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Abstract: For helminth parasites, selection of optimal chemotherapy-based control of infection-related morbidity can take 
cues from several perspectives. One can focus on limiting intensity of infection or its spread within the community at any 
given time, and ask for efficient interventions to reduce either type of infectious burden. Alternatively, one can look at the 
long-term effects of infection and ask for control strategies aimed only at preventing long-term morbidity through struc-
tured treatments that vary by age. The latter approach is currently favored for schistosomiasis, where acute infection per 
se is believed to be less detrimental to health than the cumulative damage caused by long-term heavy infection. Here, we 
extend earlier approaches to modeling control of late-onset morbidity using age-stratified interventions, and then addition-
ally consider population heterogeneity in terms of subgroups at high and low risk for development of chronic disease. We 
study the long-term effect age-structured mass therapy applied to the whole population vs. varying coverage for different 
population age strata. Given different subgroup risks for chronic disease, we also examine the possible utility of pretreat-
ment risk screening towards optimal allocation of treatment resources. 
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INTRODUCTION  

 International agencies, including the World Health Orga- 
nization (WHO), the Partnership for Child Development, and 
the Schistosomiasis Control Initiative currently advocate 
control of disease due to schistosomiasis by means of peri-
odic administration of the antischistosomal drug, praziquan-
tel, to affected populations [1-3]. Their general recommenda-
tion is to focus on school-age children, as this group is un-
derstood to have the greatest risk for both heavy schistosome 
infection and its consequent disease related sequelae [4-8]. 
Large-scale national control programs based on school-age 
drug treatment have now started or will soon be imple-
mented in a number of sub-Saharan countries. The important 
question remains: Given the features of schistosome infec-
tion and its related disease formation, as well as the typical 
feature of program participation, what is the optimal timing 
for drug delivery that will minimize community burden of 
disease? In particular, how can we optimize the effect of 
population based control program in a resource-limited set-
ting? 

 Schistosomiasis-related disease occurs in both acute and 
chronic forms, with some forms directly related to current 
granulomatous inflammatory response to parasite eggs 
trapped in host tissues, and other chronic forms developing 
as a consequence of cumulative tissues damage and scar 
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formation [9, 10]. In addition to these temporal factors, hu-
man age-related factors play an important role in schisto-
some ecology, as they strongly influence the process of both 
human-to-snail and snail-to-human transmission [11-13]. 
The age related effects result from age-specific differences in 
water use habits and frequency of water contact. The net 
result is a wide variation in risk of new infection and in snail 
contamination per contact. The development of anti-parasite 
protective immunity is also likely to be age-dependent. In 
1996, Medley and Bundy [14] considered, on a preliminary 
basis, a dynamic model to optimize a single treatment in a 
stationary age-stratified population. Their group also devel-
oped programs to stimulate the cost and impact of multiple 
treatment given to an endemic community over a period of 
decades [5, 15-17]. Since this original analysis, new data 
have emerged on the heterogeneity of individual risk for 
severe schistosomiasis-related disease [18-21], and on the 
reversibility disease with treatment [22-25], and on long-
term impact of repeated school-based therapy on the late 
outcomes of disease [26] and on local transmission of the 
infection [27, 28]. The present paper revisits the optimal 
choice of drug control strategies given these new considera-
tions.  

MATERIALS AND METHODS MODEL BACK-

GROUND 

 The role of age in schistosome transmission is associated 
with behavioral risk factors-- that is, age-variant water con-
tact rates, resulting water contamination , and the mutual  
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process of infection of snails and humans[13, 29-31]. For 
humans, both age and exposure history can also confer some 
level of protective immunity against reinfection and modula-
tion of subsequent disease risk [32, 33]. 

 On a basic scale, the chronic schistosomiasis pathologies 
develop from repeated accumulation and destruction of 
worm eggs in body tissues (liver, intestines or urinary tract), 
and through scarring caused by anti-inflammatory immune 
responses [9, 10, 34]. But this process can be modulated by 
individual genetic or age/exposure-related factors which in-
crease or decrease the risk of developing severe chronic dis-
ease, as documented in recent studies [18-20]. 

 To address the issues of infection, disease and possible 
effect of treatment interventions (e.g. mass drug therapy) 
Medley & Bundy [14] proposed a mathematical model of 
age-structured population (over a life-span a, 0 a L< < ), 
with each age-group carrying its specific mean worm burden 

( ){ }w a (see also [5-7, 15, 35]). The chronic morbidity 

measured by age-specific tissue damage, ( )D a  (e.g. fibro-
sis) develops gradually from accumulated host infection his-
tory ( )w a , and is resolved at some rate . So removing the 
source of inflammation w one can expect a partial remedia-
tion of the “damage factor”, D. 

