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Abstract: In a recently developed and widely used premixed turbulent flame model, the so-called G-equation is averaged 

and combined with a balance equation for the variance G 2 G G( )
2

, where G  is an averaged G-field. The goal of this 

communication is to discuss certain basic issues relevant to the G - and 2
G -equations and, in particular, to stress that the 

latter equation is ill defined, because the G- and G -equations are physically meaningful at different surfaces. Moreover, 

by analyzing simple examples, it is shown that a widely accepted association of the scalar G with the so-called distance 

function does not allow us to consider the G-equation to be physically meaningful in the entire flow field. 

INTRODUCTION  

 In many premixed combustion models, the instantaneous 

position of a laminar flame is represented by an infinitely 

thin surface that (i) separates the unburned and burned gases, 

and (ii) moves at a speed SL relative to the unburned mixture. 

From this approach, flame propagation can be described by 

(i) assigning an arbitrary value G0 to a scalar function G of 

position vector x  and time t to define the flame surface as 

( ) ,,
0

GxtG =             (1) 

and (ii) solving the G-equation [1,2] 

,GSGv
t

G

L
=+           (2) 

where v  is the unburned-gas velocity vector at the surface 

and the function ( )xtG ,  is assumed to increase toward the 

burned-gas region. 

 Kinematic equation (2) is derived by taking the material 

derivative of equation (1): 

 

0 =
dG

dt
=

G

t
+ G

dx

dt G=G0

=
G

t
+ G v + nSL( ),

          (3) 

where GGn = /  is the unit normal vector to the flame 

surface pointing to the unburned gas. 

 The G-equation (2) has widely been used in premixed 

flame simulations and a number of important results  
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obtained by solving it have substantially contributed to pre-

mixed combustion understanding. Certainly, as any model, 

the G-equation has certain limitations discussed elsewhere 

[3]. 

 Starting with the work of Kerstein, Ashurst, and Wil-

liams [4], the most common and consistent way of using the 

G-equation consists of solving it in an instantaneous laminar 

or turbulent velocity field. Since direct numerical simula-

tions of turbulent flows are computationally expensive, two 

alternative ways of using the G-equation have also been pro-

posed. 

 One, completely empirical approach has been used for 

decades (e.g. see Ref. [5]) and consists of (i) applying equa-

tion (1) to a properly chosen iso-scalar surface within the 

turbulent flame brush and, then, (ii) tracking the propagation 

of this surface by solving the following counterpart of equa-

tion (2) 

,GSGv
t

G

t
=+           (4) 

where St is the turbulent flame speed and v  is the Reynolds-

averaged unburned-gas velocity vector at the surface. Note 

that the same symbol G in equations (2) and (4) designates 

different scalar fields, associated with the instantaneous and 

mean flame surfaces, respectively. Equation (4) requires a 

model for St. Moreover, to compute the mean temperature 

field by solving equation (4), a model for the mean flame 

brush thickness t should also be invoked. 

 An alternative approach was put forward by Peters [6-8] 

and was widely used in simulations of premixed turbulent 

combustion within RANS [9] and LES [10,11] framework 

over the past years. The approach is aimed at determining 

not only flame surface but also flame thickness by analyzing 

equation (2). The governing equations of the model were 

formally derived as follows [6,7]: 
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 First, the G-equation was “considered to be valid every-

where in the flow field” (see p. 119 in Ref. [7], i.e. velocities 

v  and SL were defined not only at the flame surface but also 

in the entire flow field) and the scalar G was split into mean 

and fluctuating parts, G  and GGG , respectively. Sub-

sequently, equation (2) was averaged to obtain the following 

equation for ( )xtG ,  (see p.118 in Ref. [8]) 

,GDGSGv
t

G

tt
=+          (5) 

where n=  is the flame curvature. In the present paper, a 

constant-density flow is considered to simplify discussion. 

Under this assumption, the Favre average used by Peters is 

equivalent to the Reynolds average used here and denoted by 

the over-bar.  

 Second, equation (5) was subtracted from equation (2) to 

obtain an equation for G'. 

