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Abstract: This paper introduces a methodology to analyze the safety of timed discrete event systems. Our case-study is 
the level crossing, a critical component for the safety of railway systems. First, our goal is to take out the forbidden state 
highlighted by a p-time Petri net modelling. This model deals with the requirements of the considered system and has to 
contain all the constraints that have to be respected. Then we describe a process identified as a solution for the system 
functioning. This method consists in exploring all the possible behaviors of the system by means of the construction of 
state classes. Finally, we check if the proposed process corresponds to the model of requirements previously built. 
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INTRODUCTION 

 This paper deals with the general problem of safety 
critical systems processing. The objective is to describe a 
methodological approach which proposes to use formal 
modelling in order to provide some tools for requirement 
engineering. 

 In order to fulfill some needs in regards to the safety of 
railway systems, European specifications and standards are 
introduced and materialize in different practices and cultures. 
Thereby, for example, Technical Specifications for 
Interoperability are regulation texts approved by the 
European Union and which recommend the application of 
standards such as the 50128 CENELEC standard [1]. It deals 
with software for railway control and protection systems and 
brings up notions such as requirements and tracability. The 
authors are convinced that formal methods give a relevant 
contribution to answer the problem considered. Actually, 
formal methods allow a mathematical expression of 
requirements. However requirements need to be represented 
as simply and non ambiguously as possible. Requirements 
also need to be assessed by professional specialists. We put 
forward the hypothesis that the UML notation, Petri nets and 
the method are widely used to model railway systems. 
Among other applications, they are used to model and 
validate real-time distributed railway systems. A benefit of 
using UML [2] is its status as an international standard and 
its widespread use in the software industry. It is used to 
identify the requirements and describe the system. Its 
graphical nature makes discussions easier for the different 
actors of a project. Nevertheless, it is only a semi-formal 
modelling tool. Then, the method, introduced by J.R. 
Abrial [3] is a formal method for the development of  
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specifications and their refinements to an implementation, 
already used in the railway industry [4]. Its notation may be 
complex and difficult to understand. Moreover, a model 
analysis requires mathematical skills which are unusual in 
industry. Finally, Petri nets [5] combine three important 
features: a graphical representation, a dynamic behavior and 
an abstraction of the treatments. 

 For these reasons, we propose to use Petri nets as a 
graphical formal model. Graphical tools are used to express 
first-level requirements which are strong and mandatory 
constraints. Consequently, their violation is strictly 
forbidden. The model provided herein can highlight 
mathematical dependencies ensuing from first-level 
requirements. This aspect defines the main contribution of 
this paper. During the different process phases, requirements 
have to be sharply propagated into the downstream phases. 
Several types of requirements can be identified; first-level 
(source) requirements resulting from norms (rules) and 
informal specifications (expression of needs), first level 
dependencies coming from first level requirements 
propagation, technical requirements related to technical 
choices and then technical dependencies. In order to make 
traceability easier, requirement propagation has to be 
document for verification purposes. 

 As seen previously, the paper deals with requirement 
engineering, but more precisely, it focuses on temporal 
requirements. 

 This paper is divided into 6 parts. After this introduction, 
the approach is argued and the methodology is detailed by 
presenting the different models, their use and the state 
classes for the requirements assessment. The fourth part 
illustrates the method with a railway case study. The fifth 
one presents some discussions around the informal 
specification and our methodology efficiency. Then the last 
part gives some conclusions and prospects. 
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2. APPROACH 

 In safety critical systems processing, requirement 
engineering is an important phase. We are convinced that 
graphical tools must be used to model them. In order to 
assess the requirement fulfillment, we also need 
mathematical tools. Nevertheless, when the assessment 
cannot be proved mathematically, a professional specialist is 
needed. Actually, from an ergonomic point of view, a 
graphical tool provides a better understanding of models. 

 The work described in this paper aims at assisting 
specification assessment through a rigorous requirement 
modelling. It starts when all the high level requirements have 
been elicited from the informal specifications, with some 
well-defined and identified safety critical entities. Then, a p-
time Petri net is built in order to model safety temporal 
requirements. This model captures the set of the valid 
temporal behaviours. 