 Let us note that, unlike either infection intensity (e.g., 
worm burden w, or the resulting excreted egg-count) or in-
fection prevalence, the chronic damage factor is much harder 
to measure and quantify on population level. So, variable D 
here serves as a crude proxy of the complex set of func-
tional/ tissue pathologies that develop from schistosome egg-
induced inflammation. 

 Within such framework one can formulate dynamic 
model for time-age dependent variables ( ) ( ){ }, ; ,w a t D a t  
as coupled system of partial differential equations,  

( ) ( ) ( )

( ) ( ) ( ) ( )( )

, , ,

, , , ,

t a

t a

w a t w a t w a t

D a t D a t w a t D a t

+ =

+ =
       (1) 

 Here  denotes per-capita force of infection,  - natural 
worm attrition (death rate) in human hosts, and coefficients 

,  measure the rates of damage accretion (proportional to 
burden w) and its resolution. Rather than fixing resolution 
rate (linear function ( )D ), Medley and Bundy’s formula-

tion [14] allowed a D -dependent rate ( ) 0

DD v e D= , so 
that increased damage D would slow down the resolution 
(healing) process.  

 This model formulation allowed the authors to study the 
effect of age-structured chemotherapy, on infection levels 

( ){ }w a  and the resulting morbidity (damage, ( ){ }D a ). 
The chemotherapy can be accommodated in equation (1) by 
augmenting the natural worm mortality  by additional 
“drug-clearing” terms, represented here by a Dirac delta-
function  

 
( )

( )

1

1,2,...

,  or 

j
j

p a a

p a a
=

+

+
         (2) 

- summing over treatment ages { }1 2 ...a a< < . The choice of 
a Dirac (impulse) form for a single treatment session indi-
cates its relatively short duration (compared to a human life-
span), but also a significant clearing (deworming) effect. 
Parameter ( )log 1p r=  measures the efficacy of treat-
ment, where r  is the fraction of killed worms per session. 
The treatment pattern (2) assumes mass drug therapy applied 
to the entire age-group. Alternatively, one can think of sys-
tem (1)-(2) as representing a single host-history, or a “co-
hort-history” for nearly identical hosts.  

 Medley and Bundy proceeded to solve the model equa-
tions by fixing force of infection ( )a , using estimates 
based on field data, and solving differential equations (1), for 
the treated system(2), to find distributions ( ) ( ){ },w a D a , 
and explore the impact of treatment. In that case (prescribed 
force of infection ), Equations (1)-(2) allowed exact ana-
lytic solutions. 

Limitations of Established Models  

 These earlier models make many simplifying assumption, 
which include an imposed (fixed) force of infection ( )a , 
and a homogeneous human population, both in terms of 
transmission behavior and the individual human susceptibil-
ity to chronic disease. In reality, a closed community would 
accumulate infection and chronic disease depending on local 
transmission environment (snail populations, the nature and 
frequency of contacts, etc.). So the force of infection in 
(1) should depend on dynamic variable ( ),w a t  (in fact, on 
coupled human-snail system) rather than having single pre-
scribed value [8]. 

 The homogeneity assumption about the human popula-
tion is also an oversimplification. Here possible dispersion of 
burden-levels and/or contact rates (within identical age-
groups) may be less significant for transmission (infection 
force ), but not so for the development of chronic disease. 
Indeed, the levels of chronic morbidity could vary widely 
under similar infection patterns (see [18-21]). 

EXTENDED MODEL FORMULATION 

 For the present analysis, we develop and extend the ideas 
of Medley and Bundy [14] and colleagues [5, 15-17], to ac-
commodate variation in human-snail interactions within a 
closed community and allow some level of heterogeneity in 
chronic disease formation. Namely, we stratify population 
into “high” and “low” risk groups for disease. 

 We formulate the extended model, and explore several 
control strategies to predict late-term outcomes of treatment. 
Unlike [14], our models have no analytical solutions to work 
with. But we develop efficient numeric estimation proce-
dures for program outcomes using Mathematica (Wolfram 



Age- and Risk-Targeted Control of Schistosomiasis The Open Tropical Medicine Journal, 2008, Volume 1    23 

Research, Champaign IL), that allow similar analysis and 
prediction. Details of these programs are available from the 
corresponding author. 
 For our model, we adopt the following assumptions: 
1. Human populations and environmental transmission fac-

tors are stationary 
2. For individual humans, their infection (worm establish-

ment) and water/snail contamination rates are age-
dependent. 

