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Abstract: This study examines how the formation and dissipation of a queue indicated by shock waves affect the 

likelihood of crash occurrence on freeways. Using one-minute average volume and density data collected from a section 

of the Gardiner Expressway in Toronto, changes in volume and density 3-10 minutes prior to the time of crash occurrence 

were observed. Types of shock wave and the shock wave speeds were estimated and related to the frequencies of the 

crashes where the shock wave existed before they occurred. It was found that typical shock wave types vary in different 

time periods of day due to different traffic conditions. The comparison with the volume-density data for the non-crash 

cases using logistic regression models shows that crashes are more likely to occur when the forward shock wave speed is 

lower. This indicates that slower vehicle progression in near-capacity conditions and slower dissipation of a queue in 

congested conditions are more likely to cause crashes. The results provide insights into better understanding of how shock 

waves affect the crash likelihood. 
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INTRODUCTION 

 Over the past few years, real-time traffic flow data 
collected from loop detectors have been widely used for 
monitoring traffic conditions on freeways. More recently, 
some researchers have proposed to use the same data for 
detecting crash-prone conditions for proactive crash 
prevention. In the researchers’ work, these detector data have 
been used for mainly identifying the current traffic states. 
However, they have been rarely used for detecting the short-
term transition of traffic states. In particular, the formation 
and dissipation of congestion creates greater variation in 
speed and potentially increases likelihood of crash 
occurrence on freeways [1, 2]. 

 Most studies on real-time freeway crash likelihood have 
identified various traffic flow measures using the traffic flow 
data collected for some time period before a crash occurs. 
Different types of probabilistic models were developed by 
relating these traffic flow measures to crash frequencies or 
crash likelihood. For instance, Oh et al. [3] predicted the 
real-time likelihood of freeway crashes using the probability 
density functions that distinguish disruptive traffic 
conditions from normal traffic conditions. Lee et al. [4] 
identified real-time crash precursors such as variation in 
speed and traffic density, and predicted potential for crashes 
using a log-linear model that accounts for exposures. Abdel-
Aty et al. [5] also identified traffic measures obtained from 
several detector stations upstream and downstream of the 
crash site and calculated the probability of crashes using the 
matched case-control logistic regression model. Golob et al. 
[6] found a strong association of traffic flow variables 
collected 30 minutes prior to the crash time with the type of  
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crashes. Songchitruksa and Balke [7] considered not only 
traffic flow variables, but also visibility, lighting and time of 
day as the real-time predictors for the type of crash using 
nested logit models. Hourdos et al. [8] observed the 
empirical relationship between real-time traffic conditions 
and the crash likelihood using individual vehicle speeds and 
headways captured by video cameras. Qi et al. [9] developed 
a crash frequency model using time series and cross 
sectional measures, and found that real-time traffic flow 
characteristics, weather, and road geometry are closely 
related to freeway crash likelihood. Most recently, Son et al. 
[10] related the individual vehicle data to crash frequencies 
and found that shorter average distance headway generally 
increases the crash likelihood. 

 However, these studies could not capture the effect of the 
growth and dissipation of a queue on the crash likelihood 
due to inherent limitations of the selected traffic flow 
variables. The variables include average speed, volume and 
occupancy (or density) and their variations over the short 
time interval prior to crash occurrence. Average volume 
cannot alone indicate the level of congestion since the same 
volume can occur at both congested and uncongested 
conditions. Average speed and density do not indicate 
whether a queue (if it exists) is forming or dissipating. 
Although temporal variation in traffic flow such as standard 
deviation of speed within short time intervals can reflect the 
queue movement, it cannot show how fast the queue grows 
or dissipates. 

 In this regard, shock wave theory can be applied to 
observing the transition of different traffic states and the 
speed of such transition. The shock wave speed is 
conventionally represented by the rate of change in volume 
and density [11, 12]. Using this classical theory, the shock 
wave speed on freeways have been measured and analyzed 
in the past studies. Messer et al. [13] estimated the speed of 
shock waves after lane-blocking incidents occurred using the 
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combined equations of the kinematic wave model and the 
Greenshields’ macroscopic traffic flow models. Hurdle and 
Son [14] estimated the shock wave speed using density 
contour maps that can display the spatial and temporal 
propagation of the traffic regimes with similar densities. 
Windover and Cassidy [15] observed the propagation of 
shock waves using the re-scaled cumulative vehicle arrival 
curve. While these studies used the aggregated traffic flow 
data at fixed locations of freeways, Lu and Skabardonis [16] 
estimated the shock wave speed using individual vehicle 
trajectories under congested conditions. However, none of 
these studies considered the association of the shock wave 
speed with freeway crash likelihood. Also, since the traffic 
data from loop detectors are more readily available than 
vehicle trajectories in most freeways, it is more practical to 
develop the method of detecting the presence and speed of 
shock waves using the short-term aggregated traffic data. 