 Third, the equation (see p.118 in Ref. [8]) 

 

G 2

t
+ v G 2

= || Dt ||G
2( )

+2Dt G( )
2

cs k
G 2

         (6) 

for the variance ( )xtG ,
2  was obtained by averaging the G'-

equation multiplied by G'. Here, Dt is the turbulent diffusiv-

ity, k and  are the turbulent kinetic energy and its dissipation 

rate, respectively, cs is a constant, and 
||
 is gradient tangen-

tial to the flame. 

 Finally, Peters used equations (5) and (6) as a basis for 

evaluating flame thickness (see p.118 in Ref. [8]) 

.

2
1

2

0GG

t

GG

G

=

=            (7) 

 The goal of the present communication is to highlight 

certain basic issues directly relevant to the Peters approach 

but not yet discussed in the literature. 

 It should be stressed that the following discussion is only 

restricted to the averaged equations (5)-(7), but does not 

dispute the original G-equation which has already ranked 

high among combustion models.  

 It is worth noting also that the phrase “averaging the G-

equation” is sometimes used to designate the evaluation of 

flame propagation speed by solving equation (2) in a pre-

scribed velocity field [3]. In the present paper, this phrase 

means averaging the G-field and obtaining equations (5) and 

(6) for G  and 2
G , as done by Peters [6-8]. 

DISCUSSION  

 The basic difficulty of averaging the G-field stems from 

the fact that the G-equation is physically meaningful only at 

the flame surface, as is clear from the above derivation, see 

equations (1)-(3). For instance, Peters [8] has stressed that 

“the quantity G is a scalar, defined at the flame surface only, 

while the surrounding G-field is not uniquely defined” (see 

p. 92 in the cited book). However, if G=G0 at the flame sur-

face and “is not uniquely defined” outside it, the Reynolds-

averaged value of G is equal either to G0 if only the physi-

cally meaningful value of G=G0 is averaged or to an arbi-

trary value if the entire G-field is processed. 

 Accordingly, the following two issues should be ad-

dressed in order to assess the consistency of the discussed 

approach with the underlying physics: First, if one invokes 

an extra constraint in order to uniquely define the scalar G in 

the entire flow field, may he consider the G-equation to be 

physically meaningful outside the flame surface? Second, if 

this is not possible in a general case and the G-field is “de-

fined at the flame surface only,” are equations (5)-(7) prop-

erly substantiated from the basic viewpoint? The two issues 

are discussed in the next two subsections. 

Scalar G and Distance Function 

 To treat the G-equation “as any scalar equation in a tur-

bulent flow field” (see p. 616 in Ref. [6]), one has first of all 

to uniquely define the scalar G outside the flame surface. 

However, no rigorous scientific method has yet been elabo-

rated to resolve this problem.  

 To the best of authors’ knowledge, the sole method has 

yet been invoked for this purpose in the combustion litera-

ture. The method consists of associating the scalar G with a 

distance function, which represents the distance between a 

point and the flame surface.  

 In certain cases (see examples 1 and 2 on pp. 98-102 [8]), 

the G-equation does model the behavior of the distance func-

tion in the entire flow field. However, this is not true in a 

general case. Indeed, the distance function should satisfy the 

following constraint [8]  

,1=G             (8) 

but equation (2) doesn’t conserve this normalization con-

straint in many simple flames. A few examples follow. 

 First, consider a planar laminar flame stabilized at x=0 in 

a one-dimensional laminar flow with u(x=0)=SL. If the flow 

velocity does not depend on x, the distance function G=x 

satisfies equation (2) in the entire flow field. However, if u 

depends on x, e.g. u=SL-x/  and v=y/  with  being an arbi-

trary time scale, then G=x does not satisfy equation (2) in the 

entire flow field. In a more general case of a time-dependent 

= (t) (see example 3 on pp.102-104 in Ref. [8]),  

G = exp
dt

0

t

,            (9) 

which is inconsistent with equation (8) at any finite t. 

