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Abstract: In this work we tried to predict Ring spun yarn quality from fiber properties, yarn count and twist by using a 

back-propagation network. First, we have proceeded with principal component and path analyses to extract and to 

visualize the main characteristics of the data set. Then, a model was constructed using neural network to optimize final 

yarn quality. The study of yarn quality was based on the desirability approach. The present method allowed us to quantify 

yarn quality by an index belonging to the interval [0, 1] which includes major physical properties of cotton Ring spun 

yarn. It can be optimized by using an algorithm, which is modified when criteria requirements of yarn quality are 

changed. All these methods have contributed to establish a convenient model that could predict global yarn quality. 
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INTRODUCTION 

 Yarn quality is generally qualified through one parameter 
which is namely its strength [1-10]. Yunus and Rhman [11] 
have established a yarn quality index including three 
parameters which are strength, elongation and uniformity 
(Eq. 1). 

 

Yarn Quality Index =
Elongation Strength

Uniformity
 Eq. (1) 

 Hence, it is now an accepted principle that ‘satisfying the 
customer’ in all respects is in practice what we mean by 
quality [12]. Although the quality of any product instead 
yarn is a multi-criteria phenomena that requires simultaneous 
satisfaction of its properties [13]. Until recently, in spinning 
domain, defining a global yarn quality index that encloses 
major physical properties still remains unstudied. In this 
paper, we tried to develop a model for predicting an overall 
quality of ring spun cotton yarns combining simultaneously 
major yarn parameters by using artificial neural networks. 
This method is one of the so-called soft computing 
techniques. It is based on learning systems for modeling and 
optimization that have been increasingly applied to textile 
problems during the last 30 years [14]. For this goal, an 
algorithm of cotton fiber selection has been developed. 

MATERIALS AND METHODS 

 Yarn quality encloses its different properties in the same 
time. In order to better express yarn quality, we have tried in 
this survey to consider major known yarn properties. Thus, 
we have studied the following yarn aspects (Table 1). 

 We have made the database based on the major cotton 
fiber characteristics which is composed of twelve  
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characteristics. The summary of statistics of fiber parameters 
is shown in Table 2.  

PRINCIPAL COMPONENT AND PATH ANALYSES 

APPLICATION 

In the first part of this work, we have applied principal 
components methodology PCA on fiber distribution using 
NemrodW software. This study was achieved for two aims:  

• First, to search the main fiber characteristics those 
mostly contribute to yarn quality. 

• Secondly, to reduce the number of fiber variables 
considered as inputs in order to compute better 
performance of the network model.  

To reduce the dimension of fiber data composed of 12 
characteristics with PCA method, we tried to determine the 
"best" eigenvectors of the covariance matrix. The 
eigenvectors corresponding to the largest eigenvalues are 
also called "principal components". 

 Several groups were identified on the basis of principal 
component analysis (Fig. 1). The unit circle showing the 
correlation of fiber properties with the first two principal 
axes illustrated in Fig. (1) presents three groupings well 
delineated. We can account these groupings as mentioned in 
Table 3.  

 Principal component analysis (PCA) offers a simple and 
useful mode of data graphical-reduction [15], but it doesn’t 
locate the most significant fiber characteristic of the group in 
yarn quality. In order to find which is the convenient fiber 
parameter to choose from each group, data were then 
analyzed by multiple regression techniques and path model 
analysis. Hence, we have defined a percent relative 
contribution for each fiber property (

  
C

i
(%) ) as follow: 

  

C
i
(%) = 100 R

2 i

i

1

k  Eq. (2) 
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Table 1. Summary Statistics for Ring Spun Yarn Properties 

