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Abstract: The absorption and emission of light by biological systems is a dilemma for the research community which 

remains transfixed upon the bottom-up systems biology approach. Many health care professionals do not yet accept that 

photosensitivity is an essential aspect of the body’s function. 

This article highlights that light is often required to activate enzymes and/or proteins in biological systems. Inadequate 

levels of exposure to light may be responsible, at least in part, for the uncoiled nature of proteins found in diabetes 

mellitus, Alzheimer’s disease, and other conditions. Moreover the emission of light, the consequence of protein reactions 

with reactive substrates or of reactive oxygen species, is an often observed characteristic of pathologies and influences the 

visual perception of colour. It illustrates that a significant diagnostic principle exists by measuring the levels of light 

absorbed and/or the bioluminescence released from fluorescent pathologies. 
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1. INTRODUCTION 

 There is not yet any significant level of understanding of 
the mechanisms which regulate the body’s function. We now 
know that genes produce our proteins and possess our 
genetic template but we do not yet know how this is 
regulated. Many genes produce more than one protein 
however the mechanisms for the production of one or other 
protein are not yet known. 

 The recognition that sense perception, and in particular 
colour perception, is linked to the function of the autonomic 
nervous system (top-down systems biology) appears to 
challenge the most fundamental concepts of reductionist 
biomedical research which focuses upon the symptoms of 
pathology and excludes any significant consideration of 
sensory input and the mechanisms which naturally regulate 
the body’s function (bottom-up systems biology). 

 That colour is linked to the function of all cellular 
processes has been recognised in plant research since Ott [1] 
first recognised that the colours blue and red influenced the 
flow and/or function of chloroplasts (plant photoreceptors) 
and plant growth. In humans the link between colour vision 
and autonomic nervous system has been recognised since 
1941 [2] e.g. the administration of adrenaline and pilocarpine 
are accompanied by alterations to colour perception. 
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2. THE REGULATORY INFLUENCE OF LIGHT 

 The body responds to sensory input through touch, sight, 
hearing, smell, and taste. It may be essential for life [3]. 
Inadequate levels of sensory input lead to increased 
morbidity and mortality. Sensory input influences the 
autonomic nervous system. The sympathetic and 
parasympathetic nervous systems are influenced by GPCRs. 
An estimated 30-70% of drugs are based upon the function 
of GPCRs. They are involved in the processing and 
regulation of data from the external and internal 
environments. In vision, the opsin family of GPCRs convert 
light into cellular signals [4]; and in smell, olfactory 
receptors bind smells and pheromones. GPCRs are also 
involved in the regulation of behaviour and mood, immune 
system function, blood pressure and digestive processes. 
Any direct or indirect influences upon such proteins and 
their reactive substrates will modify sense perception and in 
particular visual perception. Alterations to their level, 
influenced by upstream biochemistries, or suppressed by the 
prevailing reaction conditions e.g. pH, temperature, plasma 
viscosity, levels of minerals, cofactors, hormones, 
neurotransmitters, etc; will influence the rate at which 
proteins react and, ultimately, visual perception. In addition 
most drugs and disease(s) are associated with cognitive 
deficits, often involving colour perception. This associates 
them with protein function [5]. 

 A good example is that of PDE5 which is influenced by 
Viagra. The phosphodiesterase 5 enzyme (found in several 
tissues including (but not solely) the rod and cone 
photoreceptor cells of the retina) catalyze the hydrolysis of 
cAMP and cGMP.

 
PDE5 absorbs and degrades cGMP. 