 The next step consists in building a process model by 
mean of a t-time Petri net. This model corresponds to a 
proposed solution which still has to be checked regarding 
requirements. In order to guaranty requirements traceability, 
some rules must be fulfilled for this model construction in 
order to allow consistency checking with the requirements 
model. Consistency checking is an important problem but 
not developed in this paper. 

3. METHODOLOGY 

 Petri nets formalism is a well-known graphical, 
executable technique for the specification and analysis of 
concurrent, discrete-event dynamic systems. Fundamental 
properties and theoretical definitions are presented in [6]. 

 In order to integrate the time window constraints in the 
Petri net model, dedicated tools named time Petri nets have 
been introduced. These tools have both modelling abilities 
and strong structural properties and therefore seem able to 
provide a representation of the system adapted to our goal. 
First we describe the two time Petri nets that are used in this 
paper. Then a comparison of these two models will be done 
in order to justify our modelling choices. Finally the state 
classes are described. In this section, all the steps of the 
methodology are illustrated by a theoretical example. 

3.1. Relevant Tools for Particular Problems 

 Temporal requirement can be modelled by time interval 
associated to nodes of a discrete event system model. 
Nevertheless several modelling tools contain this kind of 
constraints: timed automata, t-time Petri nets and p-time 
Petri net etc. Let us recall those requirements are extracted 
from an informal specification where the functioning is, 
most of the time, only partially specified. Then, the 
modelling tools are divided between two classes of model: 
first ones have associated functioning and others have not. 
Actually, the introduction of a local functioning in a 
requirement model is not appropriate. Indeed, in this case 
some available solutions are rejected with no reason. Timed 
automata [7] and t-time Petri net [8, 9] have their own 
embedded functioning. Actually, they are well known 
efficient tool for modelling, controlling, simulating a system 
which already exists. More particularly, t-time Petri net are a 
widespread tool for temporal protocol modelling [10]. Thus, 

considering a system which is completely defined, this last 
tool is particularly relevant. 

 P-time Petri nets belong to another class of modelling 
tool. They have no default temporal functioning. When a 
duration belongs to a time interval, no assumption is locally 
made on the effective value of this duration. Considering this 
particularity, p-time Petri net are a good tool for high level 
requirement modelling [11]. As an illustration, performance 
evaluation can be performed taking only into account 
requirements. The immediate drawback of the previous 
singularity is that there is no dedicated efficient temporal 
simulation tool. Nevertheless the -time Petri net models all 
the available behaviors. 

 Finally, we propose p-time Petri nets for requirement 
modelling and t-time Petri nets to model a completely 
defined system. Actually, two different tools are used to 
model two different kinds of problem, whereas they are 
really closed from a semantic point of view. This last aspect 
is important for the checking step between the requirement 
and candidate process models. 

3.2. P-Time Petri Nets for Requirements 

 The formal definition of a p-time Petri net [12] is given 
by a pair (R, I) where: 

• R is a marked Petri net, 

•  where pi  with 
 

 The interval Ii defines the static interval of staying time 
of a mark in the place pi belonging to the set of places P. 
When , it means there is no upper bound 
specification for the associated place pi. A mark in the place 
pi is taken into account in transition validation when it has 
stayed in pi for a duration of at least ai and no more than bi. 
After the duration bi, the token will be "dead". This last 
aspect is used for temporal requirement specification. In fact, 
the death of a token represents a non-respect of the 
specifications: it corresponds to a class of forbidden states. 
Contrary to the t-time extension, the evolution of a p-time 
Petri net is characterized by both the firing of transitions and 
the death of tokens. This tool has been introduced to model 
the behavior of production systems submitted to strong 
synchronization constraints. For example, in an industrial 
context of a production line where some products have to be 
soaked in chemical baths, the death of a token represents a 
product that stayed in a tank for too long [13]. One of its 
limitations is that p-time Petri net cannot easily model time-
outs. This model is also relevant in a context of temporal 
safety requirements modelling. 

 In order to illustrate the different steps of our 
methodology, the following theoretical example is given: 

• Let us consider a production process with a transport 
phase, 

• There is a deadline of consumption date, named max, 
for the product. 