 Second, consider a spherically symmetrical problem of a 

laminar flame that collapses in a flow of v=v0(r0/r)
2
, pro-

vided by a point source of the unburned mixture, located at 

r=0. Equation (2) reads 
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.
r

G
S

r

G
v

t

G

L
=+          (10) 

 If G increases toward the burned-gas region and equation 

(8) holds, then equation (10) reduces to 

,

2

0

0
=

r

r
vS

t

G

L
         (11) 

the solution to which is as follows 

( ) ( ) t
r

r
vSrGrtG

L
=

2

0

0
,0,        (12) 

in the simplest case of a constant SL, which is associated ei-

ther with zero Markstein number [1,8] or with an asymptoti-

cally large flame radius rf/ L  (i.e. v0/SL ). However, 

equation (12) yields 

G =
2v0t

r

r0

r

2

+
d

dr
G 0,r( ),        (13) 

which is inconsistent with equation (8).  

 Furthermore, at t , the flame will be stabilized at a 

sphere characterized by v(r)=SL. Even if we skip equation 

(8), the sole stationary solution to equation (10) in the entire 

flow field is trivial, i.e. G=const. However, this solution 

does not allow us to determine the flame surface. This sim-

ple case cannot be modeled by the G-equation (2) if it is as-

sumed to be valid outside the flame surface.  

 We stress that the above examples do not mean that the 

use of normalization constraint (8) is in the contradiction 

with the G-equation. If the G-equation is considered to be 

physically meaningful at the flame surface only, the use of 

the normalization constraint is fully justified and such a 

method is widely utilized in numerical simulations [4,12-14]. 

However, in the entire flow field, the evolution of the dis-

tance function is not modeled by the G-equation in a general 

case. Hence, the use of the normalization constraint does not 

allow us to define the scalar G outside the flame surface in a 

physically meaningful manner if v  is considered to be the 

flow velocity. 

Averaging G-Equation  

 Since equations (6) and (7) seem to determine the mean 

turbulent flame brush thickness, these equations are the key 

peculiarity and cornerstone of the Peters approach as com-

pared with empirical models associated with equation (4), 

which invoke an independent submodel for t. 

 However, the disputed approach does not allow us to 

evaluate the thickness in a consistent manner. 

 First, equations (5)-(7) do not resolve the problem of 

evaluating t because the three-dimensional G , calculated 

using a solution to equation (5), is an ill-defined quantity if 

the equation is valid solely at a two-dimensional flame sur-

face.  

 One might assume that equation (7) yields a reasonable 

estimate of t, because the non-uniqueness of G  is com-

pensated by the non-uniqueness of 2
G . Indeed, if G  is 

increased by a factor b, then a solution ( )xtG ,
2  to equation 

(6) is also increased by the same factor b, and t calculated 

using equation (7) is not changed. However, this particular 

argument is not sufficient to make the approach consistent in 

a general case. To do so, one must prove that the thickness 

given by equation (7) is not changed when G-G0 is multi-

plied by an arbitrary positive function ( )xtf , , at least.  

 Moreover, even if such a proof were provided, the prob-

lem of using equation (7) would not be solved. The point is 

that the boundary and initial conditions to equations (5) and 

(6) should be specified so that the non-uniqueness of G  

exactly compensates the non-uniqueness of 2
G . It is unclear 

how we can specify such consistent conditions if t is not 

known a priori.  

 If a solution to equation (6) is controlled by the balance 

between the source and sink terms on the right hand side, 

and does not depend on boundary and initial conditions, then 

G 2
=

2Dtk G( )
2

cs

          (14) 

and equation (7) yields a unique t which is simply propor-

tional to the turbulent length scale [8]. However, if the 

source and sink terms dominate, equation (6) cannot be ap-

plied to a developing flame, which is a typical mode of pre-

mixed turbulent combustion in laboratory and industrial 

burners [15].  

 Second, if both the scalar G and equation (2) are physi-

cally meaningful at the instantaneous flame surface only, 

whereas G  and equation (5) are well defined at the mean 

flame surface only, then any partial differential equation 

written in terms of GGG  is ill defined. Indeed, the 

difference GGG  is well defined only at points A, B, C, 

etc. in Fig. (1), where thin and bold curves represent instan-

taneous and mean flame surfaces, respectively (or on an 

analogous set of intersection curves in three dimensions). 

