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Abstract: Marginal-Cost (MC) tolls are known to produce economic efficiency of network flows. Yet, MC pricing has 

not been widely adopted, because of various perceived unpopular aspects, such as complexity, collection costs, and 

inequities. Minimal Revenue (MinRev) pricing has been suggested as a means to achieve most of the economic 

improvements of MC pricing with fewer unpopular aspects. One claimed improvement of MinRev tolls is the ability to 

maintain fixed tolls while flows change. We show that single-power-law congestion costs are sufficient (but not always 

necessary) conditions for the stability (flow independence) of Minimal-Revenue (MinRev) tolls in transportation 

networks, so long as the links that are actually used do not change. This is particularly important because the usual Bureau 

of Public Roads (BPR) cost function recommended as a good representation of real road traffic, has this single power-law 

congestion cost. For cases of elastic demand, these MinRev tolls do not achieve the full economic efficiency of Marginal-

Cost (MC) tolls. However, they may still prove desirable because of greater stability, greater simplicity, lower out-of-

pocket costs, and greater perceived equity. Furthermore, in cases of major congestion problems, where all links are used, 

the MinRev tolls are totally stable, i.e. totally independent of flows; also, if demand is relatively insensitive to price, the 

flows are nearly equal to the optimal flows obtained by MC pricing. The discussion is based on the equilibrium 

assignment method, with tolls to encourage System Optimal (SO) flows rather than User Optimal (UO) flows. Results are 

obtained for general networks, and also illustrated with a very simple example. 
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INTRODUCTION 

 Generalized-costs, combinations of travel times and costs 
(direct monetary and other), consist of fixed costs and 
congestion costs. For a particular road link, the fixed costs 
are due to the length of the road, speed limits, etc., when the 
link is un-congested. The congestion costs are the additional 
time and costs caused by the congestion of other users. The 
congestion cost functions used in transport network analysis, 
are often modeled as simple powers of the flow as 
recommended by the Bureau of Public Roads to represent 
real traffic network flows; the so-called BPR cost function 
[1] (See appendix 1). 1st power (linear) [2,3] {see p.140 of 
ref 3}, 2nd power (quadratic) [3] {see p. 91 of ref 3}, and 4th 
power [3-5] {see p. 127 of ref 3} are popular choices. 
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 In the equilibrium traffic assignment problem, Marginal-
Cost (MC) pricing is a well-known means to induce network 
users to "voluntarily" adjust the flow pattern to achieve 
economic efficiency [4-6]. Each user is charged for the 
additional system costs incurred because of his use of the 
link.  This induces users to optimize the flow pattern, and 
minimizes the total system costs (not counting the tolls). MC 
tolls often involve large unpopular out-of-pocket costs to the 
users. Thus, although MC pricing has economic efficiency, it 
is not used very much in practice because of several 
perceived negative aspects. It is perceived as inequitable 
since it allows users who can afford the tolls (presumably 
those with a higher monetary value of time: often the richer 
users, but also those trying to catch an airplane with non-
refundable tickets, etc.) to travel faster than other (often 
poorer) users. (See appendix 2). The MC tolls are also 
"unstable" in the sense that they must be varied with time as 
the congestion varies, an aspect that adds complexity and 
cost to the collection system and unpredictability to the user. 
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 The idea of Minimal-Revenue (MinRev) pricing is to 
lower tolls as much as possible, without upsetting the 
optimum flow pattern that would be achieved by MC 
pricing. MinRev tolls have been suggested as a means to 
obtain the same economic efficiency with much lower out-
of-pocket costs to the users, and simpler collection 
procedures, with fewer links needing tolls [4, 5]. Dial 
illustrated his MinRev algorithm with a numerical network 
example. We illustrate the MinRev pricing with the much 
simpler and smaller network of Fig. (1), which is easily 
solved by inspection. By eliminating or reducing some of the 
negative aspects of MC pricing, it is hoped that MinRev 
pricing will be implemented more often than MC, while still 
achieving most of the advantages of MC pricing. MinRev 
pricing may be particularly applicable to paid so-called 
"HOT" lanes on freeways. (See appendix 2). 
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Fig. (1). A simple network with 3-links, 2-paths, 1-origin O, and 1-

destination D, used to illustrate User-Optimal (UO), and System-

Optimal (SO) flows with Marginal Cost (MC) tolls and Minimum 

Revenue (MinRev) tolls. 