 Fig. (1) gives the p-time Petri net for this specification. 
Transition production (resp. consumption) represents the 
production (resp. the consumption) phase of the process. 
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Place p3 represents the deadline of consumption constraint, 
p2 the transport duration (at least d time units) and p1 allows 
to reinitialize the process. 

 

Fig. (1). Requirements modelling illustration. 

3.3. T-Time Petri Nets for Process Modelling 

 The formal definition of a t-time Petri net [19] is given 
by a pair (R, I) where: 

• R is a marked Petri net 

•  where ti  with 
 

 The static interval function I associates with each 
transition ti a temporal interval [ai, bi] that represents the set 
of its possible firing dates counting from its enabling date 
(  is the set of positive rational numbers). In a t-time Petri 
net, the events to consider are the enabling date of a 
transition, the beginning and the end of the temporal interval 
associated to the considered transition and finally the 
effective firing date of the transition. The belonging of the 
firing date to the interval can be expressed with simple 
temporal constraints. Thus, the notions of enabling and 
validating transitions are not still equivalent: a transition can 
be fired only if both conditions of marking and time are 
verified. This tool has been introduced to model and analyze 
communication systems, particularly to describe and validate 
telecommunication protocols. Moreover, it can be 
generalized to model procedures to be followed. Indeed, its 
ability to model uncertainties, by means of the intervals, 
appears as very useful in such a case. Finally, one of the last 
advantages of this tool is to be able to model watchdogs and 
time-outs. A time-out is a system able to verify if a given 
event happens before a given time, otherwise it indicates an 
error. 

 In order to check that a process model corresponds to a 
requirements model, a projection Pr is defined as: 

• Pr is a relation, 

• Sol is the set of process model nodes, 

• Req is the set of requirements model nodes, 

• Pr (Sol) = Req. 

 It means that all the nodes of the requirements model 
have to possess a corresponding node in the process model. 
In order to respect that, a guideline to build the process 
model is recommended. Fig. (2) gives the t-time Petri net 

which models a process answering to the specifications 
given by Fig. (1). 

 

Fig. (2). Process modelling illustration. 

 We can notice that transitions (resp. places) keep the 
same name except the place modelling the deadline of 
consumption constraint (Table 1). It is transformed into a 
transition, fired only if the limit max is reached. In such a 
case, the specification is no more fulfilled. 

 Let us note that several nodes in the process model can 
be projected on a single node on the requirement model. It 
can particularly happen in the case of a watchdog, built with 
several transitions and places in the process model, which 
corresponds to a temporal constraint modelled by a timed 
place in the requirement model. 

Table 1. Corresponding Nodes Between the Two Models 

 

Nodes Fig. (1) Nodes Fig. (2) 

Production Production 

Consumption Consumption 

P1 P1 

P2 P2 

P3 Tp3 

 

3.4. State Classes 

 The analysis of Petri net can be done thanks to two 
methods: the structural analysis and the enumerative 
one [20]. The latter is used in order to check the dynamic 
properties of the system. This approach is based on the 
construction of the coverability tree. The checking that 
forbidden states are not reachable or the analysis of temporal 
constraints between events of a given scenario require the 
exhaustive search of all the states of the system. However, in 
case of temporal constraints, the states of the system are in 
infinite number, which makes impossible their direct 
exploration by enumeration because of the state-space 
explosion. Therefore, it is necessary to cover these states by 
a finite number of classes which are abstractions for 
symbolic states. As a result a class graph can be built in 
order to explain the states and their associated temporal 
constraints, which allow the transition from a class to 
another. In fact, the notion of state classes allows an analysis 
similar to the coverability tree method for the time models. 
Overall, the final purpose of this work is to check if the 
projection of the set of the state classes generated from the t-
time Petri net on the requirement space is included in the set 
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of state classes generated from the p-time Petri net. We can 
express this purpose in a formal way. Let us denote: 

• Sr: set of state classes generated from the p-time net 
modelling the requirements, 

• Ss: set of state classes generated from the t-time net 
modelling the proposed solution as process, 

• Req: the requirement space, i.e. the set of 
requirements model nodes, 

• R(A,B): an application which represents the projection 
of A on B. 

 As a result, we want to check if: 

•  R(Ss,Req) Sr. 