3. Humans have either high or low risk for chronic disease 
(i.e. accumulation and resolution of egg-driven fibrosis) 
under an otherwise similar infection burden history. The 
low-risk individuals are able to resolve fibrosis at a faster 
rate compared to high-risk group: L H  

4. The risk factor for chronic disease is viewed as an innate 
host characteristic persisting throughout his/her life-span 
and independent of burden history. So all newborn are 
subdivided into two groups with population ratio /H Lr r , 
and this ratio is maintained throughout all ages, i.e. 

/ /H L H L

a ah h r r= , for 0 a L< < , for high/low risk 
population fractions. This means, in essence, that neither 
schistosomiasis infection or chronic disease entail sub-
stantial rates of mortality [36]. 

5. Age-specific behavior and transmission patterns are iden-
tical for both (high / low risk) groups, so they carry the 
same mean worm burden: H L

a a aw w w= = . But their 
morbidity as measured by “damage” function D will dif-
fer markedly.  

 In our approach we need to modify both the infection (w) 
part of system (1), and the resulting evolution of morbidity. 
Namely, to account for human-snail interaction we make the 
force of infection  dependent on communal mean worm 
burden ( ){ }w a , as well as age-dependent transmission 

(contact) parameters. [The derivation of ( )( )w a  is out-
lined in the Appendix to this paper.] 
 We also replace the morbidity (D) equation of system (1) 
with separate equations for the high and low-risk groups 

{ },H L

a aD D  
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 In regard to disease resolution, we assume a linear decay 
rate for disease in the low-risk group, but adopt nonlinear 
pattern ([14]) for the high risk group, 
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 Thus, the initial “low” resolution rate of the high-risk 
group 1 0< , at the early stage of disease ( 0D = ), will 

further diminish as it accumulates damage ( 0D > ). Fig. (1) 
illustrates the burden distribution ( )w a , and the ensuing 

morbidity patterns ( ) ( ){ },L HD a D a  for untreated popula-

tion, and several selected values 0  and 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Worm burden distribution (dashed) and the accumulated 
damage (solid line) at 4 different rates of disease resolution 
{ }: 0,1i i =  (in units 1/years): top panel - for low-risk group, 
and bottom panel - for high-risk one. 

 To account for the age-patterned treatment of system (3)-
(4) we replace the natural worm mortality in the w – equa-
tion with the treatment-enhanced one, as in (2). Another im-
portant consideration for any mass treatment program in-
volves its fraction of coverage in the target population, as 
typically the program compliance levels, even for school-age 
groups, tends to be reduced on each subsequent round of 
therapy [37]. To this end, we need to extend the basic model 
(3), for the untreated community to encompass effects in a 
partially-covered one. We do it by further stratification of the 
entire population into treatment cohorts : “uncovered” - 0, 
“single treatment” -1, “twice repeated” -2, etc.  

 We call the corresponding population coverage frac-
tions: 0 1 ... 1mf f f+ + + = , with the subscript indicating the 
number of subsequent treatments. Clearly, each treatment 
cohort will carry a different burden level: 

( ); 0,1, ...k kw w a k= =  But the dynamic equations for all of 
them will be coupled through the common force of infection 

, namely 
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 Here 0  indicates the natural worm mortality, and each 

( )0

1

k
k

j
j

p a a
=

= +  will add to it the outcome of k 

consecutive treatments, as in Equation (2). All treatment 
cohorts share the common force of infection , contributed 
by the entire community (see Appendix). Clearly, each 
treatment cohort will develop its own morbidity functions: 

( ){ }: 0,1, ...k kD D a k= =  (for a hypothetical homogeneous 

community), or ( ) ( ){ }, ,,H k L kD a D a  - for heterogeneous 
(high / low risk) population. 

RESULTS 

 Within the model formulation above, we can explore 
several treatment strategies involving realistic partial cover-
age and incomplete drug efficacy (~85% deworming per 
session [5, 37]). To do this, the entire population is subdi-
vided into treatment cohorts as outlined above. N.B. the ‘risk 
factor” affects the morbidity-related treatment outcomes for 
persons in the high- or low-risk strata, but not their mean 
burden levels (we recall that “risk factor” in our context ap-
plies only to susceptibility to chronic disease, rather than 
infection risk).  