 Symbols used in this figure: 

d  demand 

xj  flow x on link j 

arrows show direction of flow 

hj  Fixed Cost h on link j 

(xj)
n 

gj  Congestion cost on link j 

cj = hj + (xj)
n 

gj  Total user generalized cost c on link j 

j = 1,2,3 

 Although MinRev tolls achieve full economic efficiency 
for cases of inelastic demand, they don't for elastic demand 
[7]. Still, as we shall see, MinRev tolls may often be a 
desirable alternative to MC tolls because of fewer perceived 
negative aspects, and very small deviations from full 
efficiency. We find that there are certain conditions under 
which MinRev tolls are piecewise stable, i.e. totally 
independent of flow, so long as the links actually used in the 
network do not change, and then a step change when the 
used links do change. In cases where there are major 
congestion problems and all links are used, i.e. for cases in 
which one would most want to use tolls to alleviate the 
congestion, we find that the MinRev tolls may be totally 
stable (independent of changes in flow), and the flows may 
be nearly optimal. Thus deviations from full economic 
efficiency may be insignificant. The advantages of the 
MinRev pricing could then often outweigh the disadvantage 
of slight deviations from efficient flows. 

MC AND MINREV PRICING FOR INELASTIC 
DEMAND 

 MinRev pricing lowers the MC tolls as much as possible, 
without upsetting the optimum flows that would be achieved 
by MC pricing. Thus, by its very design MinRev pricing 
achieves the same full economic efficiency (by optimizing 
flows) as MC pricing. Often this can be achieved with much 
lower out-of-pocket costs. Dial's algorithms to achieve 
MinRev pricing limit tolls to non-negative values, and yield 
the minimum total system revenue that does not upset the 
optimum flows. This often leads to several links (and always 
at least one [4, 5]) on which no toll is collected. We note also 
that, if one allows negative tolls (subsidies), it is possible to 
achieve a neutral (net zero) total revenue. However, this 
would eliminate the advantage of fewer links needing tolls. 

MC and MinRev Pricing for Power-Law Congestion 
Costs 

 We consider the generalized link costs cj of the form 

cj = hj + (xj)
n
 gj           (1) 

 Here, for link j, xj is the flow, hj is the fixed cost, and 
(xj)

n
 gj is a power law congestion cost with power n. gj is a 

constant, which depends on link j, but the power n is the 
same on each link. 

 The Marginal Cost Toll (Tmcj), on link j is 

Tmcj = xj cj/ xj = n (xj)
n
 gj          (2) 

and Cmcj, the Generalized Cost of link j with MC toll, 
becomes 

Cmcj = cj + Tmcj =hj + (n+1) (xj)
n
 gj         (3) 

 It will be useful later to note that 

( Tmcj/ xj ) / ( Cmcj/ xj ) = n / (n+1)        (4) 

is a constant, independent of j. 

Zero Fixed Costs 

 For the special case where the fixed costs are all zero, 
Eqs. (1) and (3) become 

hj = 0 cj = (xj)
n
 gj         (1a) 

hj = 0 Cmcj = (n+1) (xj)
n
 gj = (n+1) cj       (3a) 
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 We see that the toll multiplies the generalized cost of 
each link by the same constant factor n+1. By symmetry, we 
see that with fixed demand, the MC pricing does not change 
the flow pattern in the network. Thus, one already has the 
optimized flow without any link tolls, so the MinRev tolls 
are all zero, independent of the flow, so: 

 Conclusion (1) For single-power law congestion costs 
and zero fixed costs, all MinRev tolls are stable at a value 
of zero, independent of the flow. Thus the flows are 
optimal without tolls. 

 Although this conclusion (1) is interesting theoretically, 
and applicable to various physical networks, it has very little 
applicability in real traffic networks since real road links 
always have some fixed costs (although those costs could be 
compensated by subsidies or scenic views, etc). It is, 
nonetheless, useful as a step towards proving the stability of 
MinRev tolls when the fixed costs are not zero. 

Non-Zero Fixed Costs 

 The simple example of Fig. (1) provides much insight 
into the MinRev tolls. It has only three links and two paths 
from the origin O to the destination D. It is seen by 
inspection that both paths must use link 1. Thus, for inelastic 
demand d, the flow through link 1 is x1 = d. 

 This flow cannot be influenced by any toll, even if the 
cost function is much more complicated than that of Eq. (1). 
The MinRev toll on this link, being the minimum needed to 
assure optimal flows, is clearly zero, independent of the 
(inelastic) network demand or the relationship between cost 
and flow in this link. So: 

 Conclusion (2) There is no necessary condition for 
stable MinRev tolls. 