Yarn Property Symbol Mean Standard Deviation Minimum Value Maximum Value 

Tenacity (cN.Tex-1) RKM 17,32 1,23 14,64 22,12 

Tenacity evenness (%) CVRKM 6,85 3,17 4,54 7,96 

Breaking elongation (%) E% 7,87 0,77 6,27 9,72 

Breaking work (Joule) TR 2,83 0,85 1,27 6,58 

Unevenness yarn (%) U% 9,92 0,96 7,37 12,32 

Number of thick points THIK 54,29 18,59 2,75 179,50 

Number of thin points THIN 1,46 3,76 2,00 19,43 

Number of neps BOUT 64,09 17,37 0,45 220,20 

Hairiness PILO 9,74 6,11 6,62 11,84 

Twist value (turn.m-1) Twist 463 66,65 364 629 

Yarn count(m.103 kg) Nm 13,07 3,46 10,10 21,12 

Table 2. Summary Statistics for Fiber Parameters 

Fiber Property Symbol  Instrument 
Mean  

Value 
Standard  

Deviation 

Minimum  

Value 

Maximum  

Value 

Micronaire index( g/inch) Mic HVI 4,30 0,18 4,00 4,70 

Maturity Mat HVI 0,88 0,01 0,85 0,91 

Upper Half Mean Length (UHML) 
(10-3 m) 

Len HVI 28,44 0,68 27,40 30,60 

Uniformity Index (%) Unif HVI 81,14 0,73 79,40 84,10 

Short Fiber index (%) Sfi HVI 7,92 1,82 4,10 10,90 

Strength (cN.tex-1) Str HVI 29,32 1,56 26,00 34,90 

Elongation (%) Elg HVI 6,53 0,80 4,90 8,20 

Trash count Tr cnt HVI 11,52 4,47 2,00 24,00 

Trash area Tr area HVI 0,14 0,03 0,07 0,24 

Trash grade Tr grade HVI 2,25 1,18 1,00 4,00 

Greyness  

(color reflectance) 
Rd HVI 75,43 1,13 72,3 80,00 

Yellowness +b HVI 10,08 0,88 9,20 14,30 

 

Fig. (1). Unit circle showing the correlation of fibber properties with the first two principal axes. 
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R is the coefficient of determination 

i is the standardized coefficient of the i
th

 fiber property 

 We determined the percent relative contributions of fiber 
properties from the values of the standardized multiple 
regression coefficients [5]. These constants represent the 
path coefficients.  

 As the quality of a yarn is simultaneously attributed to 
different characteristics, we have calculated the mean 
contribution of each fiber property factor on the different 
yarn properties. The path analysis indicates that in ring spun 
spinning, strength, trash count and reflectance have the 
major contribution on their corresponding groups.  

 We will consider only the fiber parameters which have 
the highest contribution Ci (%) of each group as mentioned 
in Table 4.  Hence, from twelve fiber characteristics, seven 
will be considered for studying yarn quality, which are 
Strength (str), Trash count (tr cnt), Greyness (Rd), Short 
Fiber index (Sfi), Elongation (Elg), Upper Half Mean Length 
(Len) and micronaire (Mic). 

DETERMINATION OF AN OVERALL YARN 

QUALITY INDEX 

 The overall quality index of the yarn (D) is defined by 
using the Derringer and Suich [16] composite desirability 
function as follow: 

  
D = d

1

s
1 d

2

s
2 ... d

n

s
ns

 Eq. (3) 

s=  si ; si is the weight of i
th

 response 

di is the individual desirability of each response. Individual 
desirability is a function of the objective of the response. It 
can be maximized, minimized or targeted. 

 Yarn responses to be maximized are tenacity (RKM), 
breaking work energy (TR) and elongation (E %). The 
corresponding desirability function used for this case is as 
follow: 
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 Eq. (4) 

Li, Ui and Ti are respectively the lower, upper, and target 

values, that are desired for response Yi, with Li 
 
Y

i
 Ui.  