ANALYSIS OF CONTROL OPTIONS 

 We consider two scenarios for mass treatment: one is 
based on blind selection of treatment cohorts, whereby each 
risk group is represented in proportion to its population size. 
The second scenario applies a hypothetical prescreening 
procedure (possibly genetic [18,19] or location-based [28]) 
to select high-risk individuals for more extensive treatment, 
which one hopes can bring down their morbidity levels to 
normal level (Fig. 1). We apply the following treatment pro-
tocols in the case of blind selection. 

I. Three cohorts: (i) 60% of population treated at ages 6 and 
12; (ii) 20% treated at age 6 only, (iii) remaining 20% 
untreated 

II. In a typical field situation, compliance levels for multiple 
treatment sessions usually drops lower over time. Here 
we assume that 70% of those covered by the first treat-
ment go on to receive as second one, 60% of those to a 
third one [37], hence treatment fractions 

{ } ( ) ( ) ( ){ }
1 2 3 0 0 0
, , .3 1 , .28 1 , .42 1f f f f f f=           (6) 

in terms of untreated fraction 0f . In addition, we allow a 
two-year gap between treatment sessions (based on WHO 
recommendations [38]) and let initial treatment age 0a  vary 
from 1 to 30 years.  

 In the second, (risk screening) scenario, the treated popu- 
lations are subdivided among high/low risk groups based on 
their predicted risk of morbidity. We maintain the same 
overall treatment coverage rates as above, and hence, the 
same transmission levels and worm burden distributions. 
However, the screening is assumed to allow preferential se-

lection of more of the high-risk hosts for treatment. We call 
this selected fraction , and accordingly subdivide the high-
risk group into ‘treatment fractions’ proportioned as 
{ }1 , .3 , .28 , .42  (for 0;1; 2;3k = respectively). Pa-
rameter  will be related to the efficacy  of screening, (% 
of positive selections), as 

 ( )0 01 f f= +           (7) 

in terms of untreated population fraction 0f . So zero efficacy 

implies 01 f= , as in (5), while 100% - efficient screening 
gives 1= . 

 In both cases, with and without risk screening, we ask for 
an optimal treatment age 0a  to attain the maximal reduction 
of late-age morbidity for high risk strata. 

 We fix resolution rates of morbidity for two risk groups 
as 0 .2= /year (low risk), and .25

1 .05 De=  (high risk). As 

for damage accumulation rates we take: 1;  .8H L
= = . 

The resulting worm burden w , and accumulated dam-

age/morbidity ;L HD D , for individual cohorts, are shown in 
Fig. (2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. (2). Burden distribution (top) and accumulated damage/mor- 
bidity (middle, bottom) for 3 treatment cohorts of case I (shades of 
gray) vs. untreated population (dashed). The low and high risk 
groups differ by their resolution rates. 
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 The treatment ages are clearly marked as sharp drops of 
worm burden for the treated groups (top panel). Treatment 
renders long term benefit in the reduced D -levels (middle/ 
bottom panels of Fig. 2) for the treated cohorts. But the re-
sulting (high/low) patterns are markedly distinct.  

 In both cases, we ask for an optimal timing of the initial 
treatment, 01 30a< < , to bring down the late-term mean 
(weighted) morbidity1 to its lowest value. Fig. (3) shows the 
results at two different coverage levels: 80% (i.e. 0 .2f = ) on 

the top, and 50% ( 0 .5f = ) on the bottom.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 
Fig. (3). Maximal late-term accumulated damage (cohort mean) as 
a function of the ‘treatment age’ 0a  in cases with and without risk 
screening (70%, 60% - compliance), at two different drug coverage 
levels: 80% of eligible population (top), and 50% (bottom). Upper 
(black) curves on both plots are weighted high-risk groups, low 
(gray) curves are weighted low-risk ones. Two ‘high risk’ curves on 
each plot compare the results of selective screening, at two levels of 
its efficacy: .9= and .2= . 

 In addition, we show the effect of selective screening of 
high/low sensitivity or effective detection,  (90% and 
20%), for detection of the high risk group. The optimal 
treatment age 0a  in all cases comes close to 10-12 years. 

They also exhibit significant reduction of ( )Max HD  com-
pared to untreated levels, by factor  for 80% treatment 
cover, and by 1/3 - for 50% coverage. The effect of screen-
ing on HD , however, diminishes with increased coverage 
(top and bottom black curves in Fig. 3). 

                                                
1 Each treatment cohort accumulates different maximal damage 

( ) : 0,1, ...kD a k =   (Figs. 2 and 4), and Fig. 3 shows its weighted mean 

value:
0 ,1,...

k

k

k

f D
=

. 

