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Abstract: This work gives a brief summary of major formulations of the third law of thermodynamics and their 
implications, including the impossibility of perpetual motion of the third kind. The last sections of this work review more 
advanced applications of the third law to systems with negative temperatures and negative heat capacities. The relevance 
of the third law to protecting the arrow of time in general relativity is also discussed. Additional information, which may 
be useful in analysis of the third law, is given in the Appendices. 

This short review is written to assist lecturers in selecting a strategy for teaching the third law of thermodynamics to 
engineering and science students. The paper provides a good summary of the various issues associated with the third law, 
which are typically scattered over numerous research publications and not discussed in standard textbooks.  

Keywords: Laws of thermodynamics, perpetual motion of the third kind, thermodynamics of black holes, engineering 
education. 

1. INTRODUCTION 

 The author of this article has taught senior (year 3) 
engineering thermodynamics for a number of years. 
Engineering students, as probably everyone else, usually do 
not have any difficulties in understanding the concept of 
energy and the first law of thermodynamics but have  
more problems with the concept of entropy, the second  
and the third laws. This trend in learning the laws of 
thermodynamics seems to be quite common. Human 
perceptions are well-aligned with the concept of energy but 
the concept of entropy tends to be more elusive and typically 
remains outside the boundaries of the students' intuition. In 
thermodynamic courses taught to future engineers, the 
concept of entropy is traditionally introduced on the basis of 
the Clausius inequality, which directs how to use entropy but 
does not explicitly explain the physical nature of the concept. 
The common perception that engineering students are 
incompatible with statistical physics prohibits the use of the 
explicit definition of entropy by the Boltzmann-Planck 
equation  

 S = k
B

ln(!)             (1) 

where k
B

 is the Boltzmann constant and !  is the number of 
micro-states realizing a given macro-state. This equation 
links the mysterious entropy S  to the fundamental concept 
of probability, which in this case is related to ! . Despite not 
being trivial, the concept of probability combines well with 
human intuition. My experience is that students very much 
appreciate the explicit definition of entropy. The main trend 
of entropy to increase, due to the overwhelming probability 
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of occupying whenever possible macro-states with largest 
!,  explains the second law. 

 While statistical physics may offer some insights and 
assistance in teaching the second law of thermodynamics, a 
similar strategy is not likely to work as an educational 
remedy for the third law. It seems that there are two major 
factors that make the third law and its implications more 
difficult to understand than the second law. 

 First, after more than 100 years since Walter Nernst 
published his seminal work [1], which became the beginning 
of the third law of thermodynamics, we still do not have a 
satisfactory universal formulation of this law. Some 
formulations of the law seem to be insufficiently general 
while others cannot avoid unresolved problems. Many 
different formulations of the third law are known; some of 
them differ only in semantics but many display significantly 
different physical understandings of the law. 

 Another problem in teaching the third law is its abstract 
character, which, when compared with the other laws, is 
apparently less related to core engineering concepts such as 
thermodynamic cycles and engines. In many textbooks the 
third law is presented as a convenient approach for 
generating thermodynamic tables by using absolute entropy. 
Some formulations of the third law may not have clear 
physical implications. Finding a concise and transparent 
summary of the implications of the third law of 
thermodynamics is still not easy. 

 This work is an attempt to fill this gap and assist in 
selecting an approach to teaching the third law. First we 
discuss major alternative formulations of the third law. Then, 
by analogy with the zeroth, first and second laws, which 
prohibit the perpetual motion of the zeroth, first and second 
kind, we logically extend this sequence and declare that the 
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third law prohibits the perpetual motion of the third kind, 
which can deliver 100% conversion of heat into work. This 
interpretation pertains to the original works of Nernst [2] and 
is reflected in more recent publications [3]. One should be 
aware that the term “perpetual motion of the third kind” is 
sometimes used to denote a completely different process – a 
motion without friction and loses. 

 The second law, the third law and the rest of 
thermodynamics can also be introduced on the basis of the 
adiabatic accessibility principle originated by Constantine 
Caratheodory [4]. While this possibility has been 
convincingly proven by Lieb and Yngvason [5], their 
approach is rigorous but rather formal and not suitable for 
teaching. The recent book by Thess [6] fills the existing gap 
and presents adiabatic accessibility in a very interesting and 
even entertaining manner. The author has not had the 
opportunity to try this approach in class but believes that 
adiabatic accessibility can be appreciated by the students and 
might eventually become the mainstream approach to 
teaching thermodynamics. 

 The last part of this paper is dedicated to some less 
common but still very interesting topics in thermodynamics 
– the third law in conditions of negative temperatures or 
negative heat capacities. The profound connection of the 
third law with persevering causality in general relativity 
seems to be especially significant. These more advanced 
topics can be used to stimulate the interest and imagination 
of the top students but, probably, would not be suitable for 
the rest of the class. 

2. STATEMENTS OF THE THIRD LAW 

 While it was Walter Nernst whose ingenious intuition led 
thermodynamics to establishing its third law [7], this 
important scientific endeavor was also contributed to by 
other distinguished people, most notably by Max Planck and 
Albert Einstein. The third law of thermodynamics has 
evolved from the Nernst theorem – the analysis of an entropy 
change in a reacting system at temperatures approaching 
absolute zero –, which was first proposed by Nernst and 
followed by a discussion between him, Einstein and Planck. 
Even after 100 years since this discussion took place, there is 
still no satisfactory universal formulation of the third law 
thermodynamics. Leaving historical details of this discussion 
aside (these can be found in an excellent paper by Kox [8]), 
we consider major formulations of the third law. In this 
consideration, we follow the broad ideas expressed by the 
founders of the third law rather than their exact words – on 
many occasions clear statements of the third law were 
produced much later [9, 10]. For example, Nernst did not 
like entropy, which is now conventionally used in various 
statements of the third law, and preferred to express his 
analysis in terms of availability. The existing statements 
differ not only by semantics but also have significant 
variations of the substance of the law; although statements 
tend to be derived from the ideas expressed by Planck, 
Nernst or Einstein and can be classified accordingly. 