3.4.1. State Classes Construction 

 In a p-time Petri net, as a classic Petri net, a state can be 
reached from the initial state by a firing sequence, named s. 
For each transition of this sequence, its firing instant, named 
u, is associated. Let us consider the set of the reachable 
states from the initial one by firing of all feasible u 
corresponding to s: the set of all reachable state from the 
initial one by firing s is now define. This set defines the state 
class associated to s. The initial class, C0, contains only one 
state, the initial one. Then, a state class is a pair C= (M, D) 
where: 

• M is the class marking, 

• D is the potential temporal firing domain. 

 Let us assume that the transition ti is fireable at the 
instant  from the class C= (M, D). This fire generates the 

following class C’= (M’, D’) which is computed as follow: 

1. M’ is computed using usual incidence matrix, 

2. D’ is computed from D. 

T he firing domains D of p-time Petri net state classes can 
be defined as a solution of these inequations: 

1. q , 

 where P is the set of place and J, the set of marking. 

2.  , 

 where . 

 The computation of D’ from D is not detailed but just 
illustrated by Table 2. The formal algorithm can be found 
in [14]. Fig. (3) gives the graph of state classes ensuing from 
p-time Petri net represented in Fig. (1). 

 

Fig. (3). Graph of the state classes of the p-time Petri net theoretical 
example. 

Table 2. Markings Corresponding to the State Classes of Fig. 

(1). 

 

Class Marking Domain 

C0 1 
 

C1 2, 3 
 

 

 The all description of t-time Petri net state classes 
construction is not defined here. [15] defines the theoretical 
definition of this construction and the TINA1 (TIme petri Net 
Analyser) software tool is used in order to generate the t-time 
state classes [8]. Fig. (4) gives the graph of state classes 
ensuing from t-time Petri net represented in Fig. (2). Its 
marking is illustrated by Table 3. 

 

Fig. (4). Graph of the state classes of the t-time Petri net theoretical 
example. 

Table 3. Markings Corresponding to the State Classes of Fig. (2) 

 

Class Marking Domain 

C0 1 
 

C1 2  

 

C2 ø ø 

 

3.4.2. Projection and Consistency Checking 

 As shown in paragraph III.C, structural consistency is 
applied by construction. The behavioral consistency has to be 
now checked using the corresponding state classes graphs. Let 
us recall to mind that the evolution from a state class to another 
ensues from a transition firing. Let us denote by Pe(Ss,Req), the 
subset of Ss, with Ss the set of classes generated from the t-time 
net modelling, the set of state where all selected state classes are: 

1. Input state classes of a transition t firing with , or 

2. Output state classes of a transition firing of Req. 

 We can claim the consistency when: 

 

 Obviously, the illustrating example respect the conditions 
mentioned below. The consistency of the two models (Figs. 1, 
2) can be checked. 

4. CASE STUDY 

4.1. Level Crossing Case Study 

 To illustrate the approach, a radio-based level crossing 
control system is designed. This example is inspired by [16] 

                                                
1 http://www.laas.fr/tina/ 
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and is composed of a single-railway track which crosses a 
road at the same level (Fig. 5). Our purpose is not to discuss 
about the specifications relevancy, but to propose a 
methodology which helps to assess that the process respects 
the specifications. 

 This theoretical case study is intended to scientific 
research and its specifications have both advantages of being 
more realistic and sizeable than theoretical traditional 
examples and less complex than industrial projects. For 
example, it has been chosen as an application case study in 
[17]. The crossing zone is named danger zone. The most 
important security rule is to avoid collision by prohibiting 
road and railway traffic simultaneously on level crossing. 
The railway crossing is equipped with barriers and road 
traffic lights to forbid the car passage. When they are 
switched off, road users (drivers, pedestrians,) can cross. In 
the other case, the level crossing is closed and railway traffic 
has priority. Half barriers are used in order to permit the 
evacuation of vehicles from the danger zone after the level 
crossing closing. 