Sildenafil (Viagra) and other similar drugs inhibit this 



2    The Open Systems Biology Journal, 2011, Volume 4 Ewing et al. 

enzyme. Consequently, many people who take Viagra notice 
a change in the way they perceive green and blue colors, or 
they see the world with a bluish tinge for several hours. For 
this reason, (i) pilots are prohibited from taking Viagra 
within 12 hours of a flight and (ii) policemen are advised to 
take special care when driving and negotiating their passage 
at traffic lights if they have recently taken Viagra. Viagra [6] 
activates or suppresses the processes which alter colour 
perception. If the latter this should be accompanied by 
lessened colour contrast in addition to altered colour 
perception. If the former this is likely to be accompanied by 
increased visual contrast and the emergence of specific 
colours in the visual spectrum. Both options are plausible. In 
the case of Viagra the latter seems more plausible. As this 
family of phosphodiesterase enzymes are genetically 
encoded it follows that epigenetic influences may decrease 
or increase the levels of gene expression and hence influence 
colour perception. In addition it is worth noting that PDE5 is 
not solely associated with visual function. It is also found in 
smooth muscle, lung tissues, the penis/erectile function and 
has been implicated in processes associated with learning 
and memory. Such enzymes are not solely devoted to visual 
transduction. 

• PDE6 is light-activated. Suppression of its function 
by drugs reduces colour perception [7]. Moreover, 
most PDE5 inhibitors also inhibit PDE6 [8,9]. PDEs 
are implicated in the etiology of atherosclerosis and 
cardiovascular disease [10-12]. 

• cGMP is the substrate for PDE6. Regulation of cGMP 
levels and of associated reaction conditions such as 
pH, levels of minerals, etc; is therefore a prerequisite 
for normal function of transduction in the optic 
pathways. 

• The enzymes PDE5 and PDE6 require divalent metal 
ions, in particular Zinc, to facilitate their function. 
Accordingly a zinc deficiency will influence signal 
transduction in the visual pathways. 

• cGMP, which is produced by soluble guanylyl 
cyclase (sGC) in response to nitric oxide [13] is an 
important signaling molecule in axonal development. 

• Light is a trigger for the delivery of Nitric Oxide [14] 
and subsequent stimulation of vasodilation. Moreover 
the therapeutic use of light (near infrared, 890 nm) to 
stimulate vasodilation is a commercial reality 
(Anodyne Therapy System) approved by the US 
FDA. 

• Chronically altered biochemistry leads to genetic 
mutations in the phototransduction signaling 
process/cascade thereby influencing the function of 
retinal structures and the neurovisual pathways. 

• Nitric Oxide plays a distinct role in cardiology [15-
17]. 

• The body’s function is multi-systemic and complex 
[18-21]. 

 The role of light upon the body’s physiology has been the 
subject of research for many researchers and has been 
extensively described in many articles by the author [22-25]. 

3. THE INFLUENCE OF LIGHT UPON THE BODY’S 
PHYSIOLOGY 

 Mono-chromatic light influences many of the body’s 
physiological processes. It may be essential for the body’s 
normal and regulated function i.e. without sunlight morbidity 
and mortality will be significantly enhanced. The precise 
selection of light and/or colour selects those neurons which 
are sensitised and part of neurophysiological processes [26]. 
It influences the function of neurons in the brain and 
biological processes in the visceral organs e.g. 

• it regulates the function of retinal photoreceptors [27]. 
This use of light has been able to halt brain activity in 
specific neurons using different colours [28] and 
influence the firing of neurons. 

• it activates the expression of proteins [29] and 
enhances mitochondrial DNA replication [30]. 

• it regulates the autonomic nervous system [2,31] and 
the stability of the physiological systems. 

• it regulates Bilirubin metabolism [32,33] and its 
various isomers. 

• it regulates the production of Calcitriol [34,35]. The 
action of light upon the skin activates processes 
which produce Calcitriol (Vitamin D3). This is 
involved in neural biochemistries including the 
synthesis of neurotransmitters, brain detoxification 
pathways, and has a significant immunomodulatory 
effect [36, 37]. 

• it activates enzymes, which catalyse the body’s 
function [38,39]. 

• it influences the production of Nitric Oxide [13,40] 
and subsequent regulation of blood pressure, lipid 
peroxidation, blood flow [41] and heart rate [42]. 