 The most common formulation of the third law of 
thermodynamics belongs to Max Planck [11] who stated that 

• Planck formulation. When temperature falls to absolute 
zero, the entropy of any pure crystalline substance tends 
to a universal constant (which can be taken to be zero)  

 S ! 0 as T ! 0            (2) 

 Entropy selected according to S = 0  at T = 0  is called 
absolute. If S  depends on x  (where x  may represent any 
independent thermodynamic parameter such as volume or 
extent of a chemical reaction), then x  is presumed to remain 
finite in (2). The Planck formulation unifies other 
formulations given below into a single statement but has a 
qualifier “pure crystalline substance”, which confines 
application of the law to specific substances. This is not 
consistent with understanding the laws of thermodynamics 
as being the most fundamental and universally applicable 
principles of nature. This formulation does not comment on 
entropy of other substances at T = 0  and thus is not 
universally applicable. 

 The Planck formulation, in fact, necessitates validity of 
two statements of unequal universality: the Einstein 
statement and the Nernst theorem. 

• Einstein statement. As the temperature falls to absolute 
zero, the entropy of any substance remains finite  

 S(T , x)! S0 (x), S0 < " as T ! 0, x < "         (3) 

 The limiting value S0
 may depend on x,  which is 

presumed to remain finite at T ! 0 . Considering expression 
for the entropy change in a constant volume heating process  

 S =
0

T

!
C

V

T
dT             (4) 

it is easy to see that (3) presumes vanishing heat capacity  

 C
V
! 0 at T ! 0            (5) 

since otherwise, the integral in (4) diverges and S !"#  as 
T ! 0 . A similar conclusion can be drawn for C

P
 by 

considering the heating process with constant pressure. 

 The statement is attributed to Einstein [12], who was first 
to investigate entropy of quantum systems at low 
temperatures and to find that the heat capacities should 
vanish at absolute zero; this implies that S  is finite at 
T ! 0 . Nernst and his group at University of Berlin 
undertook extensive experimental investigation of physical 
properties at low temperatures, which confirmed the Einstein 
statement [8]. It should be noted that thermodynamic 
systems become quantized at low temperatures and classical 
statistics is likely to produce incorrect results, not consistent 
with the Einstein statement. Hence experimental confirmation 
of the Einstein statement was at the same time a 
confirmation for quantum mechanics. The quantum theory of 
heat capacity was latter corrected by Debye [13] to produce a 
better quantitative match with Nernst's experimental results. 
This correction, however, does not affect the validity of the 
Einstein statement. Although the validity of the Einstein 
statement is beyond doubt, this statement does not capture all 
important thermodynamic properties at the limit T ! 0 . 
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• Nernst (heat) theorem. The entropy change of a system 
in any reversible isothermal process tends to zero as the 
temperature of the process tends to absolute zero.  

 S(T , x)! S(T , x + "x)# 0 as T # 0, x < $, "x < $       (6) 

The change in x  is presumed to remain finite at T ! 0 . 
Assuming “smooth” differentiation, the Nernst theorem 
obviously implies that  

 !S

!x

"
#$

%
&'

T

( 0 as T ( 0           (7) 

 The Nernst theorem, although valid in many cases, is 
unlikely to be universal. On many occasions Einstein 
disputed Nernst's arguments aimed at deriving the heat 
theorem from the second law [8]. The main problem with  
the theorem is that the entropy S  cannot be independent of 
x  at T = 0  when some uncertainties are allowed to remain 
in the system at T = 0 . Indeed, if a mixture of two or more 
components (which can be different substances or different 
isotopes of the same substance) can be brought to the state of 
T = 0,  then there must be uncertainties in positions of the 
molecules representing specific components of the mixture, 
since the positions of two different molecules can be 
swapped to form a new microstate. Assuming that x  is the 
molar fraction of one of the components, we conclude that 
presence of these uncertainties should depend on x . The 
Planck formulation unifies two independent statements – the 
Einstein statement and the Nernst theorem – and patches the 
Nernst theorem by restricting application of the Planck 
formulation to pure crystalline substances. The third law 
represents a statement which physically is related to the 
second law, but logically is independent from the second 
law. 

 Another formulation of the third law is represented by the 
following principle: 

• Nernst (unattainability) principle. Any thermodynamic 
process cannot reach the temperature of absolute zero by 
a finite number of steps and within a finite time.  

 The Nernst principle was introduced by Nernst [2] to 
support the Nernst theorem [1] and to counter Einstein's 
objections. The Nernst principle implies that an isentropic 
process (adiabatic expansion or a similar reversible adiabatic 
process that can be used to reduce temperature below that of 
the environment) cannot start at any small positive T  and 
finish at absolute zero when volume and other extensive 
parameters remain limited, that is  

 S(T , x)! S(0, x + "x) > 0 when T > 0, x < #, "x < #      (8) 

 If expression (8) is not valid and S(T , x) = S(0, x + !x),  
then the isentropic process starting at (T , x)  and finishing at 
(0, x + !x)  reaches the absolute zero. According to the 
present understanding of the Nernst principle, 
S(T , x) = S(0, x + !x)  might be possible but then the 
isentropic process connecting (T , x)  and (0, x + !x)  must be 
impeded by other physical factors, for example, the process 
may require an infinite time. 