The evolution of a quantity so defined is hardly amenable to 

modeling by any conventional partial differential equation. 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Instantaneous (thin line) and mean (bold line) flame sur-

faces. 
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 Equation (6) is sometimes defended (see discussion on p. 

3058 in Ref. [16]) by referring to the paper by Oberlack, 

Wenzel, and Peters [17], where a t-equation (see equation 

70 in the cited paper) was obtained by presenting a new 

scheme for averaging the G-field. However, the latter equa-

tion contains unclosed terms and differs substantially from 

equations (6) and (7). Since nobody has yet shown that the 

aforementioned t-equation reduces to equations (6) and (7), 

the two latter equations are not supported by the former.  

 Thus, equations (6) and (7) have not yet been substanti-

ated properly. Let us show that equation (5) is also basically 

flawed. 

 Oberlack, Wenzel, and Peters [17] have given the follow-

ing simple mathematical example, which clearly indicates 

that “the classical Reynolds averaging concept does not lead 

to a unique result for the mean G-field” (see p. 374 in the 

cited paper). If ( )xtG ,  is a solution to equation (2), then 

H=exp(G) also satisfies it and the same flame position may 

be determined either by equation (1) or by H=exp(G0)= H0. 

However, if ( )
0

, GxtG =  on a surface, then  

( ) ( )
00

expexp HGGH ==          (15) 

on it, i.e. the mean flame surfaces are different for the two 

scalar fields associated with the same instantaneous surface. 

 To resolve the problem, Oberlack, Wenzel, and Peters 

[17] (i) considered the Lagrangian equations of motions of 

points at a flame surface, (ii) presented a new scheme for 

obtaining an equation for a scalar field G  associated with 

the mean flame surface, and (iii) reported the following 

kinematic equation 

,nSGGv
t

G

L
=+        (16) 

where <q> designates a quantity q averaged by applying the 

scheme of Oberlack, Wenzel, and Peters [17] (rigorous defi-

nitions are given in the cited paper) and a symbol G  is used 

instead of G in order to stress that field quantities associated 

with the instantaneous and mean flame surfaces are different. 

 Equation (16) obtained by Oberlack, Wenzel, and Peters 

[17] differs substantially from equation (5) introduced by 

Peters [6-8] and the equivalence of the two equations has 

never been shown.  

 To highlight this difference, let us (i) apply equation (16) 

to the simplest case of a statistically stationary, planar, one-

dimensional flame (i.e. G  depends on x only, e.g. xG =  

with G0=0) and (ii) consider the simplest case of negligible 

perturbations of the local structure of the instantaneous flame 

front by turbulent eddies (i.e. SL is constant). Then, in the 

coordinate framework linked with the flame, equation (16) 

reads 

.
dx

Gd
nS

dx

Gd
u

xL
=         (17) 

 For the constant-density problem considered, the turbu-

lent flame speed St is simply equal to the x-component u  of 

the Reynolds-averaged velocity vector. If equations (5) and 

(16) were basically similar, then, the mean flow velocities on 

their left hand sides would be equal to one-another (i.e. 

uu = , note that the curvature term on the left hand side of 

the former equation vanishes in the considered case) and 

equation (17) would yield 

.
LxLt

SnSS =          (18) 

 Since equation (18) is obviously wrong, equation (16) 

does not validate equation (5). 

 Furthermore, equation (16) may also be put into question. 

Let us (i) apply it to a planar laminar constant-density flame 

that moves in a quiescent mixture and (ii) impose the follow-

ing initial perturbation of the flame surface  

x f 0, y( ) = acos ky( ),          (19) 

where k is a wave number. Since for any interval 

y1 y y1+2 /k, the length (t) of the instantaneous flame sur-

face (between the planes y=y1 and y=y1+2 /k) is larger than 

2 /k, the mass SL  of the burned mixture per unit time and 

per unit z-length (in three dimensions) is larger than 

SL(2 /k) and the flame moves at a speed 

LL
S

k
SU >=

2
         (20)  

in the x-direction. Here, the laminar flame speed is again 

assumed to be constant. 