• and many other biological processes including (but 
not limited to) the migration of stem cells [43]; rate of 
wound healing [44-46]; rate at which proteins 
translocate to the cell membrane; function of the 
lymphatic system [47]; regulation of intercellular pH 
balance [48,49]; sperm motility [50] and sexual 
function [51]; and immune function [52-54], etc. 

• the effect of light upon nitric oxide formation may 
have potential anti-cancer application [55]. 

 There is an immense amount of data which illustrates the 
therapeutic effect of light including that summarised in 
articles by the author [21,23,56-59]. 

 Proteins exist in multi-level, multi-energetic states. They 
require energy to be activated and often release energy as 
they decay into lower energy states following their reaction. 

 Some proteins do not fold correctly unless glycosylated. 
As discussed [60] light plays a significant role activating 
such proteins and moreover the light emitted may change 
following the protein reaction. The principle appears 
increasingly evident. Monochromatic light, received from 
the environment (and/or generated and transmitted in vivo), 
raises proteins/enzymes to their activated state. This is not a 
novel finding and has been reported by many researchers. 
Nevertheless the understanding that light may be essential 
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for their subsequent reaction and can influence differing 
biochemistries is most significant. The delivery of 
monochromatic light stimulates specific biochemical 
processes and regulates the function of the physiological 
systems [22, 23]. It synchronises the activity of groups of 
neurons [61] and their electrical impulses [62]. 

 Lower levels of such proteins, arising from reduced 
genetic expression of proteins and /or the consequence of 
stress, and less favourable reaction conditions will reduce the 
number and rate of protein reactions e.g. firefly luciferin is 
oxidised by the enzyme luciferase in the presence of 
Magnesium, oxygen and ATP and yields a photon of light. 
This forms the basis of an assay for ATP however altered 
biochemical pathways - due to the adverse effects of pH, 
temperature, levels of minerals (in particular of Mg) and 
viscosity - influence the rate at which reactions proceed and 
may influence subsequent biochemical outcomes. They may 
alter the genetic profile and create genetic mutations [63,64]. 

 Many proteins other than GPCRs are visually active. 
Knowledge of their chemiluminescent properties has been 
used to develop analogues with greater fluorescence but with 
the intention of measuring levels of biochemical markers 
rather than rate of reaction e.g. a bioluminescent assay has 
been proposed as a general method for the study of protein 
glycosylation [65]. Moreover the modification of chemical 
structure will modulate the ability of each biochemical or 
analogue to absorb light of a particular frequency or colour. 

 This alone may be considered to be a reasonable 
explanation for the phenomena of colour perception however 
such explanation does not adequately explain all known and 
related phenomena. In particular, the influence of 
bioluminescence upon colour perception. The ability to 
diagnose disease from its presymptomatic origins (a feature 
of Virtual Scanning) indicates that such bioluminescence 
must be generated by pathologies as a consequence of the 
light emitted from catalytic enzymes and reactive oxygen 
species as they decay into lower energy states. 

 There are numerous observed precedents linking colour 
perception to disease. One of the most striking precedents is 
that light is not solely absorbed through the neurovisual 
channels. It is also absorbed by the skin e.g. in the case of 
Vitamin D. It is assumed that these are the only two 
mechanisms for the absorption of light however researchers 
have established that blue light when applied to the back of 
the knee alters human circadian rhythm. Subsequent research 
[66] has indicated that the skin may act as an extra-retinal 
photoreceptor able to influence circadian rhythm. Light also 
influences the function of the pineal gland and, like the skin, 
influences circadian rhythms [67]. The production of 
melatonin by the pineal gland is stimulated by darkness and 
inhibited by light [68]. Although there is not yet a clear 
understanding of the role of the pineal gland (and hence of 
melatonin and serotonin) it is perceived to rise and fall in 
response to natural sunlight (during the day and night), and 
to seasonal fluctuations i.e. it may act to compensate or 
adjust for different levels of natural sunlight. In addition, 
different wavelengths are able to penetrate tissue to different 
depths [69, 70] i.e. at sufficient depth to influence the 
function of visceral organs. 