 Equivalence of the Nernst principle and the Nernst 
theorem has repeatedly been proven in the literature [14]. 
These proofs are illustrated by Fig. (1a,b) demonstrating the 
possibility or impossibility of an isentropic process reaching 
T = 0  while x1 ! x ! x2

 (the bounding lines represent x = x1
 

and x = x2
). Case (a) corresponds to the validity of the 

Nernst principle and the Nernst theorem while case (b) 
violates both of these statements. Achieving T = 0  in case 
(a) requires an infinite number of steps as shown in the 
figure. The Carnot cycle reaching T = 0,  which is called the 
Carnot-Nernst cycle, is possible in case (b) and is also 
shown in the figure. It should be noted that proofs of 
equivalence of Nernst principle and Nernst theorem involve 
a number of additional assumptions [15, 16] as illustrated by 
examples (c), (d), (e) and (f). Cases (c) and (e) indicate that 
the Nernst principle can be valid while the Nernst theorem is 
not. Case (c) violates the Einstein statement while case (e) 
allows for fragmented dependence of S  on x  and shows 
boundaries x1 ! x ! x2

 and x3 ! x ! x4
. Cases (d) and (f) 

demonstrate validity of the Nernst theorem and violation of 
the Nernst principle. Case (d) considers a special entropy 
state with S(T , x) = 0  at T > 0  - a system with these 
properties and Bose-Einstein statistics is discussed by 
Wheeler [16]. Case (f) implies negative heat capacities due 
to !S / !T < 0  at T ! 0  and x = x1

. 

 While universality of the Nernst theorem is doubtful, it 
seems that the Nernst principle has better chances of success. 
The difficulty of reaching T = 0  is supported by 
experimental evidence. Interactions of a paramagnetic with a 
magnetic field are commonly used to reach low absolute 
temperatures. The lowest recorded experimental temperature 
of T =10

!10 K was achieved in a piece of rhodium metal by 
YKI research group at Helsinki University of Technology in 
2010 [17] (this report needs further confirmation). 
Unattainability of T = 0  can be explained by limitations 
imposed by the Nernst theorem, when this theorem is valid, 
or by other restrictions, when the Nernst theorem is 
incorrect. For example, reversible transition between mixed 
and unmixed states requires selectively permeable 
membranes; diffusion between components and through 
these membranes is likely be terminated at T = 0 . Thus, 
although the process illustrated at Fig. (1b) is possible for 
mixtures, this process may need an infinite time to complete. 
We use a weakened version of the Nernst principle referring 
to both “finite number of steps”' and “finite time” to stress its 
non-equivalence with the Nernst theorem. 

 Wreszinski and Abdalla [18] recently gave new 
formulation of the third law, which is based on the concept 
of adiabatic accessibility [4-6], stating that zero temperatures 
T = 0  are adiabatically inaccessible from any point where 
T > 0 . The formulation is equivalent to the Nernst principle. 
This work [18] also includes a proof of the Nernst theorem 
from the Nernst principle using the adiabatic accessibility 
concept and imposing two additional conditions, which 
exclude cases shown in Figs. (1c and 1e). 

 In a summary, we have two major formulations of the 
third law: the most reliable but relatively weak Einstein 
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statement and somewhat less certain but more informative 
Nernst principle. Currently available scientific evidence 
tends to support the validity of the Nernst principle. The 
Nernst theorem, although linked to the Nernst principle, is 
not fully equivalent to this principle. This theorem does not 
seem to be universal and, as was first noted by Einstein, is 
likely to be incorrect as a general statement. The Nernst 
theorem, however, should be correct for pure substances, 
providing useful information for analysis of thermodynamic 
properties at T ! 0 ; some of these properties are given in 
Appendix A. Planck's formulation unifies the Nernst theorem 
with the Einstein statement but is thus applicable only to 
pure substances. 

 It is interesting that the Nernst principle and the Einstein 
statement can be combined to produce the following 
formulation of the third law: 

• Nernst (Nernst - Einstein) formulation. A thermo- 
dynamic state with zero absolute temperature can not be 
reached from any thermodynamic state with a positive 
absolute temperature through a finite isentropic process 
limited in time and space, although the entropy change 
between these states is finite.  

This statement implies that  

 !"!!!"+# <x,<x,<T<0when<)xx(0,S)x,T(S<0     (9) 

or, possibly in some cases, S(T , x) = S(0, x + !x)  but the 
isentropic process connecting these states needs an infinite 
time for its completion. When Nernst [2] introduced his 
unattainability principle, he formulated and understood this 
principle in context of validity of the Einstein statement. If 
the Einstein statement is not valid and S !"#  as T ! 0 , 
then unattainability of T = 0  is quite obvious. 

3. PERPETUAL MOTION OF THE THIRD KIND 

 The importance of the laws of thermodynamics is not 
solely related to their formal validity; these laws should  
have a clear physical meaning and applied significance. 
Thermodynamics has a very strong engineering element 
embedded into this discipline. We might still not know 
whether irreversibility of the real world is related only to the 
temporal boundary conditions imposed on the Universe or 
there is some other ongoing fundamental irreversibility 
weaved into the matter. Conventional physics, including 
both classical and quantum mechanics (but not the 
interactions of quantum and classical worlds, which may  
 

 

Fig. (1). Entropy behavior near absolute zero. The lines of constant x  bounding isentropic expansion are shown. Violations of the Nernst 
theorem (NT), Nernst principle (NP) and Einstein statement (ES) are indicated above each figure. The dotted arrows in Fig. (a) show the 
infinite number of steps needed to reach absolute zero by a sequence of isentropic and isothermal processes. The dashed arrows in Fig. (b) 
demonstrate the Carnot-Nernst cycle. 
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cause quantum decoherence), is fundamentally reversible. 
Thermodynamics may not have all of the needed scientific 
explanations, but it admits the obvious (i.e. the irreversibility 
of the surrounding world), postulates this in form of its laws 
and proceeds further to investigate their implications. 

