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Abstract: Asphaltene precipitation is traditionally modeled using polymer solution theories or cubic equations of state. 

We propose another approach based on artificial neural network technique to model onset of precipitation of dissolved as-

phaltene in the solution of solvent + precipitant. A mathematical model based on feed-forward artificial neural network 

technique, which takes advantage of a modified Levenberg–Marquardt optimization algorithm, has been used to model 

onset of precipitation of dissolved asphaltene in the solvent + precipitant solution. The experimental data reported in the 

literature have been used to develop this model. The acceptable agreement between the results of this model and experi-

mental data demonstrates the capability of the neural network technique for estimating onset of precipitation of dissolved 

asphaltene in the solution of solvent + precipitant.  
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INTRODUCTION 

 One serious problem that can affect oil production, trans-
portation and processing, is asphaltene precipitation. Asphal-
tenes are the toluene / benzene soluble fractions that precipi-
tate from oil when an excess (25 to 40 times) of n-heptane / 
n-pentane is mixed with oil after waiting for at least four 
hours before filtering [1]. Asphaltene precipitation causes 
fouling in the reservoir, in the well, in the pipeline and in the 
production and processing facilities [1-35].

 Asphaltene phase 
behavior has therefore been the subject of numerous theo-
retical studies [1-35]. The lack of suitable characterization 
parameters is one of the difficulties encountered in describ-
ing the phase behavior of asphaltene-containing systems, 
because asphaltenes are not well-identified components/ 
mixtures [1, 7]. They consist of several polar components of 
aromatic nature with high molecular weights [1, 7]. In the 
majority of cases, the complexity of the asphaltene fraction 
leads to the assumption that the asphaltenes can be regarded 
as one single pseudo-component (monodisperse) [1, 7].  

 The traditional models reported in the literature typically 
use polymer solution theories (e.g. Scatchard-Hildebrand [7], 
Flory-Huggins [7, 36], and Scott-Magat [37] polymer solu-
tion theories) to model phase behavior of asphaltene-
containing fluids [1, 2, 5, 7, 8, 14, 20-23]. In addition to 
these models, there are also other models, which are based 
on cubic equations of state [17, 24]. New thermodynamic 
models have recently been developed, which can take into 
account the micellar / aggregation natures of asphaltenes [5, 
13, 16, 26-31].  

 In order to examine the capabilities of the models re-
ported in the literature to predict asphaltene phase behavior 
in dilute systems, Cimino et al. [2, 14] performed some tests  
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(Table 1) to find onset of precipitation of dissolved asphalte-
nes in various solutions with different ratios of solvent and 
precipitant and indicated that the precipitated asphaltene 
does dissolve in appropriate solvent and the ratio of “solvent 
mass per asphaltene mass” and “precipitant mass per asphal-
tene mass” is approximately linear and independent of the 
asphaltene concentration at onset of asphaltene precipitation 
[2, 14]. They showed that the capability of colloidal model 
[25] and traditional Flory-Huggins [36]

 
based models [8, 20] 

to re-produce the observed behavior is poor, mainly because 
most of the models reported in the literature assume that the 
precipitated phase consists of asphaltene only and the pres-
ence of non-asphaltene components in the precipitated phase 
is normally ignored. Cimino et al. [2, 14] employed the 
Flory-Huggins polymer solution theory [36] and assumed 
that the precipitated phase contains not only asphaltene but 
also a fraction of non-asphaltene components. They showed 
that their proposed model [2, 14] can better predict the phase 
behavior of dissolved asphaltenes in the solutions of solvents 
and precipitants and none of the literature models is capable 
of predicting this behavior satisfactorily.  

 The objective of this work is to show the capability of 
Artificial Neural Network (ANN) technique, as an alternative 
model, to estimate onset of precipitation of dissolved asphal-
tene in the solvent + precipitant solutions. To our knowl-
edge, this method has not previously been reported for phase 
behavior modeling of asphaltene containing systems. Among 
various ANNs models reported in the literature, the feed-
forward (back propagation) neural network (FNN) model 
along with a modified Levenberg-Marquardt optimization 
algorithm [40, 41] is used, which is known to be effective to 
represent the nonlinear relationships between variables in 
complex systems and can be regarded as a large regression 
method between input and output variables [42-48]. To de-
velop this model, the experimental data reported by Cimino 
et al. [2, 14] are used. It is shown that the data reported by 
Cimino et al. [2, 14] are well represented by the ANN model 
demonstrating the capability of this technique to estimate 
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onset of precipitation of dissolved asphaltene in the solutions 
of solvent + precipitant.  