 Next (Fig. 4), we show the burden and damage functions 
of the optimally treated populations (initial age 0 10a = ) 
with risk screening, vs. their expected values if left un-
treated. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (4). Worm burden distribution by age (top) and accumulated 
morbidities of low-risk (middle) and high-risk (bottom) population 
cohorts, after 1 to 4 individual treatment rounds (shades of gray) in 
an optimally-treated, screened population vs. their expected distri-
butions if left untreated (dashed lines), at two treatment coverage 
levels: 80% (left column) and 50% (right column). 

 Finally, Fig. (5) demonstrates the weighted morbidity 
curves for high risk strata under optimal treatment of a risk-
screened population.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (5). Weighted morbidity curves for high risk strata under opti-
mal treatment in a risk-screened population: 80% treatment cover 
(top) and 50% (bottom) with two different levels of screening effi-
ciency, . 
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 Once again the screening efficacy has negligible effect 
(over the entire life span) if drug treatment coverage is high, 
but screening grows in significance if coverage drops to 
lower levels. 

CONCLUSIONS  

 Mathematical models can provide useful tools for analy-
sis and prediction of long term effects of hypothetical control 
interventions in targeted settings. Often, this analysis would 
be difficult (or expensive) to assess completely using current 
evidence-based epidemiological approaches. In developing 
models for schistosome transmission and the ensuing mor-
bidities of chronic schistosomiasis, we can apply them to 
hypothetical communities (homogeneous or heterogeneous) 
to explore different control strategies and identify the ones 
most likely to provide optimal benefits in terms of its effi-
cacy and cost.  

 Our work extends some earlier studies in several ways. 
We have considered here the heterogeneity of populations in 
terms of morbidity risk, and examine the potential value of 
possible prescreening for morbidity risk for focused treat-
ment efforts. 

 We find, among other things, that prescreening has minor 
effect (over an entire human life-span) when initial (child-
hood) drug treatment covers a large fraction of infected 
population. The value of screening grows in significance, 
however, when limited resources (or other considerations) 
ask for selective treatment, and a sizable fraction of infected 
people remain untreated. 

 As in any mathematical model, there are simplifying as-
sumptions that go into the analysis, which may introduce 
quantities (variables) that are difficult to measure and quan-

tify directly. Some variables, such as “mean worm burden” 
(or infection intensity) are reasonably justified for estimation 
of transmission, but burden impact may require more de-
tailed analysis in terms of morbidity [18-21]. A possible link 
between “mean infection intensity” and “prevalence of mor-
bidity” will depend on specific dispersal patterns of intensity 
levels within identical age/risk groups. Some commonly 
used distributions including Poisson and negative binomial, 
allow us to estimate connections between means and preva-
lences [39]. But these issues will require more fully refined 
mathematical models and tools - a plan for future work. 

 Here we did not specifically address the cost-effective- 
ness of different treatment strategies, or their optimal selec-
tion. Our analysis has focused on the optimal treatment age, 
and was meant to illustrate the utility of the method and 
model.  

 Let us note, however, that our model (and computer 
code) allows to explore a much wider range of optimization 
problems in health economics. For instance, given per capita 
cost of treatment and screening, and the known demograph-
ics (high- and low-risk population fractions), one can ask for 
an optimal allocation of resources (treatment coverage vs. 
screening coverage) to attain a desired result, i.e., reduction 
of the communal late-term morbidity, under different cost 
constraints. To this end, we can (as above) numerically sam-
ple a range of parameters and control strategies, then (i) es-
timate their communal outcomes in terms of morbidity re-
duction, (ii) estimate the associated incremental costs of 
more complex strategies. Such estimated values would allow 
one to formulate and solve the appropriate constrained opti-
mization problem for health economic decision-making (cf. 
[8]). 

APPENDIX 

 Here we derive the age-structured model for system (1) with the proper force of infection , that is used in the analysis of 
chronic morbidity presented in this paper. It involves several essential parameters: 

Table 1. Basic Variables and Parameters 

( )ˆ
a=  age dependent (worm) establishment rate 

( )ˆ
a=  

age dependent (snail) contamination rate 

,μ  (natural) snail and worm mortalities 

N  snail density 

;  (0 )aH h a L< <  total human population, and its age distribu-

tion: 
0

1
L

ah da =  

 

 For numeric purposes we discretize continuous differential equations (3) for age bins { }1, 2, ...,a P=  with time step a , 

and replace differential ‘aging operator’ a  with a P P  matrix 
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1 0 0

1 1 01

0 1 1

a
=G  

 The resulting algebraic system takes on the form 

      
( )