 The fundamental implications of the laws of thermo- 
dynamics are related to engines - devices that are capable of 
converting heat into work. Converting work into heat is 
irreversible: all work can be converted to heat but not all heat 
can be converted to work. The zeroth, first and second laws 
of thermodynamics impose restrictions that prohibit certain 
types of engines – these can be conventionally called 
perpetual motions of the zeroth, first and second kind 
depending on which laws these engines violate. The n-th law 
of thermodynamics can be formulated by simply stating that 
perpetual motion of the n-th kind is impossible. These 
perpetual engines are illustrated in Fig. (2). The first engine 
represents a possible engine placed into an impossible 
situation banned by zeroth law of thermodynamics, when 
temperatures of the reservoirs are not transitive, which 
symbolically can be represented by T

H
> T

C
> T0 > T

H
,  

where T
H

> T
C

 means that the heat naturally flows from T
H

 
to T

C
. Note that the second law is also violated by this setup. 

The second engine illustrates the impossibility of producing 
work out of nothing, which is banned by the first law. The 

third engine produces work out of heat without any side 
effects – this violates the second law. 

 As in case of the other laws, the third law should have a 
clear physical interpretation. Since we have two formulations 
– the Einstein statement and the Nernst principle - we 
consider two corresponding versions of perpetual motion of 
the third kind. 

 The first perpetual engine of the third kind (Fig. (3a)) 
violates the Einstein statement of the third law: it uses the 
Carnot-Nernst cycle with a compact cooling reservoir at 
T

C
= 0  and infinitely small entropy S = !"  (the cycle's 

working fluid is presumed to have vanishing heat capacity at 
T ! 0 ). The amount of heat disposed by the Carnot cycle 
into the cooler is zero under these conditions 
( Q

C
= Q

H
T

C
/T

H
! 0  as T

C
! 0 ) and all of Q

H
 is 

converted into work. The cooler, however, must receive the 
entropy !S

H
 lost by the heater. Since its entropy is infinitely 

negative, the state of the cooler is not affected by this 
entropy dump. One can unify the Carnot-Nernst cycle with 
the compact cooler and call this an engine converting heat 
into work. This perpetual engine clearly contradicts if not the 
letter then the spirit of the second law. Unlimited entropy 
sinks, which allow for extraction of unlimited work from the 
environment, are banned by the Einstein statement of the 
third law. The physical meaning of this statement is a 

 

Fig. (2). Perpetual motion engines of the zeroth, first and second kinds. 
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thermodynamic the declaration of existence of quantum 
mechanics, which does not allow allocation of unlimited 
information within a limited volume due to quantum 
uncertainty. 

 The second perpetual engine of the third kind shown in 
Fig. (3b) violates the Nernst principle and works with a large 
cooling reservoir at T = 0 , which serves as an entropy sink. 
The engine uses the Carnot-Nernst cycle and converts 100% 
of heat into work while dumping the excess entropy !S

H
 

into the cooling reservoir. The Nernst principle prohibits 
reaching T = 0  in the cycle and does not allow conversion 
of 100% of heat into work under these conditions. Entropy 
can be interpreted as negative information - i.e. absence of 
information about the exact micro-state of the system. The 
Nernst principle allows for reduction of the energy content of 
information by lowering T  but does not permit the complete 
decoupling of information and energy that occurs at T = 0 . 

4. NEGATIVE TEMPERATURES 

 Thermodynamic systems may have negative temperatures 
[19, 20]. A simple thermodynamic system involving only 
two energy levels is sufficient to bring negative temperatures 
into consideration. The thermodynamic relations for this 
system are derived in Appendix B. The entropy S  and 

inverse temperature 1 /T ,  obtained in Appendix B, are 
plotted in Fig. (4) against energy E . It can be seen that the 
region of negative temperatures lies above the region of 
positive temperatures with T = +0  being the lowest possible 
temperature and T = !0  being the highest possible 
temperature. As the energy of the system increases from 
E = 0 , particles may now be allocated at both energy levels 
and this increases uncertainty and entropy. As the energy 
increases further towards it maximal value E = E1,  most of 
the particles are pushed towards the high energy level and 
this decreases uncertainty and entropy. Note that the function 
S(E)  is symmetric and T (E)  is antisymmetric with respect 
to the point E = E1 / 2  for this example. 

 We can define quality of energy as being determined by 
the function ! = "1 /T  so that higher quality corresponds to 
larger (more positive) ! . The quality of work corresponds to 
the quality of heat at T = !  and ! = 0 . Energy can easily 
lose its quality and be transferred from higher to lower !  
but upgrading the quality of energy is subject to the usual 
restrictions of the second law of thermodynamics. This law 
can be formulated by stating that energy cannot be 
transferred from a lower quality state to a higher quality state 
without any side effects on the environment. 

 

Fig. (3). Perpetual motion engines of the third kind: a) violating the Einstein statement and b) violating the Nernst principle. 
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 The state of negative temperatures is highly unstable and 
it cannot have conventional volume as separating the volume 
into smaller parts moving stochastically with macro-
velocities increases the entropy. Indeed, the quality of kinetic 
energy (work) is T = !  and is below the quality of energy at 
negative temperatures. For these systems, shattering into 
small pieces appears to be thermodynamically beneficial. A 
strict proof of this statement is given in the famous course on 
theoretical physics of Landau & Lifshits [20]. Negative 
temperatures may, however, exist in systems that do not 
posses macroscopic momentum. Both Ramsey [19] and 
Landau & Lifshits [20] nominate a physical system that may 
possess negative temperatures during time interval of a 
measurable duration: interactions of nuclear spins with each 
other and a magnetic field in a crystal. After a fast change in 
direction of magnetic field this system is in a state with a 
negative temperature, which will last until the energy is 
transferred to the rest of the crystal. 

 Now we return to the third law of thermodynamics. It is 
most likely that difficulties and restrictions for reaching 
positive zero T = +0,  which are stated by the third law  
of thermodynamics, are also applicable to negative zero 
T = !0 . In the absence of experimental data, this statement 
may seem speculative but, considering the difficulties of 
reaching any negative temperatures, achieving T = !0  
would not be any easier than achieving T = +0 . In the 
example given in Appendix B, an instantaneous reverse of 
the direction of the magnetic field changes state E  to 
E0 ! E  so that T  is changed to !T  . Hence reaching 
T = !0  allows us to reach T = +0  and vice versa. 