THERMODYNAMIC MODELS TO DETERMINE 

ONSET OF PRECIPITATION OF DISSOLVED 

ASPHALTENE IN THE SOLVENT + PRECIPITANT 

SOLUTION [35]  

 As mentioned earlier, Cimino et al. [2, 14] employed a 
more correct application of the Flory-Huggins polymer solu-
tion theory [36] to represent phase behavior of dissolved as-
phaltenes in the solvent + precipitant solutions. Different 
from the previous models based on Flory-Huggins polymer 
solution theory [36], which assume the precipitated phase 
forms pure asphaltene, it is assumed that on phase separa-
tion, not a pure asphaltene phase nucleates but a phase con-
centrated in asphaltenes containing also a fraction of solvent 
[2, 14]. Considering typical asphaltene volume fraction, a, 
in oil system (which is estimated in the range of 10

-2
 to 10

-3
 

with asphaltene weight percent from 1 to 10 [2, 14]) the oil 
is assumed safely to be pure maltene (asphaltene free oil), 
that is a = 0 [2, 14]. Such an assumption leads to the fol-
lowing final equation [2, 14, 35]:  

ln[1- a
’
]+

a

m

V

V
1 a

’
+ a

’2
=0            (1) 

where the prime represents the asphaltene-rich phase and a
’
 

is the volume fraction of asphaltene in asphaltene-rich phase. 
Vm and Va are molar volumes of maltene and asphaltene, 
respectively.  stands for interaction parameter between as-
phaltene and maltene and is given by the following equation 
[2, 8, 14, 35]: 

 = 
RT

V amm ])[( 2

            (2) 

where m and a are solubility parameters (the square root of 
the internal energy of vaporization per molecular volume) 
for the maltene and the asphaltene, respectively [35]. R and T 
stand for universal gas constant and temperature respec-
tively. 

 In the above equation [35, 37-39]  

a =
xaVa

xaVa + xmVm

           (3) 

or 

a =
wa / a

wa / a + wm / m

          (4) 

Table 1. Experimental Values for Mass Fractions of Components in the Synthetic Mixtures of Asphaltene + Solvent + Precipitant 

at Onset of Asphaltene Precipitation Measured at 298.15 K and 0.1 MPa [14] 

Mass fraction of component in synthetic mixture 

at onset of asphaltene precipitation 

Mass fraction of component in synthetic mixture at onset 

of asphaltene precipitation Precipitant / 

Solvent 

Precipitant Solvent n-C5 Asphaltene 

Precipitant / 

Solvent 

Precipitant Solvent n-C7 Asphaltene 

n-C5 / Tolu-

ene 

0.367 

0.369 

0.370 

0.403 

0.621 

0.623 

0.624 

0.594 

0.012 

0.008 

0.006 

0.003 

n-C5 / Toluene 

0.293 

0.294 

0.297 

0.294 

0.694 

0.696 

0.696 

0.703 

0.013 

0.010 

0.007 

0.003 

n-C5 / 
Tetraline 

0.477 

0.480 

0.480 

0.480 

0.513 

0.513 

0.515 

0.518 

0.010 

0.007 

0.005 

0.002 

n-C5 / Tetraline 

0.427 

0.430 

0.445 

0.444 

0.562 

0.562 

0.550 

0.554 

0.011 

0.008 

0.005 

0.002 

n-C7 / Tolu-
ene 

0.420 

0.422 

0.423 

0.422 

0.569 

0.570 

0.571 

0.576 

0.011 

0.008 

0.006 

0.002 

n-C7 / Toluene 

0.352 

0.354 

0.355 

0.389 

0.636 

0.637 

0.639 

0.608 

0.012 

0.009 

0.006 

0.003 

n-C7 / 
Tetraline 

0.521 

0.527 

0.524 

0.524 

0.470 

0.466 

0.471 

0.474 

0.009 

0.007 

0.005 

0.002 

n-C7 / Tetraline 

0.481 

0.494 

0.501 

0.525 

0.509 

0.499 

0.494 

0.473 

0.010 

0.007 

0.005 

0.002 

n-C10 / Tolu-
ene 

0.437 

0.440 

0.440 

0.440 

0.553 

0.552 

0.555 

0.558 

0.010 

0.008 

0.005 

0.002 

n-C10 / Toluene 

0.366 

0.407 

0.407 

0.407 

0.622 

0.585 

0.588 

0.591 

0.012 

0.008 

0.005 

0.002 

n-C10 / 
Tetraline 

0.538 0.453 0.009 n-C10 / Tetraline 

0.492 

0.496 

0.520 

0.542 

0.498 

0.497 

0.475 

0.456 

0.010 

0.007 

0.005 

0.002 
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where wa and wm are the weight fractions of asphaltene and 
maltene, respectively and a and m represent the mass 
densities of asphaltene and maltene, respectively. xa and xm 
stand for mole fractions of asphaltene and maltene, respec-
tively. 