 The main difference between this technology and the 
traditional control of level crossings is that signals and 
sensors on the route are replaced by radio communication 
systems embedded in the train and in the level crossing. This 
offers cheaper and more flexible solutions, but also shifts 
safety critical functionality from hardware to software. 
Instead of being detecting by a sensor, the train computes the 
position where it has to send a signal to secure the level 
crossing. Therefore the train has to know the position of the 
level crossing, the time needed to secure the level crossing, 
and its current speed and position, which are measured by an 
odometer. When the level crossing receives this command, it 
switches on the traffic lights, first the yellow lights, then the 
red lights, and finally closes the barriers. When they are 
closed, the level crossing is considered as safe for a given 
period of time. The stop signal, indicating an insecure 
crossing, is also substituted by computation and 

communication. The train requests the status of the level 
crossing. Depending on the answer the train brakes or passes 
the crossing. The level crossing performs self-diagnosis and 
automatically informs the central radio office about defects 
and problems. 

4.2. Temporal Requirements 

 Since there are no barriers for the exit lanes, road users 
possibly may enter the crossing area on the opposite lane. 
Although this behavior constitutes a severe contravention of 
the traffic regulations, it can be frequently observed due to 
long waiting times at closed level crossings. This has to be 
taken into account for the level crossing control by 
respecting a maximum closure time. 

 In order to avoid long waiting times for road users before 
a closed level crossing, the case study specifications lay 
down that the train has to pass the level crossing before a 
maximum arrival time of 240 seconds, from having sent the 
activation order to the level crossing. If the train detects that 
it cannot arrive at the level crossing within the specified time 
and is still able to stop before the danger point, it has to 
cancel the activation order by sending a deactivation order to 
the level crossing. In this case, the train applies a braking 
curve ending at the danger point. The level crossing will be 
open upon receipt of the deactivation order. The passing of 
the unclosed level crossing requires the driver to confirm the 
safe state of the level crossing. 

 In order to take into account such temporal constraints, 
we need a formal modelling tool able to provide a 
representation of the level crossing adapted to our purpose. 
Consequently, we have chosen time Petri nets to model the 
system. 

4.3. The Requirements Model 

 This section illustrates, on the level crossing case study, 
the first step of the proposed methodology. It contains a 
formal description of the requirements model using p-time 

 

Fig. (5). Level crossing case study. 
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Petri nets. Then the state classes of this model are built in 
order to extract all the reachable states of the model. 

4.3.1. P-Time Model 

 We focus on the needs of the system in building a 
requirements model that contains every constraint that must 
be fulfilled. This model, built with a p-time Petri net, takes 
particularly into account the expression of temporal 
constraints taken from the specifications. 

 This requirements model based on p-time Petri nets has 
already been presented in [11] and [18]. These papers aim at 
building safe control specifications. Namely, they propose 
some methods to avoid forbidden states associated with non 
respects of the temporal requirements. In this section, we use 
the same requirements model, which can be found in Fig. 
(6). 

 

Fig. (6). Requirements model using p-time Petri net. 

 To sum up, there are two sequences synchronized by 
event occurrences. Let us introduce the time constraint on 
the place p13: it models the limitation for the level crossing to 
be closed. A process must be proposed in order to avoid that 
a token becomes "dead" after having stayed more than 240 
seconds in p13. Indeed, this corresponds to a non respect of 
the temporal specifications. Such a process can be found in 
the case study. 

 Our goal is to build the state classes of this model in 
order to compare them with the projection of the state classes 
of the process model on the requirement space. 

4.3.2. State Classes of the p-Time Model 

 The chosen approach consists in obtaining a finite 
representation of the reachable states by the construction of a 
coverability graph [14]. 

 A state is reachable from the initial state by the execution 
of a firing sequence (s). For each transition of this sequence, 

a firing time (u) is associated. So, a class state associated to 
the sequence (s) is a set of reachable states from the initial 
state by the firing of the sequence (s). Therefore it is a 
couple C= (M, D) with: 

• M: the marking of the class, 

• D: the potential firing domain of the class. 

 Fig. (7) represents the graph of classes of the p-time Petri 
net described by Fig. (6). It is composed by classes Ci and 
the arcs connecting them. An arc (Ci, Cj) represents the firing 
of the transition leading from Ci to Cj. For example, the arc 
connecting C0 to C1 corresponds to the firing of the Radio 
Signal Sending transition. 

 

Fig. (7). Graph of the state classes of the p-time Petri net. 