5. NEGATIVE HEAT CAPACITIES 

 Thermodynamic systems with negative heat capacities 
C < 0  are unusual objects [21]. In particular, they cannot be 

divided into equilibrated subsystems, say A and B, and, as 
proven by Schrödinger [22] (see Appendix C), and cannot  
be treated by conventional methods of statistical physics (i.e. 
using the partition function) since these methods imply the 
existence of equilibrium between subsystems. Indeed, if A 
and B are initially at equilibrium and CA < 0  and CB < 0  
this equilibrium is unstable. Let a small amount of heat !Q  
to be passed from A to B, then T

A
 tend to increase and TB

 
tend to decrease and this encourages further heat transfer 
from A to B which further increases T

A
 and decreases TB

. 
The initial equilibrium between A and B is unstable. 

 An object with C < 0  can however be in equilibrium 
with a reservoir having positive capacity C

r
> 0  provided 

C > C
r

. Indeed, if initially T = T
r
 and !Q  is passed from 

the object to the reservoir; both T  and T
r

 increase  
but according to condition C > C

r
,  the temperature T

r
 

increases more than T ,  encouraging heat transfer back from 
the reservoir to the object. 

 Although thermodynamic states with negative heat 
capacity are unstable, such cases have been found among 
conventional thermodynamic objects with a short existence 
time [23]. Here, we consider thermodynamic objects  
with persistent negative heat capacities C < 0,  and term 
them thermodynamics stars and thermodynamic black holes 
due to the vague similarity of their thermodynamic 
properties to those of real stars and black holes. The heat 
capacity of a star is negative in Newtonian gravity as 
considered in Appendix D. 

5.1. Thermodynamic Stars and Black Holes 

 The environment is a reservoir with a very large size and 
capacity so its temperature T0

 does not change. Equilibrium 
of an object with negative C  and the environment is always 
unstable. Assume that the temperature of the object T  is 
slightly above that of the environment T0

. In this case the 
object tends to lose some energy due to heat transfer. Since 
its heat capacity is negative, this would further increase T  
resulting in more energy loss. The process will continue  
until the object loses all of its energy; due to obvious 
similarity we will call these cases thermodynamic stars. If a 
thermodynamic star loses its energy at a rapidly increasing 
pace as determined by its rapidly rising temperature, it may 
explode – i.e. reach negative temperatures before losing all 
of its energy and then disintegrate into small pieces as 
discussed in the previous section. 

 We, however, are more interested in an opposite case 
when T  is slightly below the environmental temperature 
T0

. In this case energy tends to be transferred to the object 
from the environment, resulting in further temperature T  
decrease and energy E  increase. As T  drops to very low 
values, extracting energy from the object by thermodynamic 
means becomes practically impossible (as this would need 
even smaller temperatures). In this case the object can be  
 

 

Fig. (4). Negative temperatures in thermodynamics. 
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termed a thermodynamic black hole. Depending on the 
nature of the limiting state T ! 0  we divide thermodynamic 
black holes into three types: 

• Type 1: S  and E  remain bounded. This type is 
consistent with the Einstein statement but may violate the 
Nernst theorem and the Nernst principle. 

• Type 2: E  remains bounded but S  is not. This type 
obviously violates the Einstein statement and most likely 
the Nernst theorem. 

• Type 3: both S  and E  are not bounded. This type 
complies with the Nernst principle but may violate the 
other statements.  

 These types of thermodynamic black holes are illustrated 
in Fig. (5). Note that, according to equation (22), !2

S / !E
2  

is positive when C  is negative (hence the case S ! const,  
E !"  cannot occur). A type 1 black hole reaching T = 0  
cannot lose any heat since it has the lowest possible 
temperature and cannot gain any heat since its gaining 
capacity is saturated – it is thermodynamically locked from 
its surroundings. 

 We now examine gravitational black holes, whose major 
characteristics are listed in Appendix E. 

5.2. Schwarzschild Black Holes 

 The Schwarzschild black holes are the simplest type of 
gravitational black holes and are controlled by a single 
parameter – the mass of the hole M  –, which determines the 
radius, surface area and volume of the hole [24].  

 r
S

= 2
!

c
2

M , A = 4"r
S

2
, V =

4

3
"r

S

3        (10) 

 Here we refer, of course, to the dimensions of the event 
horizon, which, for Schwarzschild black holes, is a sphere 
surrounding the time/space singularity. Nothing, not even 
light, can escape from within the event horizon. It is 
interesting that the relativistic expression for the radius of 
the Schwarzschild event horizon r

S
 coincides with the 

corresponding Newtonian expression. 

 The Einstein energy, Bekenstein-Hawking entropy and 
Hawking temperature of the black hole are given by [24]  

 
 

E = Mc
2
, S = 4!

" k
B

c!
M

2
, T =

!c
3

8!" k
B

1

M
      (11) 

 These equations are combined into conventional  

    dE = TdS                                 (12) 

 Note that Schwarzschild black holes have negative heat 
capacities  

 C = T
!S

!T
=

!S

!M

! ln(T )

!M

"
#$

%
&'
(1

= (2S        (13) 

 The Bekenstein entropy can be estimated from the 
quantum uncertainty principle 

 
!E !t ! "  where !E  is 

minimal energy of a quantum wave and !t  is its maximal 
life time. Inside the horizon, the radial coordinate r  
becomes time-like (one can say that time t  and space 
distance r  “swap” their coordinates) and 

 
!t ! r

S
/ c,  hence 

 
!E ! "c

3
/ (" M ).  The ratio E / !E  then represents an 

estimate for the maximal number of quantum waves within 
the horizon. Assuming that each wave may have at least 2  
states, say with positive and negative spins, we obtain the 
following estimate for the corresponding number of macro-
states 