 A similar model based on the Scott-Magat polymer solu-
tion theory [37] can also be obtained [35]:  

ln[1- a
’
]+ a

’
+ a

’2
=0           (5) 

 Equation (5) is similar to equation (1) (Considering the 

ratio 

a

m

V

V
 in equation (1) is negligibly small compared to 

unity, and therefore it may be neglected) [35].  

 According to the model of Cimino et al. [2, 14], a is 
assumed to be independent of pressure, and a

’
 is assumed 

to be constant. The parameters a
’
 and a are regressed from 

Table 2. Experimental Values [14]
 
and the Values Obtained Using the ANN Model for (Mass of Precipitant/ Mass of Asphaltene) in 

Synthetic Mixtures of Asphaltene + Solvent + Precipitant at Onset of Asphaltene Precipitation at 298.15 K and 0.1 MPa 

Mass of precipitant / mass of asphaltene 
Type of 

 asphaltene 
Precipitant Solvent 

Experimental value 

for (mass of solvent / 

mass of asphaltene) Experimental value 
Value obtained  

using the ANN model  

AD%* 

n-C5 Toluene 

52 

78 

104 

198 

31 

46 

62 

134 

28** 

47** 

65** 

133** 

9.7 

2.2 

4.8 

0.7 

n-C5 Tetraline 

51 

73 

103 

259 

48 

69 

96 

240 

48 

68 

96 

240 

0.0 

1.4 

0.0 

0.0 

n-C7 Toluene 

52 

71 

95 

288 

38 

53 

71 

211 

39 

53 

70 

211 

2.6 

0.0 

1.4 

0.0 

n-C7 Tetraline 

52 

67 

94 

237 

58 

75 

105 

262 

58 

75 

105 

262 

0.0 

0.0 

0.0 

0.0 

n-C5-Asphaltene 

n-C10 Toluene 

55 

69 

111 

279 

44 

55 

88 

220 

44 

55 

88 

220 

0.0 

0.0 

0.0 

0.0 

n-C5 Toluene 

53 

70 

99 

234 

23 

29 

42 

98 

23 

30 

42 

98 

0.0 

3.4 

0.0 

0.0 

n-C5 Tetraline 

51 

70 

110 

277 

39 

54 

89 

222 

39 

55 

87 

222 

0.0 

1.9 

2.2 

0.0 

n-C7 Toluene 

53 

71 

107 

203 

29 

39 

59 

130 

27 

39 

63 

128 

6.9 

0.0 

6.8 

1.5 

n-C7 Tetraline 

51 

71 

99 

237 

48 

71 

100 

263 

47 

70 

102 

262 

2.1 

1.4 

2.0 

0.4 

n-C10 Toluene 

52 

73 

118 

296 

31 

51 

81 

204 

34 

49 

80 

204 

9.7 

3.9 

1.2 

0.0 

n-C7-Asphaltene 

n-C10 Tetraline 

50 

71 

95 

228 

49 

71 

104 

271 

47 

73 

104 

271 

4.1 

2.8 

0.0 

0.0 

*: Absolute deviation (
valueimentalexper

valuecalculatedpredictedvaluerimentalexpe
AD

/
= ) 

**: Validates values. The remaining data in this table were used for training (and testing). 
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experimental data on onset of asphaltene precipitation. Va is 
calculated from density and molecular weight of asphaltene. 
For given a, a

’
 and temperature, the model only varies 

with Vm and m.  

 As can be observed, thermodynamic models require con-
siderable efforts to find an appropriate relationship for fitting 
experimental data, which can be eliminated by using artifi-
cial neural network technique. 

ARTIFICIAL NEURAL NETWORK MODEL 

 The most commonly used ANNs are the feed-forward 
neural networks [42-48],

 
which are designed with one input 

layer, one output layer and hidden layers [44-46, 48]. The 
number of neurons in the input and output layers equals to 
the number of inputs and outputs physical quantities, respec-
tively [48]. In a FNN model, the ideal number of neurons in 
the hidden layer(s) should be determined; few neurons pro-
duce a network with low precision and a higher number 
leads to overfitting and bad quality of interpolation and ex-
trapolation [48]. The use of techniques such as Bayesian 
regularization, along with a Levenberg–Marquardt algorithm 
[40, 41], can help overcome this problem [42, 43, 48]. 