 P is the weight of desirability function of i
th

 response. It 
depends on the customer exigency. The weight defines the 
shape of the desirability function for each response. For each 
response, you can select a weight (from 0.1 to 10) to 
emphasize or de-emphasize the target. A weight 

 Less than one (minimum is 0.1) places less emphasis on 
the target 

 Equal to one places equal importance on the target and 
the bounds 

 Greater than one (maximum is 10) places more emphasis 
on the target 

 If a response is to be minimized instead such as 
CVRKM, regularity (U %), Hairiness (PILO), number of 
thick points THICK, number of thin points THIN or number 
of neps BOUT, the individual desirability is defined as:  

 Eq. (5) 

Table 3. PCA Fiber Properties Classification 

Grouping Fiber Property 

Str  

Unif  Group A 

Mat  

Tr grade 

Tr area Group B 

Tr cnt 

Rd  
Group C 

+b 

Table 4. Relative Contribution of Fiber Properties to Yarn Properties Ci (%) 

  RKM CV RKM E% TR U% PILO THIK THIN BOUT AVERAGE 

Str 3.37 22.26 0.12 2.34 3.14 16.12 9.34 8.82 8.13 8.18 

Unif 16.94 0.08 3.80 4.43 8.28 2.24 6.84 4.30 0.00 5.21 GROUP A 

Mat 4.75 7.85 2.59 1.12 6.69 10.19 9.34 10.62 8.94 6.90 

Tr cnt 2.10 5.66 12.82 20.35 12.25 6.42 11.61 9.94 7.28 9.82 

Tr area 2.06 4.06 1.79 10.46 10.22 12.97 5.82 8.13 13.48 7.67 GROUP B 

Tr grade 2.24 4.05 11.15 2.53 4.19 2.46 8.26 0.72 0.97 4.06 

Rd 9.52 7.00 2.13 5.60 4.85 4.65 1.66 3.14 3.73 4.70 
GROUP C 

+b 3.81 5.09 7.17 4.53 1.77 6.90 2.27 3.36 3.36 4.25 

Sfi 2.61 8.21 3.14 6.23 12.67 7.03 14.86 8.56 6.78 7.79 

Elg 3.41 9.37 9.10 2.82 0.92 0.82 1.62 5.72 2.43 4.02 

Len 18.36 1.22 3.69 8.03 10.07 0.59 5.11 8.30 2.88 6.47 
 

Mic 3.03 10.45 12.21 12.27 4.85 8.10 2.67 5.59 4.27 7.05 
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Where q is the weight of desirability function of the i
th

 
response.  

 Hence, for each yarn response, an individual desirability 
value is calculated. Then, yarn quality index is determined 
by geometric mean of these individual desirabilities as 
mentioned in equation 3. The objectives of maximizing, 
minimizing or targeting a response depends on customer 
quality requirements. 

NEURAL NETWORK MODELING: MODEL PARA-METERS 

 In the experiment, we have tried a back-propagation 
neural net consisting of adjusting the weights until reaching 
a minimum error value between the actual and predicted 
quality index.  

 The fiber parameters generated from principal 
component and path studies constitutes the network inputs. 
Seven inputs were then considered instead of twelve in the 
training database as shown in Table 5. 

 The network should have one output neuron since there is 

one target which is the yarn quality index defined by 

composite desirability. The output parameter corresponds to 

yarn quality index D which includes the physical parameters 

described in Table 1.  

 As the outputs were scaled between zero and 1, the 
convenient transfer function used in the hidden layer that 
squash the values between 0 and 1 corresponds to the log 
sigmoid activation function (Eq. 6) [17].  

  
F(x) = 1

(1+ exp( x))
 Eq. (6) 

 The activation function of the output layer that has 
improved the best forecasting of the model is the linear 
activation function. Output is calculated according to the 
following equation: 

G(x) = x Eq. (7) 

The choice of the number of hidden neurons is adjusted by 
trial until having the lowest error [17].  