( )

ˆˆ ;
ˆ ˆ

w

D w

+ =

+ =

G

G I
                   (8) 

for vectors ( ) ( )ˆ ˆ ˆˆˆ ; ; ; ;a aw w h h D= = , etc. and worm attrition matrix = I  (natural, or therapy induced). The forces of 

infection: snail to human  and human to snail  are given by 

     ;  H
a a H a a a

H

N
H h w da

μ
= =

+
                    (9) 

 We take population pyramid (fractions) { }ah  from UNFPA mortality/survival data for Africa (Fig. 6)  

 

 

 

 

Fig. (6). Survival function (left), and 2-year age bin fractions (right) based on UNFPA census data for Africa (2000). 

 The establishment and contamination rates ,a a , adopted from [15], are given by functions: 
2

iB a

iA ae  with suitable coeffi-

cients ,i iA B  (Fig. 7). 

 

 

 

 

 

 

 

Fig. (7). Chan & Bundy (1997) [15] establishment and contamination rates in schistosomiasis transmission (for 2-year age bins over 
0 60a< < ). 

 We take typical worm attrition value .2 / year= , and a range of values for (uncertain) morbidity resolution rate in the 
range: .05 .2< < , and allow (as Medley-Bundy [14]) both fixed  (linear), and nonlinear morbidity resolution. Specifically, 
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.2/year; (low risk)

;  =.05/year; 

=.25 (high risk)
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H De

=

=                   (10) 
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 So worm distribution ( )ˆ
aw w=  is proportional to the ‘establishment vector’ ˆ , multiplied by ‘inverse aging + attrition’ 

matrix, I= . A treatment would augment attrition +  with a diagonal treatment matrix { }diag ..., , ...p , having 

nonzero entries 
( )ln 1 r

p
a

= , at the ‘treated’ bins. 

 System (8) assumes complete drug coverage. For partial treatment the population is divided into treated/untreated cohorts 
(fractions 1 2 1, 1f f f= ), with burden distributions ˆ ˆ;u v , that obey 

      

( )
( )

( )

( )
( )

( )

ˆ
ˆˆ ;  

ˆ

ˆ
ˆˆ

ˆ

H

H

H

H

w N
u

w

w N
v

w

μ

μ

+ + =
+

+ =
+

G

G

                (12) 

and mean distribution 1 2
ˆ ˆ ˆw f u f v= + .  

 The resulting worm-burden distribution (vector) takes on the form 

      
( )

1

0

0 0

ˆˆ ;  w w

w N
μ

= +

=

G

                 (13) 

where 0  encodes the basic parameters of Table 1 plus a possible treatment effect (increased worm attrition). In a similar fash-
ion, partially covered cohorts have two different burden patterns: û  - for treated fraction, and v̂  - for untreated one, that obey 

      
( )

( )

1

0

1

0

ˆˆ ;

ˆˆ ;

u w

v w

= + +

= +

G

G

                 (14) 

 In all cases (8)-(12), solutions for ˆ ˆ ˆ, ,w u v  take on the form (13)-(14), with 0 0
w N

μ
= , and 

      ( )
10 ˆ w H h= +G                 (15) 

for untreated (or fully covered) population, or  

      

( )

( )

10

10

0 0 0

1 2

ˆ ;  

ˆ

u

v

w u v

H h

H h

f f

= + +

= +

= +

G

G                 (16) 

in case of partial coverage. Let us note that risk factor plays no role in establishing transmission levels and burden distribution, 
as in our assumption both (high/low) risk groups contribute equally. The difference appears in the ability to resolve accumu-
lated damage. Thus we get the morbidity distribution 

      
( )

( )

1

0
ˆ ˆ

ˆ ˆ ˆ

L

L

H H

D w

D D w

= +

+ =

G

G
                 (17) 

with ŵ  given by (13), or 1 2
ˆ ˆ ˆw f u f v= +  (14) (partial coverage). 