 In the FNN model, the input layer of the network receives 
all the input data and introduces scaled data to the network 
[48]. The data from the input neurons are propagated through 
the network via weighted interconnections [48]. Every i neu-
ron in a k layer is connected to every neuron in adjacent lay-
ers [48]. The i neuron within the hidden k layer performs the 
following tasks: summation of the arriving weighted inputs 
(input vector Ii = [Ii,1,…Ii,Nk-1]) and propagations of the result-
ing summation through an activation function, f, to the adja-
cent neurons of the next hidden layer or to the output neu-
ron(s). In this work, the activation function is a linear func-
tion:  

xxf =)(  where ]1,0[x           (6) 

where x stands for parameter of linear activation function. A 
bias term, b, is associated with each interconnection in order 
to introduce a supplementary degree of freedom. The expres-

sion of the weighted sum, S, to the i
th

 neuron in the k
th 

layer 
(k  2) is [48]:

 
 

Sk ,i = (wk 1, j ,i Ik 1, j ) + bk ,i
j=1

Nk 1           (7) 

where w is the weight parameter between each neuron-
neuron interconnection. Using this feed-forward network 
with linear activation function, the output, O, of the i neuron 
within the hidden k layer is: 

ikik SO ,, =             (8) 

 To develop the ANN, the data sets are generally subdi-
vided into 3 classes: training, testing and validation [48]. 
After partitioning the data sets, the training set is used to 
adjust the parameters. All synaptic weights and biases are 
first initialized randomly. The network is then trained; its 
synaptic weights are adjusted by optimization algorithm, 
until it correctly emulates the input/output mapping, by 
minimizing the average root mean square error [48]. The 
optimization method chosen in this work was the Levenberg 
- Marquart algorithm [40, 41], as mentioned earlier. The 
testing set is used during the adjustment of the network’s 
synaptic weights to evaluate the algorithms performance on 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Architecture of the neural network model used for estimating onset of precipitation of dissolved asphaltene in the solution of solvent 

+ precipitant [1: Bias; : Neuron; Output neuron: (mass of precipitant / mass of asphaltene); Input neuron: (mass of solvent / mass of asphal-

tene). 

Table 3. Number of Neurons, Hidden Layers, Parameters, 

Data and Type of Activation Function Used in this 

Method 

Layer Number of neurons 

1 

2 

3 

1 

1 

1 

• Number of hidden layers = 1. 

• Number of parameters = 4. 

• Number of data used for training (and testing) = 40. 

• Type of activation function: linear. 

• Input neurons: (mass of solvent/ mass of asphaltene). 

• Output neuron: (mass of precipitant/ mass of asphaltene). 

 
Input layer                             Hidden layer               Output layer 
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Table 4. Experimental Values [14]
 
and the Values Obtained Using the ANN Model for Mass Fraction of Precipitant in Synthetic 

Mixtures of Asphaltene + Solvent + Precipitant at Onset of Asphaltene Precipitation at 298.15 K and 0.1 MPa 