 Consider now links 2 and 3 of Fig. (1). It is clear that 
only the difference between the tolls on these links can 
influence the relative flows. This leads us to an algorithm for 
MinRev tolls: the smaller MC toll should be replaced by zero 
toll, and the larger one replaced by the difference between 
the two. Thus, we find that only one toll is needed on only 
one link in the network of Fig. (1). This is an example of 
Dial's result that MinRev always has at least one zero-toll 
path. 

 For simplicity of the discussion, and without loss of 
generality, we let the MC toll (Tmc) be smaller on link 2 
than on link 3. The MinRev toll on link 3 (TMinRev3) is then 

TMinRev3 = Tmc3 - Tmc2           (5) 

 We now examine the stability of TMinRev3 under 
changes of inelastic demand d. So long as the number of 
used links does not change, the variation of TMinRev3 with 
demand d will be smooth, so we can use calculus to examine 
the changes. 

TMinRev3 = Tmc3 - Tmc2 = n { (x3)
n
 g3 - (x2)

n
 g2 }        (6) 

 From Kirchhoff's current law, 

x3 + x2 = d            (7) 

 If only one path is used: If x2 = 0, the results are simple, 
and the MinRev tolls are all zero and thus all stable. x3 
cannot be zero unless d=0, which is trivial and uninteresting. 

 If both paths are used: By Wardrop's first principle [8] 
(or Kirchhoff's voltage law) the user costs Cmcj including 
MC tolls are equal for links 2 and 3. 

Cmcj = cj +Tmcj           (8) 

Cmc3 = Cmc2          (8a) 

 This must be true for any level of inelastic demand d. 
Thus, if the demand d changes, by differentiating Eq(8), we 
get 

Cmc3/ d = Cmc2/ d           (9) 

so 

{ Cmc3/ x3} { x3/ d} = { Cmc2/ x2} { x2/ d}      (10) 

and 

{ x2/ d} = { x3/ d}{ Cmc3/ x3}/{ Cmc2/ x2}      (11) 

 When inelastic demand d changes, from Eq (5) 

TMinRev3/ d = Tmc3/ d - Tmc2/ d 

={ Tmc3/ x3}{ x3/ d} - { Tmc2/ x2}{ x2/ d}      (12) 

 From Eq (11) we find 

TMinRev3/ d  =   

   { Cmc3/ x3}{ x3/ d} 

    [({ Tmc3/ x3}/{ Cmc3/ x3}) - ({ Tmc2/ x2}/{ Cmc2/ x2})] 
           (13) 

 From Eq (4) we see that the term in square brackets [ ] is 
zero. Thus, 

TMinRev3/ d = 0        (14) 

 so in this example network, the MinRev toll is totally 
stable for all flows whenever both paths are used. 

 Summary for the example network of Fig. (1): A 
MinRev toll is needed only on link 3. This TMinRev3 is 
piecewise stable. TMinRev3 = 0 for all demands small 
enough for only one path to be used, and then constant at 
value TMinRev3 = Tmc3 - Tmc2 when both paths are used. 
The proof of stability of the tolls is easily extended to any 
integer number m (not just 2) of links in parallel. This result 
also leads us to conjecture a new conclusion, which we then 
prove for a general network: 

 Conclusion (3) A cost function cj = hj + gj (xj)
n
 on each 

link j of a general traffic network, is sufficient (but not 
always necessary) for piecewise stable MinRev tolls. The 
tolls may change from one stable value to another as the 
links used in the network change when the demand 
changes. 

 Proof of Conclusion (3) We consider a general network, 
with power-law congestion costs as in Eq (1), in which we 
already have equilibrium with MinRev tolls. If demands then 
change, the link flows xj change, and the corresponding MC 
tolls also change, as in Eq (3). For a nearby range of 
demands over which the list of links which are actually used 
does not change, we expect smooth changes in flows and 
costs, so we can use differential calculus for our analysis of 
corresponding changes in MinRev tolls, which will turn out 
to be zero for a fixed integer number of used links. 
Differentiating Eq (8) with respect to flows, for the link costs 
Cmcj including MC tolls, we find 
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Cmcj/ xj = cj/ xj + Tmcj/ xj        (15) 

and using Eqs (1) and (2), we find 

cj/ xj = n (xj)
n-1 

gj         (16) 