 
! ! 2

E /"E
! exp(E / "E).  The Boltzmann-Planck 

equation (1) indicates that 
 
S ! k

B
E / !E ! k

B
" M

2
/ ("c) . This 

estimate and equation (12) necessitate that 

 
T ! "c

3
/ (! k

B
M ) . According to a more rigorous theory 

developed by Hawking [25] (in the wake of Zeldovich's [26, 
27] analysis indicating that rotating black holes emit 
radiation), black holes can radiate due to quantum 
fluctuations appearing everywhere including the event 
horizon. As field disturbances propagate away from the hole, 
they experience red shift due to relativistic time delays in 
strong gravity. The Hawking temperature is the effective 
temperature of a black hole as observed from a remote 
location. It is useful to note numerical values of the 
constants:  

T !
1.2 "10

23
kg

M
K, S ! 3.6 "10

#7
M

2 J

kg
2
K

, r
S
!1.48 "10

#27
M

m

kg
 

 It is generally believed that, due to restrictions of 
quantum mechanics, the Bekenstein-Hawking entropy of 
Schwarzschild black holes represents the maximum possible 
entropy allocated within a given volume. A black hole works 
as the ultimate shredding machine: all information entering 
the black hole is destroyed introducing maximal uncertainty 
(although mass, charge and angular momentum are 
preserved). The carrying mass is packed to maximal possible 
density and reaches maximal entropy. While in absence of 
gravity the state of maximal entropy is achieved by a 
uniform dispersal of a given matter over the available 
volume, shrinking the same matter into a singularity point is 
favored by the second law of thermodynamics in the 
presence of a gravitational pull. The relatively small number 
of black holes, that presumably existed in the early Universe, 

 

Fig. (5). Three types of thermodynamic black holes. 
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is responsible for its initial low-entropy state that provides 
thermodynamic exergy needed for powering stars and 
galaxies. The Universe works as if it was a very large 
thermodynamic engine! 

 We now examine compliance with the formulations of 
the third law. In terms of the classification given above, 
Schwarzschild black holes are of type 3 and they clearly 
comply with the Nernst principle. Since mass and volume 
are not restricted at the limit T ! 0  (and so is the specific 
volume V / M !" ), the Nernst theorem is not formally 
violated due to non-compliance with its condition of keeping 
the secondary thermodynamic parameter x  finite. The 
thermodynamic quantities characterizing the black hole 
behave differently as T ! 0  depending on whether they are 
considered on “per mass” or “per volume” basis. Entropy 
and capacity per volume comply with the Planck and 
Einstein statements and the Nernst theorem C /V !"0,  
S /V ! +0  as T ! 0  and M !",  while the same 
quantities per mass do not: C / M !"#, S / M ! +#  as 
T ! 0  and M !" . 

5.3. Kerr-Newman Black Holes 

 Kerr-Newman black holes are rotating and electrically 
charged black holes, characterized by three parameters: mass 
M , angular momentum J  and charge q . These black holes 
have a very complex space-time structure, which possesses 
only cylindrical (but not spherical) symmetry. The 
generalization of the equations presented in the previous 
subsection leads us to [24]  

 
 

T =
!

ck
B

!

2"
, S = k

B

A

4l
p

2
, l

p

2
=
# !

c
3

       (14) 

 dE = TdS +!dJ + "dq         (15) 

where !  is the surface gravity and l
p

 is the Planck length 
scale. The definitions of the angular rotation speed !  and 
the electrical potential !,  as well as the associated 
equations expressing !  and A  in terms of M , J  and q,  
are given in Appendix E. The heat capacity of Kerr-Newman 
black hole may be negative or positive depending on the 
values of the parameters M , J  and q . 

 A major feature of Kerr-Newman black holes is that zero 
temperature may be achieved with finite values of the 
parameters M  J,  and q ; this hole belongs to type 1. 
Indeed equation (46) indicates that ! = 0  and T = 0  when  

 
 

!M
2

= !q
2 +
!J

2

!M
2

         (16) 

 This state of a black hole is called extreme. For the sake 
of simplicity, we use normalized (geometric) values of the 
parameters marked by “tilde” and defined in the Appendix. 
The entropy in this state tends to a finite limit  

 
 

S ! k
B

A0

4l
p

2
, A! A0 = 4" (2 !M

2
# !q

2
) as T ! 0    (17) 

 Note that 
 
!M

2
! !q

2  according to (16) and A0 > 0 . One 
can see that this extreme state complies with the Einstein 
statement but clearly violates the Nernst theorem. Indeed, the 
entropy S  can, in principle, be changed by dropping suitably 
selected charged particles into the black hole and changing 
A0

 without altering condition (16), that is at T = 0 . If a 
black hole can physically reach its extreme state, this would 
also violate the Nernst principle. This appears to be quite 
important for modern physics and is discussed in the rest of 
this section. 

 Charged and rotating black holes have not one event 
horizon but two: the inner and the outer. As the black hole 
reaches its extreme state these horizons approach each other 
and finally merge. If any further increase in charge and 
angular momentum or decrease in mass occurs, and the event 
horizons disappear as indicated by A  becoming complex in 
equation (43). The singularity, which is normally hidden 
behind the horizons, becomes “naked”. If this happens 
anywhere in the Universe, the nature of the Universe 
changes: we can gain access to non-chronal regions 
previously protected by the horizons, where many wonderful 
things such as closed time-like curves and time travel are 
possible. The implications of this possibility for our 
understanding of the Universe involve violations of the 
causality principle and are so severe that Roger Penrose 
suggested the “cosmic censorship” principle prohibiting 
naked singularities [28]. 