 Thus, the objectives of this study are to determine the 
type and speed of shock waves using real-time traffic flow 
data and to evaluate the effects of shock waves on freeway 
crash likelihood. Following the first section (Introduction), 
the paper is composed of three subsequent sections. The 
second section describes the traffic flow data used in the 
study and typical traffic conditions in the studied freeway. 
The section also illustrates the method of determining the 
types of shock waves and estimating the shock wave speed 
using the traffic flow data. The third section analyzes the 
association of shock waves with the crash likelihood and 
explains their effects from empirical perspectives. The last 
section summarizes the findings and recommends the future 
studies. 

METHODOLOGY 

Description of Data 

 This study uses the traffic flow data collected from loop 
detectors on a section of the westbound Gardiner 
Expressway in Toronto, Canada. The data include 20-second 
average speed, volume and occupancy in each lane. There 
are five loop detector stations that are separated by 
approximately 500 meters as shown in Fig. (1). There are 
one entrance ramp from Jameson Avenue and one exit ramp. 
The entrance ramp is closed for 3 hours from 3 pm to 6 pm 
during weekdays to avoid congestion in the afternoon peak 
periods. This section of the freeway was chosen because 

relatively high number of crashes has occurred in the section 
compared to the other sections. Also, the traffic becomes 
severely congested immediately after the entrance ramp is 
re-opened at 6 pm and it is easier to observe shock waves. 

 A total of 104 crashes have occurred on this section of 
the road during weekdays of the 13-month period from 
January 1998 to January 1999. The crash data were obtained 
from the freeway incident logs that contain date and time of 
the detected crash (later verified by a traffic control 
operator), the nearest loop detector station and the number of 
blocked lanes after the crash occurrence. Since the police 
crash reports were not available, the type of crashes was 
unknown. It was visually observed that the speed at the 
detector station immediately upstream of the crash site 
abruptly dropped after the reported time of crash occurrence 
due to lane blockage. Since it is important to distinguish the 
pre-crash conditions from the post-crash conditions, actual 
time of crash occurrence must be accurately estimated. In 
this study, the time of crash occurrence was assumed to be 
the time when the speed abruptly dropped. Among 104 
crashes, 62% of crashes have occurred at the station 80 
immediately upstream of the exit ramp. The reason for high 
crash frequency at this location is unknown. 

 To understand the temporal patterns of traffic conditions 
on the studied freeway, the volume-density relationships 
were observed for the following four time periods: 1) 
morning peak period (6-9 am); 2) off-peak period (9 am-3pm 
and 8-11 pm); 3) afternoon peak period when the entrance 
ramp is closed (3-6 pm); and 4) afternoon peak period when 
the entrance ramp is opened (6-8 pm). The original 20-
second average data were converted to 1-minute average 
data to eliminate large fluctuation of the values. Traffic 
conditions were observed using the 1-minute volume and 
density (or occupancy) collected from loop detectors in 
different time periods. 

 Traffic conditions were classified into the uncongested 
and congested regimes based on the density at capacity (or 
critical density). The uncongested and congested regimes 
represent the conditions when density is lower and higher, 
respectively, than the critical density. The capacity was 
estimated to be 2,300 vehicles/hour/lane, i.e. the maximum 
observed volume, and the critical density was determined to 
be 30 vehicles/km when the volume reaches the capacity. 

 

Fig. (1). Location of detectors on westbound Gardiner expressway. 
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 Fig. (2) shows the volume-density relationships by time 
of day on several weekdays during the study period. In the 
morning peak period, volume-density data points generally 
lie in the uncongested regime as shown in Fig. (2a). In the 
off-peak period, the data points are scattered over both 
uncongested and congested regimes as shown in Fig. (2b). In 
the afternoon peak periods, the points generally lie in the 
congested regime as shown in Fig. (2c, d). In particular, a 
greater portion of the data points lies in the congested regime 
during the period with opened entrance ramp than the period 
with closed entrance ramp. This indicates that congestion is 
more severe after the ramp is opened. Clearly typical traffic 
conditions vary in different time periods. 