Tmcj/ xj = n
2
 (xj)

n-1 
gj        (17) 

so 

Cmcj/ xj = n (n+1) (xj)
n-1 

gj        (18) 

 The derivatives of cj, Tmcj, and Cmcj, are independent of 
the hj, so that changes in costs are identical to those which 
would be obtained with hj = 0, for which the flows were 
shown to be optimal. The increases in link flows due to 
increases in demand are thus also independent of hj and are 
the same optimal extra flows with or without tolls, just as the 
total flows were optimal for all hj = 0. Thus, optimality of 
flows applies to the extra demand here, just as it applies to 
the total demand for zero fixed costs. Just as the total 
MinRev tolls were all zero for zero fixed costs, here the extra 
MinRev tolls are zero for non-zero fixed costs. Thus, the 
MinRev tolls are stable until the demands increase enough to 
change which of the links are used, causing a discontinuous 
change in flows and invalidating our use of the differential 
calculus. From there on, the MinRev tolls are again stable at 
a new level as long as the same links are used, so the 
TMinRevj are Piecewise Constant, completing the proof. 

 Summary for inelastic demand and power law 
congestion costs: We used the ideas of optimality, to prove 
the stability of Minimal Revenue MinRev tolls in networks 
with inelastic demands. We found it also helpful to study a 
simple example network. We found that link costs which 
include a fixed cost and single-power-law congestion cost 
are sufficient (but not always necessary) to cause MinRev 
tolls to be piecewise stable, remaining constant when the 
used links remain unchanged, and then jumping 
discontinuously when the used links change. 

 It is especially important to note that the so-called BPR 
cost function recommended by the Bureau of Public Roads 
Traffic Assignment Manual [1] does have a fixed cost and a 
single-power-law congestion cost. Thus, power-law 
congestion costs are important examples for real road 
networks, not just the simple example used in this paper and 
in previous MinRev examples [4, 5]. 

 If the fixed costs are zero on all links, then the MinRev 
tolls are zero (totally stable) for all levels of inelastic 
demand. This is a rather unrealistic situation for real road 
networks, since the free-flow generalized costs would have 
to be zero on each link. It could happen, even with positive 
travel times, if there are exactly compensating other negative 
costs (such as popular scenery, carefully adjusted monetary 
subsidies, etc). It may be a more realistic approximation for 
various other analogous physical networks (electrical, 
mechanical, and thermal [9-11] or water [12]), but then the 
analog of tolls is not obvious. A more clearly applicable 
analog might be a data network. 

 One should note that generally, congestion tolls are 
proposed and/or used only in cases where there are major 
congestion problems. Then, it is very likely that the total 
demand is so high that all links are used. In that case, the 
MinRev tolls are totally stable. 

MC AND MINREV PRICING FOR ELASTIC 
DEMAND 

 For demands with price-elasticity, MC pricing does not 
only induce a rearrangement of the flows among the links. 
The increased total cost due to MC tolls also causes a 
reduction in the total network flow, resulting in a true 
economic efficiency. On the other hand, the algorithms used 
for MinRev tolls [4, 5] are based on a particular level of 
flow, and do not achieve the optimality of MC tolls, because 
their lower costs cause a smaller reduction in total flow. 
However, they do have the advantages of stability, and 
lower-total system revenue, and are thus perceived as more 
equitable and less unpredictable [4, 5]. Hence, MinRev may 
still be the preferred pricing method if elasticity of demand is 
not very important. 

 The fact that rush hour congestion is often a major 
problem in real road networks, is an indication that the 
number of users remains large in spite of the high 
generalized cost caused by the congestion. This indicates 
that the high demand is often not very sensitive to price. MC 
pricing would then improve flows mainly by changing the 
road assignment without much change in the total flows. 
MinRev pricing will do almost the same, and thus also 
provide nearly optimal flows under changes of demand that 
are nearly price-inelastic. Furthermore, with such large 
flows, it is likely that all links in the network are actually 
used, leading to MinRev tolls that are totally stable, 
independent of time dependent demands. 

DISCUSSION AND CONCLUSIONS 

 Minimal Revenue (MinRev) pricing has been known to 
have various advantages over Marginal Cost (MC) pricing in 
road networks. The tolls are lower, the number of links 
needing tolls is smaller, and the tolls are more stable under 
conditions of time varying demands. These advantages lead 
to lower collection costs, less user confusion, and more 
perceived equitability [4, 5]. 