TRAINING WITH ARTIFICIAL NEURAL NET-WORKS 

 We train the network on the database composed of 175 
samples. Programming the network architecture, training and 
testing were performed by using MATLAB software. In 
order to determine calculations performances during iterative 
training and execution, we calculated the sum of the squared 
differences between the target and actual output values on 
the output global desirability which constitutes error. Two 
error values were considered to evaluate the model 
performance: 

• The root mean square error generated by the 
training data (Eq. 8) 

  

RMSE
train

=

( y
i

g(x
i
, w)

2

1

N

N

1

2

 Eq. (8) 

N: Number of training data points = 80% of database 

yi: Yarn quality index measured in the training database 
corresponding to the input xi 

g(xi, w): Yarn quality index calculated by the neural network 
corresponding to the input 

i
x for a weight value w  

yi – g(xi, w): The individual error 

• The mean square root error generated by the test 
data (Eq. 9) 

Table 5. Input and Output Parameters of the Neural 

Network Model  

Strength Str 

Trash count Tr 
cnt 

Greyness (colour 
reflectance) 

Rd 

Short Fiber index SFI 

Elongation Elg 

Upper Half Mean 
Length (UHML) 

Len 

Fiber Properties 

Micronaire index Mic 

Yarn count Nm 

Inputs  

Construction parameter 
Twist value Twist 

Output  Ring Spun yarn global quality D 

Fig. (2). Time series plot of RMSEtrain, RMSEtest, (a) and correlation coefficient R (b) against the number of hidden nodes. 
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2

  Eq. (9) 

P: Number of test data points = 20% of input-output data 
pairs were used as the test set. 

 For each learned data pair, a forward pass and backwards 
pass is performed. This is repeated over and over again until 
the error is at a low enough level (Fig. 2a). The network 
training ends when the mean squared errors have reached the 
minimum. We have applied 200 iterations. 

 After some trails with 1 to 4 hidden nodes, the 
memorization of the network is decreased. In the other side, 
increasing the number of hidden nodes higher than 5 
involved higher difference between the actual and predicted 
yarn quality value (Fig. 2a). The right number of nodes set 
reproducing comparable errors (Fig. 2a) corresponds to five 
hidden nodes.  

 With five nodes in the hidden layer, the lowest mean 

square root errors generated by the training and test data are 

respectively equal to 0,047 and 0,073. The training set error  

RMSEtrain and the test set error RMSEtest are subsequently 

small and show similar characteristics.  

 The third variable emphasizing the good performance of 
the modeling is the correlation coefficient (R-value) between 
the outputs and targets in the test data (Fig. 2b). It is a 
measure of how well the variation in the output is explained 
by the targets. If this number is equal to 1, then there is 
perfect correlation between targets and outputs. With five 
nodes in the hidden layer, the correlation coefficient between 
the computed outputs and the desired targets is highest (Fig. 
2b) and equals to 0,968, which is very close to 1. The 
network found has consequently a good performance.  

 The following Fig. (3) illustrates the network outputs (A) 
plotted versus the targets (T) as open circles. The best linear 
fit is indicated by a dashed line. The perfect fit (output equal 

to targets) is indicated by the solid line. Here, the fit is good 
as the best fit line is very close to the perfect fit line.  

CONCLUSION 

 In our study, quality was evaluated with an index that can 
be situated between zero and one. The developed method 
does not consider single properties separately but combine 
several yarn properties simultaneously through desirability 
approach. Fibers characteristics, treated as inputs, are firstly 
reduced using PCA and contribution percentage in order to 
find the best set to characterize the overall yarn quality in 
order to facilitate modeling. Then, we have modelled yarn 
quality index in order to foresee it starting from main fiber 
properties. This inspection was attained by using neural 
networks tools. The present approach has given an objective 
evaluation of composite quality by a multi-criteria 
optimization. The model performance was high as shown by 
errors and correlation values. Accordingly, the use of 
desirability approach with combination of neural network 
could be a good application for assessing yarn quality 
optimization.  
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