 We non-dimensionalize system (8), or (12), and the resulting solutions (13)-(14) via rescaled quantities (marked with aster-
isk), and ‘order of magnitude’ parameters (subscript 0) 
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Establishment rates 
( )*

0 0
ˆ ˆ ; aMax= =  

Contamination rates 
( )*

0 0
ˆ ˆ ; aMax= =  

Rescaled aging (in ‘attrition’ units 1 / ) * /=G G  

Dimensionless force of infection 
0

 ( ) ( )
1* * * *ˆ ˆ ˆh= +I G  

 

 This yields the Basic Reproduction Number (BRN), 0 0

0

H N
R

μ
= , and typical worm burden 

0

0
H

w
μ

= , for the corre-

sponding ‘homogeneous’ community (no age stratification). The rescaled burden solutions take on the form 

      

( )

( )

*

0

*

0

1* * *

0

1* *

0

1

1

ˆˆ 1

ˆˆ 1

w

w

R

R

u w

v w

= + +

= +

G I

G I

               (18) 

where 

      

    

w

*
= f

1 u

*
+ f

2 v

* ;

u

*
= h *

G
*
+

*
+ I( )

1
ˆ * ;  

v

*
= h *

G
*
+ I( )

1
ˆ *

                (19) 

And the corresponding (low risk) morbidities ( ) ( )
1*

0 1 2
ˆ ˆ ˆL

LD f u f v= + +G I .  

 For numeric simulations (implemented on Mathematica 5 and 6) we fix rescaled parameters { }* *, ,a a ah  as in [15], take 

BRN 0 10R = (intense transmission environment), use the standard worm attrition .2 / year= , vary morbidity 0  in the range 
.05 .2 / year , and allow two values 0;.25= . While specific choice of parameters ,  may affect the late term mor-
bidity patterns (Fig. 2), we found that percentage reduction curves (Fig. 3) exhibit less sensitivity to such variations. So our 
predictions of the efficacy of treatment will remain robust within fairly wide range of those parameters. 

ABBREVIATIONS AND VARIABLES 

WHO – World Health Organization 
L = Lifespan 
a = Age 
D = Cumulative infection-associated damage 
w = Individual (or communal mean) worm burden 

 = Per-capita force of infection 
 = Natural worm attrition (death rate) in human hosts 
 = Rate of damage accretion (proportional to burden w)  
 = Rate damage resolution 

p = Efficacy of treatment 
r = Fraction of killed worms per treatment session 

ACKNOWLEDGEMENTS 

 This work was supported by NIH Research Grant 
#R01TW008067 funded by the Fogarty International Center. 

REFERENCES  

[1] Chan MS, Nsowah-Nuamah NN, Adjei S, Wen ST, Hall A, Bundy 
DA. Predicting the impact of school-based treatment for urinary 
schistosomiasis given by the Ghana Partnership for Child Devel-
opment. Trans R Soc Trop Med Hyg 1998; 92(4): 386-9. 

[2] Fenwick A. New initiatives against Africa's worms. Trans R Soc 
Trop Med Hyg 2006; 100(3): 200-7. 

[3] WHO. Preventive chemotherapy in human helminthiasis: Coordi-
nated use of anthelminthic drugs in control interventions: a manual 
for health professionals and programme managers. Geneva: WHO 
Press 2006. 

[4] Anderson RM, May RM. Infectious Diseases of Humans. Dynam-
ics and Control. New York: Oxford University Press 1991. 

[5] Chan MS, Guyatt HL, Bundy DA, Booth M, Fulford AJ, Medley 
GF. The development of an age structured model for schistosomia-
sis transmission dynamics and control and its validation for Schis-
tosoma mansoni. Epidemiol Infect 1995; 115(2): 325-44. 

[6] Chan MS, Guyatt HL, Bundy DA, Medley GF. Dynamic models of 
schistosomiasis morbidity. Am J Trop Med Hyg 1996; 55(1): 52-
62. 

[7] Chan MS, Montresor A, Savioli L, Bundy DA. Planning chemo-
therapy based schistosomiasis control: validation of a mathematical 
model using data on Schistosoma haematobium from Pemba, Tan-
zania. Epidemiol Infect 1999; 123(3): 487-97. 



30    The Open Tropical Medicine Journal, 2008, Volume 1 Gurarie and King 

[8] Gurarie D, King CH. Heterogeneous model of schistosomiasis 
transmission and long-term control: the combined influence of spa-
tial variation and age-dependent factors on optimal allocation of 
drug therapy. Parasitology 2005; 130(Pt 1): 49-65. 

[9] Smith JH, Christie JD. The pathobiology of Schistosoma haemato-
bium infection in humans. Hum Pathol 1986; 17: 333-45. 

[10] King CL. Initiation and regulation of disease in schistosomiasis. In: 
Mahmoud AAF, ed. Schistosomiasis. London: Imperial College 
Press 2001: 213-64. 

[11] Butterworth AE, Sturrock RF, Ouma JH, et al. Comparison of 
different chemotherapy strategies against Schistosoma mansoni in 
Machakos District, Kenya: effects on human infection and morbid-
ity. Parasitology 1991; 103(Pt 3): 339-55. 

