shown are the analyses of Raman spectra shown in Fig. (7) 
in terms of G band position and the intensity ratio of D to G band 
(ID/IG) for (a) MW and (b) SW nanocomposites. Variation of D 
band is also shown in inset. 

and the variation of second-order D band (i.e. G* band) at 
around 2678 cm-1 for both the SWNT and MWNT is shown 
in Figs. (9a, 9b) and (10), respectively. The combination 
band (D+G) and second order G band at ~ 2920 cm-1 and 
3200 cm-1, respectively were too weak to be detected [47, 
48]. The G* band in the Raman spectra is generally much 
more intense than the disorder-induced D band for various 
sp2 C materials. It is due to the fact that the G* band is sym-
metry allowed by momentum conservation requirements and 
results from a two-phonon scattering that is explained by 
double-resonance theory [49], whereas the disorder-induced 
D band appears only when there is a breakdown in the in-
plane translational symmetry. It is used to obtain information 
on local deformations depending upon its variation in posi-
tion either towards higher (microscopic compressive) or 
lower (microscopic tensile) values. To remind ourselves, the 
G* band arises from breathing motion of sp2 rings having A1g 
symmetry. An upshift implies stiffening of the C-C bond 
length (dC-C), which is a consequence of compressive 
stress/strain. In view of a linear dependence represented by 
the following relations through the following equations:  

comp (GPa) = 0.10 * (cm 1 )            (1) 

and 

 
L

L
=             (2) 

where comp is the microscopic compressive stress, L is the 
change in C-C bond distance and  is the frequency of G* 
band [50-52]. On the basis of Eqn. (1), the estimates of the 
pressure exerted on NTs varied between -0.4 to -0.6 GPa for 
MWNT and SWNT along with polymer matrix, respectively. 
Since the calculated pressures are not too high, it does not 
lead to hexagonal distortion as reported in earlier studies 
[51]. Change in bond length or in-plane lattice constant (dC–

C, A°) and the corresponding microscopic compressive strain 
is approximately -0.17 x10-3 and -2.2 x 10-3 following Eqn. 
(2) for MWNT and SWNT, respectively. 

 Fig. (11) displays traditional electrical measurements as 
I-V plots determining resistivity (or, conductivity) for pris-
tine DNNSA-PANI and both the MWNT and SWNT com-
posite films as a function of nanotube concentration ranging 
from 0.1% to 4% by weight. The inset is an optical micro-
graph of two finely tipped probes separated by < 0.5 mm 
touching the surface of the sample. An electric field is ap-
plied, which in turn induces a current flow measured by the 
Keithley digital multimeter. From these curves (Fig. 11) it 
can be concluded that DNNSA-PANI/SW samples with the 
maximum weight fraction has less resistance (steeper curve) 
than those of DNNSA-PANI/MW and they are in the follow-
ing order: (1/R)PANI/SW > (1/R)PANI-MW > (1/R)PANI. The data 
in Fig. (12) shows that the logarithmic of dc electrical con-
ductivity (Log10 dc) for the DNNSA-PANI and nanocompo-
site films derived from four-point probe measurements. The 
conductivity values increases over six orders of magnitude as 
the nanotube type (MW and SW) and concentration is varied 
and it can be extrapolated to reported values of SWNT mat 
values at 100% loading. Fig. (12) also indicates that the con-
ductivity of the composite starts to saturate for higher SWNT 
concentration implicating a percolation threshold regime  
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Fig. (9). Shown are the second-order Raman spectra for all of the 
DNNSA-PANI-NT samples depicting the significant feature includ-
ing second-order D band (i.e. G*), which is related to mechanical 
deformation. 

 

Fig. (10). Shown are the variation of G* band with concentration of 
nanotubes by wt.% in DNNSA-PANI for all of the samples. The 
calculated strain ( ) from the position of G* band is also provided. 

 

Fig. (11). (a-c) I-V curves provide information on the electrical 
behavior of all of the samples. Insets show the optical micrographs 
of the samples along with probes where the data was taken. 

ca. to 0.5 wt.% [9]. Additionally, the conductivity is highly 
dependent on the dispersion procedure and possibly 
independent of the nanotube synthesis method. These results 
suggest that neither the graphitic component of the nanotube 
material (higher graphitic content in laser material) nor the 
metal catalysts associated with the different fabrication 
methods impact the nanocomposites conductivity. In con-
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trast, the effect dispersion procedure on the composite con-
ductivity reflects difference in contact resistance and charge 
transport. These results indicate the uniqueness of polyani-
line as a conductive binder leading to enhanced properties in 
DNNSA-PANI/NT composites. 

 

Fig. (12). Shown is the logarithmic plot of dc conductivity in S cm-1 
versus concentration of nanotubes by wt.% in DNNSA-PANI. 

 Despite the development of PANI-NT nanocomposites, 
some of the issues still remain and needs further work in-
clude (a) the potential interactions between NTs and conju-
gated polymers is still intriguing, even though it can be con-
sidered that a physical doping of the polymer by NTs is pos-
sible by charge transfer as well as - * interactions. Such 
interactions can increase the electron delocalization which 
enhances the conductivity of the polymer, (b) there is a great 
extent of inhomogeneity which can be overcome by func-
tionalizing the nanotubes surface and then there will be a low 
level of microscopic phase separation/segregation of the 
components that may lead to higher electrical conductivity. 
Above all, nanofunctional materials with tailor-made proper-
ties can be synthesized from pre-selected constituent molecu-
lar building blocks. A possible synthetic route for the prepa-
ration of such a nanocomposite material would be in which 
carbon nanotubes are grafted with conjugated polymers. This 
may have significant advantage over a composite prepared 
by simple mixing of components for enhanced physical 
(electrical, mechanical) properties for a myriad of applica-
tions. 

CONCLUSION 

 In summary, we have prepared and investigated polyani-
line-nanotube composites. Scanning electron microscopy 
revealed the surface morphology which appears to be rough, 
globular- or cobbled stone-like similar to the ones observed 
with atomic force microscopy. Homogenous dispersion of 
nanotubes in the polymer matrix was not as efficient as 
sought for and showed tangles and spherical agglomerates 
so-called inhomogeneous distribution. Through XRD struc-
tural evaluation, the variation of crystallite size was found to 

be consistent. Qualitatively, nanotube inclusion was demon-
strated using Raman spectroscopy analyses. Although weak, 
a change in the Raman intensity indicates partial interaction 
with polymer matrix and debundling. If no such signatures 
were present, that was indicative of no incorporation. How-
ever, it lacked homogenous distribution and support partial 
interaction, attributed to weaker stiffness of the polymer, 
lack of strong interfacial interaction and possible departure 
from the ideal mechanical properties, desired for technologi-
cal applications. Lastly, the room temperature resistivity 
measurements showed promising results of an increase in 
electrical conductivity as a function of nanotube loading that 
tend to reach maxima for the highest multi-walled nanotube 
concentration and plateaus for the single-walled nanotubes. 
These studies also provided a contrasting comparison be-
tween single- and multi-walled nanotubes. There is much 
work needs to be done in terms of processing polymer matrix 
and nanotubes and role of dopant in polyaniline, which may 
help to determine and understand the enhanced physical 
properties for the technological applications sought such as 
printable organic electronic and sensor devices, electrodes 
for fuel cell and high energy density Li batteries, space and 
naval applications. 
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