 Thermodynamics, which is fundamentally linked to the 
arrow of time, likes the possibility of time travel even less 
than the other sciences. The Nernst principle, however, 
prohibits reaching the extreme state since it has T = 0  and 
protects causality in general and irreversibility of the  
second law in particular. While a rigorous proof of the 
unattainability statement for Kerr-Newman black holes can 
be found in the literature [29], we restrict our consideration 
to a simple illustration. As any thermodynamic object, a 
black hole radiates energy with intensity  dE / dt ! AT

4 . We 
may try to reach extreme state by radiating energy (and 
mass) of the black hole while keeping its charge the same. If 
the energy E0 = M 0c

2  corresponds to the extreme state, 
then, according to (46) and (43), 

 
T !! ! (E " E0 )

1/2  and 
A! A0

 as E ! E0 .  Hence, we obtain 
 
dE / dt ! (E ! E0 )

2  
resulting in 

 
E ! E0 !1 / t . In accordance with the Nernst 

principle, an infinite time (as measured by a remote 
observer) is needed for a black hole to reach its extreme 
state. 

6. CONCLUDING REMARKS 

 The importance of thermodynamic laws lies not only in 
the formal correctness of thermodynamic statements but also 
in their universal applicability and physical significance. The 
third law is an independent statement, which acts as a 
“guardian angel” for the second law. There is still no perfect 
formulation for the third law of thermodynamics. Planck's 
statement and the Nernst theorem are not universal (or likely 
to be incorrect if formulated as general statements). The 
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Einstein statement is, to the best of our knowledge, correct 
and universal but it is weaker than generally expected from 
the third law of thermodynamics. The considered version of 
the Nernst principle, which is not fully equivalent to the 
Nernst theorem, seems to be both universal and correct and 
is a good candidate for the third law. Recent developments in 
cosmological thermodynamics tend to support this view: 
thermodynamics of black holes violates the Nernst theorem 
but is considered to uphold the Einstein statement and the 
Nernst principle. The relation between the Nernst principle 
and protection of causality by cosmic censorship seems 
profound and produces a very strong argument in favor of 
formulating the third law of thermodynamics on the basis of 
this principle. 

 Both the Einstein statement and the Nernst principle have 
physical and engineering implications and can be 
recommended to represent the third law in thermodynamic 
courses (separately or as the combined Nernst-Einstein 
formulation). It is probably better to keep the existing 

uncertainty in choosing the best formulation of the third law 
outside the scope of engineering thermodynamic courses – 
this would be confusing for the students. Selecting a single 
general formulation and focusing on physical implications 
rather than on mathematical strictness of the formulation 
seems to be the best approach. The engineering interpretation 
of the law – no perpetual motion of the third kind is possible 
– is a way to induce the students' interest and convince them 
of the importance of the law. The best engineering and 
science students may also benefit from a wider discussion of 
the role of the laws of thermodynamics in the Universe. 
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APPENDICES 
A. Thermodynamic Relations  

 This Appendix presents thermodynamic relations, which can be useful in analysis of the third law and its implications [20]. 
We begin with the well-known Maxwell relations which are derived from the commutative properties of partial derivatives (for 
example !2

G / (!T!P) = !
2
G / (!P!T )) . Differentials of energy E,  enthalpy H ,  Gibbs G  and Helmholtz F  free energies 

indicate  

 
!(S,T )

!(P,T )
= "

!(V ,P)

!(T ,P)
=

!G

!T!P
,
!(S,T )

!(V ,T )
=
!(P,V )

!(T ,V )
=

!F

!T!V
                  (18) 

 
!(T ,S)

!(V ,S)
= "

!(P,V )

!(S,V )
=

!E

!S!V
,
!(T ,S)

!(P,S)
=
!(V ,P)

!(S,P)
=

!H

!S!P
                  (19) 

 Here partial derivatives are expressed in terms of Jacobians – this can be quite useful in derivations. For example !S / !T  
with constant V  can be equivalently interpreted as Jacobian for replacement of variables (T ,V )  by (S,V ) . The following 
definitions are related to heat capacities  

 C
V

= T
!S

!T

"
#$

%
&'

V

= T
!(S,V )

!(T ,V )
=

!E

!T

"
#$

%
&'

V

                    (20) 
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P

= T
!S

!T

"
#$

%
&'

P

= T
!(S,P)

!(T ,P)
=

!H

!T

"
#$

%
&'

P

                    (21) 
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"
#$
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!E
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"
#$

%
&'

V

                  (22) 

 The ratio of adiabatic to isothermal compressibilities is linked to heat capacities  

 

!P

!V

"
#$

%
&'

S

!P

!V

"
#$

%
&'

T

=

!(P,S)

!(V ,S)

!(P,T )

!(V ,T )

=

T
!(P,S)

!(P,T )

T
!(V ,S)

!(V ,T )

=
C

P

C
V

                    (23) 

 The difference between C
P

 and C
V

 is evaluated by representing entropy as S = S(T ,V (T ,P))  so that  

 C
P
!C

V
= !T

"(S,T )

"(V ,T )

"(V ,P)

"(T ,P)
=  
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 = !T
"(P,V )

"(T ,V )

"(V ,P)

"(T ,P)
= T

"(S,T )

"(V ,T )

"(S,T )

"(P,T )
                    (24) 

 Maxwell relations (18) and (19) are used here. The Nernst heat theorem (6) requires (7) that is (!S / !x)
T
" 0  as T ! 0  

where x  can be any thermodynamic parameter, for example V  or P . Hence  

 
!(S,T )

!(V ,T )
=
!(P,V )

!(T ,V )
" 0,

!(S,T )

!(P,T )
= #

!(V ,P)

!(T ,P)
" 0 as T " 0                  (25) 

 In conjunction with (24), these relations imply that  

 
C

P

C
V

!1 as T ! 0                       (26) 

 The derivative, which indicates the rate of reduction of temperature in adiabatic expansion,  

 
!(T ,S)

!(V ,S)
=
!(T ,S)

!(V ,T )

!(V ,T )

!(V ,S)
= "

!S

!V

#
$%

&
'(

T

T

C
V

) 0 as T ) 0                   (27) 

vanishes under restrictions of the Nernst theorem according to (25). Here we use V  and P = !E / !V( )
S

 but these relationships 

can be generalized for any other consistent thermodynamic variables, say x  and y = !E / !x( )
S

. 