 To draw an analogy with premixed turbulent combustion, 

let us (i) average all quantities in the y-direction and (ii) con-

sider the periodic spatial variations in xf(t,y) to increase the 

mean flame speed U(t)>SL and thickness similarly to turbu-

lent eddies (to further develop the analogy, one could insert a 

random, uniformly distributed over period, phase  into the 

argument of the cosine). Since the averaged flame surface 

moves at a speed U(t)>SL in the x-direction, the surface can 

be determined using the following equation 

( ) .
0

0

GdUxG

t

=          (21) 

 Substitution of equation (21) into equation (16) yields  

( )
LxL

SnStU =          (22) 

in the case of a constant-density quiescent mixture. Since 

equations (20) and (22) contradict to one another, equation 

(16) cannot model this very simple case if the scalar G  is 

associated with the mean flame surface.  

 Equation (16) was obtained by Oberlack, Wenzel, and 

Peters [17] invoking the following relation  

,
L

Snv
dt

xd
+=          (23) 
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where x  is “the mean flame position” (see p.375 in Ref. 

[17], basically the same equation was used by Pitsch [11] for 

large eddy simulations). On the face of it, equation (23) ap-

pears to be very similar to the following instantaneous kine-

matic relation 

,
L

f

Snv
dt

xd
+=          (24) 

used to derive the classical G-equation. In fact, equation (23) 

has been obtained using equation (24) and implicitly assum-

ing that differentiation d/dt and taking the mean x  com-

mute (a similar assumption was also invoked by Pitsch [11]). 

However, equations (23) and (24) are substantially different.  

 To stress this difference, let us consider a flame stabi-

lized in a steady laminar flow, e.g.  

u y( ) = U SL U( )cos ky( ).         (25) 

where U>SL 

 In such a case, equation (24) results in particular in 

,
Lx

f

Snu
dt

dx
+=          (26) 

i.e. the time-derivative dxf/dt is positive everywhere with the 

exception of lines ky=- ±2 m. Therefore, in equation (24), 

f
x  is the coordinate of a point at a flame surface, which is 

moved by the flow along the surface even in the stationary 

case. 

 What does the quantity x  in equation (23) mean? If it 

is “the mean flame position,” then 0/ =dtxd  in the 

steady case studied and equation (23) with a constant SL re-

sults in 

,
xL

nSu =          (27) 

where the averaging is performed along the y-direction. 

However, equation (27) is wrong. Indeed, since u>SL  

and -1<nx everywhere with the exception of lines ky=-

±2 m, any averaging method not restricted to these lines 

should result in a higher mean u than mean |SLnx|, in contrast 

to equation (27). 

 If x  in equation (23) is the coordinate of a point at the 

mean flame surface, then 0/ =dtxd  and equation (23) 

results in wrong equation (27) again, because the mean flame 

surface is parallel to the y-axis and, hence, a point at the sur-

face cannot move in the x-direction. 

 Finally, if x  in equation (23) is the coordinate of a 

point at the perturbed flame surface, averaged using the 

scheme of Oberlack, Wenzel, and Peters [17], then dtxd /  

is positive and wrong equation (27) does not result from 

equation (23). However, in such a case, the quantity x  

cannot be used to characterize the mean flame surface, which 

is stationary and parallel to the y-axis.  

 Thus, the relation between equations (23) and (24) is not 

so simple as sometimes assumed. All in all, the work by 

Oberlack, Wenzel, and Peters [17] does not validate the Pe-

ters approach. 

CONCLUSIONS  

 The most critical issue for the fundamental correctness of 

the averaged G-equation approach consists of the fact that 

the difference GGG  is ill defined at any flame surface 

if G and G  are well defined at two different surfaces. 

 The association of the scalar G with the distance function 

does not allow us to define G in a physically meaningful 

manner in the entire flow field, because the evolution of the 

distance function is not modeled by equation (2) in many 

particular simple cases. 

 Unless the issues discussed above are resolved, the 2
G -

equation (6) is ill defined and the physical relevance of re-

sults obtained using it is unclear. 
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