 We have shown that the existence of single-power-law 
congestion costs is a sufficient (although not always 
necessary) condition for piecewise stable MinRev tolls; the 
tolls do not change so long as there is no change in the links 
which are used. This leads to a total stability of tolls (no 
change with flow) so long as the total demand is sufficiently 
large that all links are used. 

 Single-power-law congestion cost is commonly used as a 
representation of actual conditions, as suggested by the 
Bureau of Public Roads recommendation [1]. 

 We note that the cases of most interest for congestion 
pricing are those for which the demand remains so high, 
even with the high congestion, that it is very likely that all 
network links are actually used and that the demand is 
relatively price-inelastic. Under such conditions, the MinRev 
pricing becomes totally stable (independent of time varying 
flows), and the flows are nearly optimal. MinRev pricing 
also retains the advantage of lower out-of-pocket costs to the 
users, thus mediating the perception that tolls are inequitable 
and a regressive form of taxation. These advantages should 
make MinRev pricing a very attractive alternative to MC 
pricing in most cases where tolls are considered necessary to 
relieve congestion. 
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 It would be interesting to test the MinRev method in 
actual traffic situations, to observe if it really works almost 
as well as the MC method during rush hours, and to 
determine if the users perceive it as better for reasons of 
equitability, lower out of pocket costs, etc. As pointed out by 
an anonymous reviewer, it would also be interesting to study 
the effects of MR pricing in situations with oversaturation 
and queue growth. 
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ABBREVIATIONS 

BPR  = Bureau of public roads Traffic assignment  
   manual 

c = Generalized cost for user on link 

Cmc = Generalized cost including marginal-cost toll 

d  = Demand 

D  = Destination 

g  = Congestion cost on link 

h = Fixed cost on link 

MC = Marginal cost 

MinRev = Minimal revenue 

O = Origin 

SO = System optimal 

Tmc = Marginal cost toll 

Tminrev  = Minimal revenue toll 

UO = User optimal 

x = flow on link 

APPENDIX 1 - BUREAU OF PUBLIC ROADS (BPR) 
COST FUNCTION [13] 

 The Bureau Of Public Roads (1964) Traffic assignment 
manual [1] recommended a cost versus flow function of the 
form 

 t(x) = t(0) [1 + a(x/Q)
b
] 

where x is the flow 

 t(x) is the travel time when the flow is x 

 t(0) is the free-flow travel time, when x is near zero. 

 Q is the capacity of the road link 

 a, b are parameters. 

 The original manual included a table of recommended 
parameter values a and b for different kinds of roads. The 
most common values now used are a = 0.15 and b = 4 (hence 
the oft used misnomer "fourth power law"). This fourth 
power law was used by Dial in the demonstration examples 
for his algorithm [4, 5]. 

 

 

 

 Comparison with our Eq. (1) shows that: 

 t(x) corresponds to our generalized cost, c. 

 t(0) corresponds to our fixed cost, h. 

 The product { t(0) a Q
-b

 } corresponds to our congestion 
cost per unit flow, g 

 b corresponds to our power, n. 

APPENDIX 2 - IN-EQUITABILITY OF MARGINAL 
COST (MC) PRICING 

 In equilibrium, all used paths between an origin and 
destination have equal generalized costs. Thus, those with 
higher monetary costs (e.g., higher tolls) will have lower 
other costs (often time). Thus, it is claimed that those who 
are willing to pay the tolls will travel faster (or at least have 
lower other generalized costs) than those who are not willing 
to pay the tolls. The time saving is particularly true for so-
called "HOT" lanes, toll lanes competing with parallel free 
lanes on the same multilane highway, where all generalized 
costs other than tolls and time would be equal. 

 Actually, with tolls, even those users who do not pay the 
tolls will travel faster than before because of the 
improvements in flow produced by the toll policy. However, 
this is not as easily noticed as the inequity of seeing others 
paying the toll and going still faster. 

 Those willing to pay the toll presumably have a higher 
money-value of time. These may include road users with 
high-cost non refundable tickets to a cultural event or airline 
flight, high costs of being late to work, etc. However, they 
may also include richer users who can more easily afford the 
tolls than poorer users. This latter effect of diversity is 
usually perceived to be somewhat inequitable. 

 In any case, the tolls represent a larger fraction of income 
for poorer users (presumably many who can also not afford 
to be late to work). This is seen as an unpopular regressive 
form of taxation, a perception which may be hard to avoid. 
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