 However, the figures do not display short-term variation 
in traffic flow and short-lasting queue. The formation and 
dissipation of a queue can be observed by tracing the change 
in traffic conditions. This change can be represented by 
shock waves. The estimation of the shock wave speed is 
explained in the next section. 

Estimation of Shock Wave Speed 

 If shock wave exits, the shock wave speed is determined 
as the change in volume divided by the change in density as 

follows: 

AB =
q

k
=  

qA qB
kA kB

             (1) 

where AB is the speed of the shock wave moving from 
traffic state A to traffic state B (km/hour), q

A
 and q

B
 are 

volumes at traffic states A and B, respectively 
(vehicles/hour), and k

A
 and k

B
 are densities at traffic states A 

and B, respectively (vehicles/km). 

 In this study, the shock wave speed was estimated using 
the volume and density during 10 minutes prior to the 
estimated time of crash occurrence. If the 1-minute average 
volume and density consistently increase or decrease during 
the 10-minute period, it is possible that the shock wave 
contributed to crash occurrence. The shock wave speed was 
estimated by measuring the slope of a line that best fits to the 
observed data points. The line can be fit to the data more 
objectively using the least-square linear regression. 

 In some cases, it was observed that although the volume 
and density did not consistently increase or decrease during 
the entire 10-minute period, there were two distinct clusters 
of points. These clusters were assumed to be the two 

         

Fig. (2). Volume-density relationship in different time periods. 
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different steady-state traffic states. Thus, the average volume 
and density were calculated for each cluster as a 
representative point and the slope of a line connecting these 
representative points was measured. 

 However, shock waves could not be measured for 45 
crashes among 104 crashes due to no specific pattern of 
changes in volume and density. This implies that the shock 
wave did not exist prior to the occurrence of some crashes. 
Thus, the scope of this analysis will be limited to the crashes 
where shock waves existed before the crashes occurred. 

 In this study, the shock wave was classified in terms of 
the following categories: 

1. Direction of shock wave movement: forward or 
backward shock wave. Forward shock wave moves in 
the same direction as traffic flow whereas backward 
shock wave moves in the opposite direction to traffic 
flow. 

2. Growth or dissipation of a queue: forming or 
recovery shock wave. Forming shock wave occurs as 
the density increases whereas recovery shock wave 
occurs as the density decreases. 

3. Traffic state: changes in volume and density within 
the same traffic states (uncongested or congested 
regime) or between two different traffic states (from 
the uncongested regime to the congested regime or 

vice versa). 

 The following eight shock wave types were defined 
based on the above categories: 

Type 1-1: Forward forming shock wave within uncongested 
regime 

Type 1-2: Forward forming shock wave from uncongested 
regime to congested regime 

Type 2-1: Forward recovery shock wave within uncongested 
regime 

Type 2-2: Forward recovery shock wave from congested 
regime to uncongested regime 

Type 3-1: Backward forming shock wave within congested 
regime 

Type 3-2: Backward forming shock wave from uncongested 
regime to congested regime 

Type 4-1: Backward recovery shock wave within congested 
regime 

Type 4-2: Backward recovery shock wave from congested 
regime to uncongested regime 

 The eight shock wave types are also shown in Fig. (3). 
As shown in the figure, the shock wave speed ( AB) 
represents the slope of the line AB in a volume-density 

 

Fig. (3). Types of shock wave. 
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curve. The shock wave speeds with positive and negative 
slope represent forward and backward shock wave, 
respectively. 

 Table 1 shows frequencies of crashes by shock wave type 
for different time periods. Forward shock wave (Types 1 and 
2) is the dominant shock wave type associated with crashes 
in the morning peak and off-peak periods. On the other hand, 
both forward shock wave (Types 1 and 2) and backward 
shock wave (Types 3 and 4) are almost equally associated 
with crashes in the afternoon peak period. It was also 
observed that crashes are associated with both forming and 
recovery shock waves for backward shock waves but nearly 
all crashes are associated with forming shock waves for 
forward shock waves. This implies that crashes are more 
likely to occur when a queue grows in the uncongested 
regime and a queue grows or dissipates in the congested 
regime. 