 The conventional explanation fails to explain how the 
number of colour-sensitive retinal cones can differ 
significantly but that colour perception can be unaltered. 
This indicates that colour perception is also influenced by 
our brains, and associated neurovisual pathways, and not 
solely by our eyes [71]. Similarly, those from tropical 
regions of the world where light is more intense have 
inherent genetic traits which are able to compensate for 
regional variation i.e. our visual perception is context 
dependent. In addition, the receipt of sensory input alone 
cannot explain the influence of stress and of the stress 
response upon the body’s physiology. This can only be 
explained by considering how sensory input is processed by 
the brain. The neural response to stress is manifest as 
pathologies and subsequently influences colour perception 
i.e. the cumulative association of sensory input from the 
various senses is manifest as a physiological response of 
differing levels of intensity. 

4. THE INFLUENCE OF PATHOLOGY-RELATED 
BIOLUMINESCENCE UPON COLOUR PERCEPTION 

 The phenomena of bioluminescence is considered to be 
associated with the excitation of substrates by enzymatic 
catalysis or by oxidative stress involving reactive oxygen 
species [72-75]. 

 The evolutionary processes create or adopt physiological 
phenomena or developments which are passed onwards 
throughout subsequent generations. From life’s origins as 
plant species, through marine sea life, light has been adapted 
from its earliest creation of life. The emission of natural 
bioluminescence is seen in marine life, in deep sea marine 
species; in fire-flies, glow worms, and insect larvae; and in 
vertebrates. It would be unusual in the extreme if evolution, 
in the human, had discarded such a valuable principle. 

 This emission of bioluminescence may have significant 
diagnostic potential [76]. Light influences the function of all 
cellular processes however the absorption of light may be 
primarily a therapeutic principle i.e. that light of specific 
frequency(s) stimulates specific biochemistries and systems. 
Nevertheless the measurement of light absorbed may be used 
to make diagnostic conclusions. The data presented in this 
article illustrates the ways in which pathologies influence the 
primary visual mechanisms and alter colour perception 
however this may not fully explain all of the aspects of 
colour perception. 

 The emission of light from protein-substrate reactions 
represents a diagnostic principle which, if adapted, may lead 
to a measure of rate of reaction rather than the diagnosis of 
the level of a specific biomarker. In principle, this may be a 
significantly more precise method of diagnosing the 
progression of disease [21,23]. It illustrates that the emission 
of pathology-related bioluminescence could influence or 
reduce the light absorbed by the optic mechanism and hence 
inhibit the perception of colour and colour contrast but it 
does not explain that the perceived visual intensity of such 
colours increases with the emergence of pathology. 

 The body literally glows with energy [77]. Moreover the 
locations from which light is released differs from the 
locations from which heat is released thereby illustrating that 
there may be distinctly different mechanisms. Blood and 
most body fluids are fluorescent e.g. forensic scientists use 
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ultraviolet lights at crime scenes to find blood, urine, or 
semen. 

 The principle(s) that light is emitted by protein-substrate 
reactions is recognised in several precedents e.g. 

• BioAstral, part funded by the DTI, a spin-off from the 
University of Leicester [78]. 

• Fluorescent light illuminates blood sugar disorders in 
patients. The Dutch company DiagnOptics has 
developed a device that may be able to identify 
diabetes risk simply by shining a fluorescent light on 
a patch of skin below the elbow. The technique 
illuminates advanced glycation end products [79].

• Increased biophoton emission has been linked to the 
progression of disease e.g. in multiple sclerosis [80].

• Systemic parameters are linked to diabetic 
retinopathy [81-87]. 