 In Table 4, the potential firing domains are represented. 
Actually, a domain is associated to each mark of a given 
class. For example, the temporal constraints for C1 are: 

•   
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•   

•   

 The upper bound of  is due to temporal requirements 
for lights (9 s) and barriers (240 s). This is an example of 
temporal requirements expression through a couple of 
parallelism and synchronization transition [18, 19]. The 
description of the 17 classes of the graph of Fig. (7) can be 
found in Table 4. The notation in Table 4 is simplified, as 
there is only one token per place, the exponent is not 
specified. 

 We built the graph of classes of the requirements model. 
Likewise, the next step is to build the graph of classes of the 
proposed process model in order to compare both of them 

and thus to check if the process fulfils the requirements 
model. 

4.4. The Process Model 

 The second step of the proposed methodology is now 
presented. Its purpose is to describe a process identified as a 
solution of the system functioning. This process model 
corresponds to a solution described in [16]. It is modelled by 
means of t-time Petri net. The method consists in exploring 
all the possible behaviors of the system by means of the 
construction of state classes [20]. 

4.4.1. T-Time Model 

 As shown in the part III.C, a static interval function I 
associates, with each transition ti, a temporal interval [ai, bi] 

Table 4. Markings Corresponding to the State Classes of the p-Time Model 

 

Class Marking Domain Class Marking Domain 

C0 5,14  C9 1,6,8,11,13 

 

 

 

C1 1,6,14 

 

 

 

C10 2,6,8,11,13 

 

 

 

C2 2,6,14 

 

 

 

C11 2,6,8 

 

 

 

C3 2,9  

 

C12 1,6,12 

 

 

 

C4 2,10,13 
 

 

C13 5,12  

C5 2,7,11,13 

 

 

 

C14 1,9  

 

C6 3,11,13 
 

C15 1,10,13  

 

C7 4,11,13 
 

C16 1,7,11,13 

 

 

 

C8 5,8,11,13 
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that represents the set of its possible firing dates counting 
from its enabling date. 

 

Fig. (8). Process model using t-time Petri net. 

 Fig. (8) models a given solution to fulfill the 
requirements that have been described in section IV.B. 

 The two sequences representing the behavior of the train 
and the level crossing can be found on this model. From p1 to 
p4, this model is similar to the model of Fig. (6), except that 
the place p13, which was a timed one on the p-time model, is 
replaced with a watchdog in this model. Indeed, this t-time 
model deals with a scenario that is proposed to fulfill the 
requirements. Table 5 illustrates the relation. 

 If a token stays more than 240 seconds in p10 
(respectively p11), the transition t11 (resp t12) is fired and the 
operating procedure aiming at avoiding the opening of the 
barriers when a train is in the level crossing is engaged. This 
procedure can be considered as an answer to the death of a 
token in the timed place p13 in the p-time model. So the next 
paragraph describes the behavior of the system in such a 
case. 

 First there are two possibilities of evolution: either the 
train which has sent a radio signal to the level crossing is still 
in the crossing area (that means that a token is in one of the 
places p1 to p4) or it has gone past it (that means that there is 
a token in p8). 

 In the first case (that means that t12 is fired), the operating 
centre has to decide if the train is stoppable or not. If it is 
stoppable, the train stops before the danger point and the 
procedure of radio signal sending is reinitialized (t15 is fired). 

 Otherwise, the level crossing control system has to wait 
that the train has passed on the exit sensor (t16 is fired). 

 In the second case, the operations centre orders the 
opening of the barriers (t11 is fired). 

Table 5. Corresponding Nodes Between the Two Models 

 

Nodes of Fig. (6) Nodes of Fig. (8) 

  

  

  

 

 The nodes corresponding to the place p13 in the process 
model are out of the specifications because they represent a 
recovery mode not demanded in the specification. 

4.4.2. State Classes of the t-Time Model 

 In [15], the building of the state classes for the t-time 
model can be found. Fig. (9) represents the graph of classes 
of the p-time Petri net described by Fig. (8) and in order to 
keep figure readable, transitions don’t label arc as in Fig. (7). 