 As noted earlier, shock waves could not be identified for 
some crashes due to no consistent patterns of volume and 
density changes for the entire 10-minute period prior to the 
crash time. However, it is possible that shock waves only 
existed for a time period shorter than 10 minutes. For this 
reason, traffic conditions for the time period shorter than 10 
minutes prior to the crash time (called “short-term interval”) 
were observed. 

 For instance, shock waves were determined during 3~4 
minutes prior to the crash time as shown in Fig. (4). The 
plots on the left of the figure show the conditions for the 10-
minute intervals and indicate which traffic regime 
(uncongested or congested) the current traffic state belongs 
to. The short-term intervals were selected based on the 
authors’ subjective judgment such that more consistent 
patterns can be observed during the selected interval. The 
figure demonstrates that the change in the short-term 
intervals better captures the patterns of volume and density 
changes immediately before the crash time than the change 
in 10-minute intervals. In Fig. (4a, b), although the slope of 
the regression line is positive during 10 minutes, volume and 
density did not consistently increase or decrease over the 
entire 10-minute interval. However, the data points during 3 
minutes prior to the crash time clearly show consistent  
 

pattern of change in which both volume and density increase 
(forward forming shock wave) or decrease (forward recovery 
shock wave). Similarly, the data points during 4 minutes 
prior to the crash time in the afternoon peak periods show 
negative slope of the regression line and consistent pattern of 
change in which volume increases while density decreases 
(backward recovery shock wave) or volume decreases while 
density increases (backward forming shock wave) as shown 
in Fig. (4c, d). 

 As a result, shock waves could be determined for 72 
crashes which are more than 59 crashes initially determined 
for the 10-minute interval prior to the crash time. 
Frequencies of crashes by shock wave type for the short-
term intervals are also shown in Table 1. It was found that 
the shock wave types for some crashes were different 
between the 10-minute and short-term intervals. It should be 
noted that a substantial portion of the shock waves 
previously classified as forming shock waves for the 10-
minute interval was re-classified as recovery shock waves 
for the short- term interval. For this reason, the distributions 
of crashes by shock wave type were different between 10-
minute and short-term intervals. The estimated shock wave 
speeds by shock wave type for the both time intervals are 
shown in Table 2. Although the backward shock wave speed 
is conventionally expressed in a negative value due to 
opposite signs of changes in volume and density (refer to 
Equation 1), an absolute value of the shock wave speed was 
shown in the table. Given that a crash is more likely to be 
affected by the short-term change in traffic states than the 
long-term change, the shock waves estimated for the short-
term intervals were used for the analysis in the next section. 

RESULTS AND DISCUSSION 

 To identify the effects of shock waves on crashes, shock 
waves were also estimated for the normal traffic conditions 
when crashes did not occur. To control for the effects of road 
geometric, weather and travel demand, 20-second average 
traffic flow data were obtained from the same detector 
station at the same time of day under the same weather 
condition as the crash cases but on a different day. Day of 
week was not controlled due to an insufficient data. These  
 
 

Table 1. Frequency of Crashes for Each Shock Wave Type in Different Times of Day 

 

AM Peak Off Peak PM Peak (Ramp Closed) PM Peak (Ramp Opened) 
Shock Wave Type 

10 Min. Short-Term 10 Min. Short-Term 10 Min. Short-Term 10 Min. Short-Term 

TYPE 1-1 13 7 13 12 9 7 2 1 

TYPE 1-2 0 0 1 1 1 1 2 4 

TYPE 2-1 2 8 0 2 0 4 0 1 

TYPE 2-2 0 0 0 1 1 0 1 1 

TYPE 3-1 0 0 0 0 2 1 4 4 

TYPE 3-2 0 0 0 0 0 0 0 0 

TYPE 4-1 0 0 0 2 1 1 0 6 

TYPE 4-2 0 0 0 0 5 6 2 2 

Total Crash 15 15 14 18 19 20 11 19 
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Fig. (4). Estimation of shock wave. 
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data are called the “non-crash cases”. It was assumed that 
crashes did not occur in these cases due to lower contribution 
by shock waves to the crash occurrence although shock 
waves existed. Shock waves were determined in the same 
manner as the crash cases as illustrated in the previous 
section. 