B. A Simple Thermodynamic System with Negative Temperatures  

 Let us consider a simple example: n  particles can occupy one of the two energy levels 0  and E1
 (this can be practically 

achieved when, for example, particle spins can take two values + 1

2
and - 1

2
in a magnetic filed). These levels are degenerate, 

with k0
 and k1

 representing the corresponding degeneracy factors. Classical statistics is assumed implying that 
 
k0 ,k1 ! n . 

There is no need to evaluate the partition function for this simple case. Indeed, assuming that n1 = n ! n0
 particles are located at 

the energy level E1
, the system energy is determined by  

       E = E1n1
                 (28) 

 The n1
 indistinguishable particles can be allocated on k1

 sublevels of the level E1
 by !1 = k1

n
1 / n1!  micro-states. Similarly, 

!0 = k0

n
0 / n0! . According to the Boltzmann-Planck equation (1) entropy S  is linked to ! = !0!1

 by the equation  

 S = k
B

ln(!0!1 ) = "k
B

n0 ln
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ek0

#
$%

&
'(

+ n1 ln
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#
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&
'(

#

$%
&

'(
                   (29) 

 Here we use ln(n!) = n ln(n / e) + ...  and conventionally neglect smaller terms. With the use of  
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B
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 If k0 = k1 = k,  then  

 S = !k
B
n 1!
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"
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where constant S0
 is defined by  

       S0 = !k
B
n ln

n

ek

"
#$

%
&'

                (32) 

 The temperature T  is determined by  

 1

T
=

dS

dE
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E1

E
!1

"
#$

%
&'

= !
k

B
n

E1

ln
E1

E1 ! E
!1

"
#$

%
&'

                   (33) 



12    The Open Thermodynamics Journal, 2012, Volume 6 A. Y. Klimenko 

C. Partition Function and Positiveness of Heat Capacities  

 Schrödinger [22] proved that a system whose thermodynamics is characterized by the partition function Z  and statistical 
sums  

       E =
1

Z
i

!E
i
exp "

E
i

k
B
T

#
$%

&
'(

               (34) 

       Z =
i

!exp "
E

i

k
B
T

#
$%

&
'(

,                 (35) 

must have a non-negative heat capacity. Indeed  
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! E

!T
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1

Z
i

" E
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2
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E
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B
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$
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'
()
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E Z
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!Z
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2
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2
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2
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where we use  

       !Z

!T
=

E

k
B

2
T

2
Z                  (37) 

 This indicates that Gibbs methods based on evaluating the partition function are not applicable to systems with negative 
heat capacities. 

D. Newtonian Dust Star – A System with Negative Heat Capacity  

 In astrophysics, the energy of particles interacting by gravity with each other is  

       E =U + K                  (38) 

the sum of kinetic energy K  and potential energy U  of gravitational interactions. According to the Virial theorem (41), which 
is proved below, U = !2K  in classical gravity with the gravitational potential 

 
! ! "1 / r . Note that the kinetic energy is always 

positive, while potential energy in the gravitational field is negative attaining zero in remote locations. Hence E = !K  and the 
kinetic energy K  of n  moving particles is linked to the temperature by [21]  

       !E = K =
3

2
nk

B
T                 (39) 

 Evaluation of heat capacity  

       C =
dE

dT
= !

3

2
nk

B
                (40) 

yields negative values for C . Hence, when the particles forming a star lose energy due to radiation, the temperature of the star 
increases [21]. 

 The Virial theorem is proved by the following equation  
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for a system of i =1,...,n  particles with masses m
i
 and locations r

i
. In a stationary state, the average distance between 

particles does not change and the first term is close to zero. The second term is obviously linked to kinetic energy K  while the 
connection of the last term to U  can be demonstrated as follows  
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Hence U = !2a
!1

K . Newton's third law F
ij

= !F
ji

= !"#
ij

 is applied here while using potential 
 
!

ij
(r

ij
) ! "1 / r

ij

a
,  where 

r
ij

= r
i
! r

j
 and a = 1  in a gravitational field.  

E. Gravitational Black Holes  

 General stationary Kerr-Newman black holes are characterized by three parameters: mass M , angular momentum J   
and charge q . In general relativity, it is convenient to use so called geometric units, which are denoted here by the “tilde” 
symbol:  

      
 

!M = M
!
c

2
, !E = E

!
c

4
, !q = q

1

c
2

!
4"#0

$
%&

'
()
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,  

      
 

!J = J
!

c
3
, !" =

"

c
2

, !A = A                 (42) 

where c  is the speed of light, !  is the gravitational constant and !0
 is the electric constant. Geometric mass 

 
!M ,  energy 

 
!E,  

and charge
 
!q  are measured in length units (m) ;  geometric angular momentum  !J  and area  !A  are measured in area units (m 2 ); 

geometric surface gravity  !!  is measured in inverse length units (1/m). The area of the event horizon – the surface of no-return 
surrounding the black hole – is given by [24]  
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 Differentiation of this equation results in  
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where  
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and  
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represents geometric surface gravity – free fall acceleration evaluated at the event horizon and rescaled by so-called red shift to 
produce finite values. The red shift is responsible for slowing down time in very strong gravitational fields. The conventional 
form of the same differential is  

      dE =
c

2

8!"
#dA +$dJ + %dq                 (47) 

where  
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 All equations simplify in case of Schwarzschild black holes [24], which do not have rotation or electric charge: J = 0   
and q = 0 . A Schwarzschild black hole is spherically symmetric; its properties are determined by one parameter – the  
mass M :  
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