 Table 6 doesn’t list the potential firing domains in order 
to keep table readable. The building of these domains can be 
found in the literature. Moreover, a tool called TINA can be 
used to build the state classes for the t-time model. For 
example, the class C0 has the following temporal constraints: 

•   

•   

 And for: 

•   

•   

 The underlined classes of this model correspond to those 
which are directly included on the projection of the classes 
of the p-time one. They correspond to a recovery process if 
the temporal requirement of 240 seconds is not respected. 

 We notice that the state classes dealings with the 
watchdog don’t correspond to the requirements. The 
projection excludes all the classes that can be only reached 
by t11 or t12, which are transitions of failure mode 
management. 

5. DISCUSSION 

 Fig. (8) describes a given solution proposed by [16] in 
order to fulfill its requirements model. The underlined 
classes in Table 6 correspond to the requirements model. For 
these classes, we have the same marking than in Table 4 but 
not the same temporal domains. Indeed, the proposed 
solution gives the control of temporal requirements to the 
train controller. Therefore, in normal mode, the proposed 
solution fulfils the specifications. 

 Furthermore, the given solution proposes to manage the 
recovery process, even if it is outside the informal 
specifications. The requirements model doesn’t precise what 
the specifications become in a failure mode. Thereby, our 
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work extracted an explicit temporal requirement: the 
maximum closing time of 240 seconds for the level crossing. 
Nevertheless, we noticed that this creates a conflict with an 
implicit but essential requirement: it is strictly forbidden to 
open the level-crossing barrier if a train is in the danger 
zone. We aren’t able to certify unwritten implicit rules. In 
such a case, an expertise is necessary to clarify the 
specifications. 

 Actually, the automatic assessment of requirements 
depends on what is effectively written in the informal 

specifications: when there are implicit (non written) 
requirements, a professional specialist is needed in order to 
express them. Moreover, extracting requirements from the 
informal specification is only one step of the process of 
solution construction. In fact, explicit identification of 
critical entities which are directly relevant to high level 
requirements is also needed at each step. To assess a 
solution, the traceability chain has to be not broken. 
Otherwise, the assessor is not able to certify that the solution 

 

Fig. (9). Graph of the state classes of the t-time Petri net. 
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model fulfils requirements without involving an independent 
professional specialist. 

 Another interesting aspect is that our methodology can 
naturally be connected with a global conception process 
based upon graphical tool. For instance, using UML 
notation, the functional analysis may be performed with use 
case diagrams, structural analysis with class diagrams, 
behavior analysis with state diagrams. 

 In the case of UML modeling, the state diagrams are 
particularly important and are the connecting points with our 
methodology. Anyway, whatever modelling tool, the 
different system states and transitions which are safety 
critical have to be identified and well defined in order to be 
taken into account in the next steps. 

CONCLUSIONS AND FUTURE WORK 

 In this paper, a methodological approach based upon time 
Petri nets, in order to manage temporal requirements, was 
presented. To this end, the requirements model was built 
from the informal specification by means of p-time Petri 
nets. Then, the state classes of the model have to be built in 
order to capture the behavioural validity domain. In order to 
ensure traceability, the critical nodes have to be highlighted 
and explicitly transmitted from the requirements model to 
the process model. The process model is then made by 
means of t-time Petri nets. The next step consists in building 
state classes graph in order to check that the process model 
behavior respects the requirements. A correct implementat-
ion of the transmission of critical nodes has allowed an 
automatic consistency check. 

 Our methodology was illustrated on a level crossing case 
study. This example is particularly relevant, because it 
provides an illustration for the two different scenarii of the 
solution construction process. The high level requirements 
are totally fulfilled by our proposed solution in normal mode, 
but an implicit requirement was highlighted in failure mode. 
Our methodology assesses the consistency between the 
requirements model and the solution model in normal mode 
but is unable to assess failure mode without the help of a 
professional specialist. 

 In order to integrate this methodology in the global issue 
of safety requirements, we propose an approach based on 

abstract high level Petri nets, of which p and t-time Petri nets 
are a subclass. In future works, we suggest that the use of a 
process allowing the complementary strengths of the B 
formal method [3] and the Petri net model to be used 
together in order to promise increased reliability of a railway 
traffic control application [21]. The aim is to provide some 
sharp results concerning time parameters, requirements 
traceability and formal validation, and a global approach 
including all functional aspects during all the conception 
process. 
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