Mass fraction of precipitant 

Type of asphaltene Precipitant Solvent 
Mass fraction 

of asphaltene 

Mass fraction 

of solvent 
Experimental 

value 

Value obtained using 

the ANN model 
AD% 

n-C5 Toluene 

0.012 

0.008 

0.006 

0.003 

0.621 

0.623 

0.624 

0.594 

0.367 

0.369 

0.370 

0.403 

0.336* 

0.376* 

0.390* 

0.399* 

8.4 

1.9 

5.4 

1.0 

n-C5 Tetraline 

0.010 

0.007 

0.005 

0.002 

0.513 

0.513 

0.515 

0.518 

0.477 

0.480 

0.480 

0.480 

0.480 

0.476 

0.480 

0.480 

0.6 

0.8 

0.0 

0.0 

n-C7 Toluene 

0.011 

0.008 

0.006 

0.002 

0.569 

0.570 

0.571 

0.576 

0.420 

0.422 

0.423 

0.422 

0.429 

0.424 

0.420 

0.422 

2.1 

0.5 

0.7 

0.0 

n-C7 Tetraline 

0.009 

0.007 

0.005 

0.002 

0.470 

0.466 

0.471 

0.474 

0.521 

0.527 

0.524 

0.524 

0.522 

0.525 

0.525 

0.524 

0.2 

0.4 

0.2 

0.0 

n-C5-Asphaltene 

n-C10 Toluene 

0.010 

0.008 

0.005 

0.002 

0.553 

0.552 

0.555 

0.558 

0.437 

0.440 

0.440 

0.440 

0.440 

0.440 

0.440 

0.440 

0.7 

0.0 

0.0 

0.0 

n-C5 Toluene 

0.013 

0.010 

0.007 

0.003 

0.694 

0.696 

0.696 

0.703 

0.293 

0.294 

0.297 

0.294 

0.299 

0.300 

0.294 

0.294 

2.0 

2.0 

1.0 

0.0 

n-C5 Tetraline 

0.011 

0.008 

0.005 

0.002 

0.562 

0.562 

0.550 

0.554 

0.427 

0.430 

0.445 

0.444 

0.429 

0.440 

0.435 

0.444 

0.5 

2.3 

2.2 

0.0 

n-C7 Toluene 

0.012 

0.009 

0.006 

0.003 

0.636 

0.637 

0.639 

0.608 

0.352 

0.354 

0.355 

0.389 

0.324 

0.351 

0.378 

0.384 

8.0 

0.8 

6.5 

1.3 

n-C7 Tetraline 

0.010 

0.007 

0.005 

0.002 

0.509 

0.499 

0.494 

0.473 

0.481 

0.494 

0.501 

0.525 

0.470 

0.490 

0.510 

0.524 

2.3 

0.8 

1.8 

0.2 

n-C10 Toluene 

0.012 

0.008 

0.005 

0.002 

0.622 

0.585 

0.588 

0.591 

0.366 

0.407 

0.407 

0.407 

0.408 

0.392 

0.400 

0.408 

11.5 

3.7 

1.7 

0.2 

n-C7-Asphaltene 

n-C10 Tetraline 

0.010 

0.007 

0.005 

0.002 

0.498 

0.497 

0.475 

0.456 

0.492 

0.496 

0.520 

0.542 

0.471 

0.514 

0.518 

0.542 

4.3 

3.6 

0.4 

0.0 

*: Obtained using validation step.  
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the data not used for adjustment and stop the adjusting if the 
error on the testing set increases. Finally, the validation set 
measures the generalization ability of the model after the 
fitting process [48].  

RESULTS AND DISCUSSION 

 The experimental data of Cimino et al. [14] are reported 
in Table 1. Table 2 reports the values for (mass of solvent / 
mass of asphaltene) and (mass of precipitant / mass of as-
phaltene), which have been used to developed the ANN 
method. The model shown in Fig. (1) and detailed in Table 3 
with one hidden layer was used to calculate (mass of precipi-
tant/ mass of asphaltene) as a function of (mass of solvent/ 
mass of asphaltene). It should be mentioned that plenty of 
data should generally be used for developing AAN models, 
especially for highly non-linear systems. In our case, where 
the (mass of precipitant/ mass of asphaltene) is approxi-
mately linear function of (mass of solvent/ mass of asphal-
tene), few sets of data for training can be used to develop the 
ANN model. However, the more data for training, the more 
reliable ANN model results. Having this mind, one neuron in 
the hidden layer yielded acceptable results according to both 
the accuracy of the fit (minimum value of the objective func-
tion) and the predictive power of the neural network.  

 Tables 2 and 4 show the results obtained using the ANN 
model developed in this work along with the absolute devia-
tions (AD). As can be seen in Table 4, the results obtained 
using the ANN model for mass of precipitant in the solution 
of solvent + precipitant required to precipitate asphaltene are 
in acceptable agreement with the experimental data [14] re-
ported in the literature. The results show less than 12% abso-
lute deviation and the average absolute deviation (AAD) 
among all the experimental and estimated data is less than 2 
%. The deviations may be attributed to unreliability of some 
experimental data [14], as it is known that measuring onset 
of asphaltene precipitation, especially in dilute systems is 
one of the most difficult problems of oil analyses [32]. It 
should finally be mentioned that in the ANN model devel-
oped in this work, three parameters of the four parameters 
approach zero indicating that this ANN model is approxi-
mately equivalent to a linear function. 

CONCLUSIONS 

 A feed-forward artificial neural network model with one 
hidden layer that takes advantage of a modified Levenberg–
Marquardt optimization algorithm [40, 41], was developed 
for estimating onset of precipitation of dissolved asphaltenes 
in the solutions of solvent + precipitant. This model has one 
output neuron (mass of precipitant/ mass of asphaltene), one 
input neurons (mass of solvent/ mass of asphaltene) and one 
neuron in the hidden layer and uses a linear activation func-
tion. It was shown the experimental data reported in the lit-
erature

 
[14] are well represented using this ANN model.  
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