 Various articles elucidate the link between natural 
fluorescence, glycation and diabetes [88-92] and in 
subsequent cardiovascular developments [93-96]. Biophoton 
emission may be linked to current DM indicators such as 
HbA1c [97,98]; and the detection of other medical 
conditions [89] including gastrointestinal disease(s) [99-
101], cancers [102-107], conditions of unknown origin 
[108,109], and as an early marker of retinal deterioration 
[110, 111]. Albumin is naturally bioluminescent. The 
glycated form of albumin has been proposed as an 
alternative to HbA1c in the measurement of diabetes [112, 
113]. 

 The loss of blue-yellow colour vision has been shown to 
be an indicator of the onset of type 1 diabetes mellitus [112, 
114-122]. The loss of other colours in the visual spectrum 
are associated with coronary heart disease [123], migraine 
[124-126] and may also be implicated in the diagnosis of 
other heart conditions [127-129]. 

 Light is partially absorbed and emitted by haemoglobin, 
albumin and their glycated analogues. Similarly ATP [130-
132] and other nucleotides [133] may exhibit the same 
property of being able to weakly absorb and emit light and/or 
that biologically generated analogues may be fluorescent. 
Other potentially fluorescent biomarkers include NADH, 
FAD, tryptophan, collagen, and endogenous porphyrins 
[134]. 

5. DISCUSSION 

 The objective of this article is to demonstrate the 
existence of a significant scientific principle i.e. that the light 
absorbed by proteins and the bioluminescent released from 
many protein-substrate reactions can be used diagnostically 
and is the principle upon which Virtual Scanning is based. 
The idea of linking visual perception to pathology arose out 
of Grakov’s research re the medical application of industrial 
lasers [135] conducted at the University of Novosibirsk in 
the period 1980-2000. This first development, Virtual 
Scanning, is now being followed by other commercial 
developments which seek to adapt the absorption and 
emission spectra of biological phenomena. 

 

 Monochromatic light has long been known to activate 
biological systems [136-138]. (Alexander Gurwitsch, 
V.P.Kazmacheyev and others established that every living 
cell emits light). Most proteins are visually active and/or 
naturally bioluminescent [136,137]. A similar principle 
appears to be used in non-linear interferometric vibrational 
imaging [139, 140] which, like Virtual Scanning, has taken 
many years to be developed. 

 Proteins react with substrates. Light provides the energy 
of activation required to energise the protein and/or its 
substrate into their reactive conformations [138]. In most 
cases this will release energy as heat however, as outlined in 
this article, it may also be accompanied by the release of 
electromagnetic radiation in the IR, Visible and UV 
spectrum. Moreover, many marine organisms have adapted 
light in various ways. Some mammals have no colour 
perception or have vision which preferentially absorbs in the 
IR or UV. 

 In some cases the protein may be activated to different 
energy states by light of different energy/colour. This 
stimulates different biochemistries and may be accompanied 
by the release of energy as heat or as light of different 
wavelengths. Some proteins may be relatively benign i.e. 
they are not visually active or are only weakly active, 
however their conversion to analogues may increase their 
inherent fluorescence. The development of problems re the 
regulation of blood glucose, which we recognise as diabetic 
mellitus, leads to a biochemical cascade involving the 
production of reactive oxygen species which release light 
according to the energetic states of the functional 
molecule(s) and glycated, or other, analogues. 

 Every genetic change will influence the level and 
structure of proteins expressed and of subsequent 
biochemical analogues (and their light absorbing or emitting 
properties). 

 Moreover the eye is a parabolic photoreceptor. It focuses 
and amplifies sensori-visual input. Whilst it routinely detects 
about 10^9 photons per second during daylight it also detects 
the light intensity of specific colours at as low as 50 photons 
per second [141]. It is a detector of extraordinary flexibility 
and scope. As outlined, its function is influenced by the 
release of fluorescence from blood i.e. by the 
bioluminescence of specific pathologies. 

 This illustrates that light perform a role which is 
analogous to that of software for our biochemical hardware. 
The phenomena is not unique to marine species but may be a 
necessary requirement for all intercellular commmunication 
and hence for the regulation and organisation of all forms of 
life. 
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