 Frequencies of the non-crash cases by shock wave type 
for the four time periods are shown in Table 3. Similar to the 
crash cases, shock waves were determined for the 10-minute 
and short-term intervals. Shock waves for a total of 78 non-
crash cases were determined. The estimated shock wave 
speeds by shock wave type are shown in Table 4. 

Table 2. Average Shock Wave Speed for Each Shock Wave Type in Different Times of Day for Crash Case (km/h) 

 

AM Peak Off Peak PM Peak (Ramp Closed) PM Peak (Ramp Opened) 
Shock Wave Type 

10 Min. Short-Term 10 Min. Short-Term 10 Min. Short-Term 10 Min. Short-Term 

TYPE 1-1 60.62 59.86 68.17 69.05 47.92 53.42 34.95 64.44 

TYPE 1-2   2.27 1.67 7.80 19.80 28.22 30.92 

TYPE 2-1 57.71 57.66  55.16  55.14  33.19 

TYPE 2-2    42.15 15.10  11.96 24.23 

TYPE 3-1     21.72 25.90 18.30 19.21 

TYPE 3-2         

TYPE 4-1    28.11 29.00 54.49  20.05 

TYPE 4-2     19.94 16.07 14.40 14.40 

 

Table 3. Frequency of Non-Crash Cases for Each Shock Wave Type in Different Times of Day 

 

AM Peak Off Peak PM Peak (Ramp Closed) PM Peak (Ramp Opened) 
Shock Wave Type  

10 Min. Short-Term 10 Min. Short-Term 10 Min. Short-Term 10 Min. Short-Term 

TYPE 1-1 11 9 10 11 8 10 2 3 

TYPE 1-2 0 0 0 0 2 3 3 3 

TYPE 2-1 9 11 4 3 4 3 0 2 

TYPE 2-2 0 0 0 0 1 0 3 1 

TYPE 3-1 0 0 1 2 2 3 3 3 

TYPE 3-2 0 0 0 0 0 1 2 0 

TYPE 4-1 0 1 0 1 1 1 3 5 

TYPE 4-2 0 0 0 0 0 0 1 1 

Total Crash 20 21 15 17 18 21 17 18 

 

Table 4. Average Shock Wave Speed for Each Shock Wave Type in Different Times of Day for Non-Crash Case (km/h) 

 

AM Peak Off Peak PM Peak (Ramp Closed) PM Peak (Ramp Opened) 
Shock Wave Type 

10 Min. Short-Term 10 Min. Short-Term 10 Min. Short-Term 10 Min. Short-Term 

TYPE 1-1 70.73 67.81 78.48 82.18 58.06 62.11 82.36 67.59 

TYPE 1-2         35.83 34.87 34.34 36.37 

TYPE 2-1 58.96 67.21 73.60 70.16 53.68 51.65   59.96 

TYPE 2-2         32.69   21.99 41.92 

TYPE 3-1     11.75 12.31 20.36 19.89 16.05 14.54 

TYPE 3-2           2.50 8.17   

TYPE 4-1   43.08   24.93 37.04 37.04 18.22 13.13 

TYPE 4-2             14.41 16.36 
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 Due to the limited amount of data, the crash and non-
crash cases were compared based on the distributions of the 
forward and backward shock waves instead of the 8 shock 
wave types as shown in Fig. (5). It was found that the 
average forward shock wave speed was lower for the crash 
cases than the non-crash cases (54.46 km/h vs 64.72 km/h) 
but the average backward shock wave speed was higher for 
crash cases than the non-crash cases (21.75 km/h vs 17.64 
km/h). 

 However, the difference in the shock wave speed 
between the crash and non-crash cases was statistically 
significant at a 95% confidence interval only for the forward 
shock wave (t-statistics = 2.27, p-value = 0.03), but not for 

the backward shock wave (t-statistics = 1.18, p-value = 
0.24). To assess the impact of the shock wave speed on the 
crash likelihood, the binary logistic regression model was 
developed. The model predicts the probability of occurrence 
of a crash based on the shock wave speed (x) as described in 
the following expression: 

ln
P(Y = i)

1 P(Y = i)
= + x            (2) 

where P(Y = i) is the probability of occurrence of a crash (i = 
1 for crash and i = 0 for non-crash),  is the constant, and  
is the coefficient. The left side of Equation (2) denotes the 
ratio of the probability of crash (Y = 1) to the probability of 

 

Fig. (5). Comparison of shock wave speeds by direction of movements for crash and non-crash cases. 
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non-crash (Y = 0). This ratio is also called the odds of crash 
to non-crash. The odds of crash for forward shock waves is 
described as follows: 

ln
P(Y = 1)

P(Y = 0)
= 1.0119 0.197x   

 The shock wave speed is statistically significant at a 95% 
confidence interval (p-value = 0.025). The negative 
coefficient of the shock wave speed implies that lower 
forward shock wave speed increases the odds of crash. This 
indicates that a crash is more likely to occur when the 
forward shock wave propagates slowly. The reason can be 
explained as follows. 

 Lower forward shock wave usually occurs near the 
boundary between the uncongested and congested regimes. It 
can be verified from a volume-density curve in Fig. (3) that 
the rate of change in volume for a given change in density is 
much lower near the capacity than the rate of change in free-
flow conditions (low volume and low density). In other 
words, traffic state radically changes from uncongested 
conditions to congested or near-capacity conditions. Thus, 
vehicles are more likely to encounter slow-moving lead 
vehicles ahead and this will result in higher chance of 
crashes. Lower forward shock wave also occurs when a 
queue slowly dissipates in congested conditions. Slower 
dissipation of a queue increases the duration of congestion 
and thereby increases chance of abrupt speed transition 
between congested and uncongested conditions. This finding 
is consistent with Abdel-Aty et al. [17] which found that 
faster removal of congestion can effectively reduce crash 
risk by preventing the growth of a queue. 

 However, the backward shock wave speed was not 
statistically significant in the logistic regression model. This 
result contradicts the priori expectation that that higher 
backward shock wave speed increases the odds of crash. 
This is because as a queue grows faster in the opposite 
direction of traffic flow, the drivers upstream of a queue are 
more likely to unexpectedly encounter the tail of a queue. 
Consequently, the drivers’ potential failure of reducing speed 
will result in a crash. Insignificant effect of the backward 
shock wave is partially supported by the fact that relatively 
low number of crashes occurred at the locations where 
backward shock waves formed more frequently. More 
specifically, although a queue occasionally formed 
immediately upstream of the entrance ramp after the ramp is 
opened, fewer crashes occurred at these locations compared 
to the locations further upstream of the entrance ramp. 
Another reason for the insignificant effect is relatively fewer 
samples of the backward shock wave compared to the 
forward shock wave. 

CONCLUSIONS AND RECOMMENDATIONS 

 This study investigates the effects of shock waves on the 
likelihood of crash occurrence on freeways. The types of 
shock waves and the shock wave speeds were estimated by 
tracing the changes in the 1-minute average volume and 
density data 3-10 minutes before a crash occurred if the 
shock wave existed. Shock waves were compared between 
the crash and non-crash cases to evaluate the association of 

shock waves with the crash likelihood. The main findings of 
the analysis are summarized as follows: 

1. Typical shock wave types vary in different time 
periods of day. Dominant shock wave types are 
determined by the typical traffic conditions during the 
time period. If shock waves exist, crashes tend to 
occur more frequently by dominant shock wave type 
in each time period. 

2. Lower forward shock wave speed increases the crash 
likelihood. This implies that slower vehicle 
progression in near-capacity conditions and slower 
dissipation of a queue in congested conditions are 
more likely to cause crashes on freeways. 

 The findings in this study also apply to any location 
regardless of the number of crashes. The similar results were 
also found in the eastbound freeway section where relatively 
lower number of crashes occurred compared to the 
westbound freeway section [18]. 

 Based on the findings, it is recommended that time-
varying volume and density are monitored in real time to 
detect high crash-prone traffic conditions. When lower 
forward shock wave speed (classified according to the pre-
specified threshold value) is detected under the congested 
conditions, it is important to facilitate removal of congestion 
by increasing the speed downstream of the bottleneck. These 
will mitigate the adverse effects of shock waves on high 
traffic flow turbulence and furthermore the crash likelihood. 
However, the discussion of specific crash countermeasures is 
beyond the scope of this study. 

 In future studies, the effects of the backward shock 
waves need to be further investigated using additional traffic 
flow and crash data. This will help better understand how the 
direction of shock wave movement affects the crash 
likelihood. It is also recommended that systematic and 
automated methods of determining the time period and 
estimating the shock wave speed are developed. 
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