[12] King CH. Epidemiology of schistosomiasis: Determinants of 
transmission of infection. In: Mahmoud AAF, Ed. Schistosomiasis. 
London: Imperial College Press 2001: 115-32. 

[13] Muchiri EM, Ouma JH, King CH. Dynamics and control of Schis-
tosoma haematobium transmission in Kenya: an overview of the 
Msambweni Project. Am J Trop Med Hyg 1996; 55(5 Suppl): 127-
34. 

[14] Medley GF, Bundy DA. Dynamic modeling of epidemiologic pat-
terns of schistosomiasis morbidity. Am J Trop Med Hyg 1996; 
55(5 Suppl): 149-58. 

[15] Chan MS, Bundy DA. Modelling the dynamic effects of commu-
nity chemotherapy on patterns of morbidity due to Schistosoma 
mansoni. Trans R Soc Trop Med Hyg 1997; 91(2): 216-20. 

[16] Guyatt H, Evans D, Lengeler C, Tanner M. Controlling schis-
tosomiasis: the cost-effectiveness of alternative delivery strategies. 
Health Policy Plan Dec 1994; 9: 385-95. 

[17] Guyatt H. Different approaches to modelling the cost-effectiveness 
of schistosomiasis control. Mem Inst Oswaldo Cruz 1998; 93 
(Suppl 1): 75-84. 

[18] Dessein AJ, Hillaire D, Elwali NE, et al. Severe hepatic fibrosis in 
Schistosoma mansoni infection is controlled by a major locus that 
is closely linked to the interferon-gamma receptor gene. Am J Hum 
Genet 1999; 65(3): 709-21. 

[19] Blanton RE, Salam EA, Ehsan A, King CH, Goddard KA. Schisto-
somal hepatic fibrosis and the interferon gamma receptor: a linkage 
analysis using single-nucleotide polymorphic markers. Eur J Hum 
Genet 2005; 13: 660-8. 

[20] Wamachi AN, Mayadev JS, Mungai PL, et al. Increased ratio of 
tumor necrosis factor-alpha to interleukin-10 production is associ-
ated with Schistosoma haematobium-induced urinary-tract morbid-
ity. J Infect Dis 2004; 190(11): 2020-30. 

[21] Medhat A, et al. Increased interleukin-4 and interleukin-5 produc-
tion in response to Schistosoma haematobium adult worm antigens 
correlates with lack of reinfection after treatment. J Infect Dis 
1998; 178(2): 512-9. 

[22] Hatz CF, Vennervald BJ, Nkulila T, et al. Evolution of Schisto-
soma haematobium-related pathology over 24 months after treat-
ment with praziquantel among school children in southeastern Tan-
zania. Am J Trop Med Hyg 1998; 59(5): 775-81. 

[23] King CH, Muchiri E, Ouma JH, Koech D. Chemotherapy-based 
control of schistosomiasis haematobia. IV. Impact of repeated an-
nual chemotherapy on prevalence and intensity of Schistosoma 
haematobium infection in an endemic area of Kenya. Am J Trop 
Med Hyg 1991; 45(4): 498-508. 

[24] Koukounari A, Fenwick A, Whawell S, et al. Morbidity indicators 
of Schistosoma mansoni: relationship between infection and ane-

mia in Ugandan schoolchildren before and after praziquantel and 
albendazole chemotherapy. Am J Trop Med Hyg 2006; 75(2): 278-
86. 

[25] Koukounari A, Gabrielli AF, Toure S, et al. Schistosoma haemato-
bium infection and morbidity before and after large-scale admini-
stration of praziquantel in Burkina Faso. J Infect Dis 2007; 196(5): 
659-69. 

[26] Ouma JH, King CH, Muchiri EM, et al. Late benefits 10-18 years 
after drug therapy for infection with Schistosoma haematobium in 
Kwale District, Coast Province, Kenya. Am J Trop Med Hyg 2005; 
73: 359-64. 

[27] Satayathum SA, Muchiri EM, Ouma JH, Whalen CC, King CH. 
Factors affecting infection or reinfection with Schistosoma haema-
tobium in coastal Kenya: Survival analysis during a nine-year, 
school-based treatment program. Am J Trop Med Hyg 2006; 75: 
83-92. 

[28] Clennon JA, Mungai PL, Muchiri EM, King CH, Kitron U. Spatial 
and temporal variations in local transmission of Schistosoma hae-
matobium in Msambweni, Kenya. Am J Trop Med Hyg 2006; 
75(6): 1034-41. 

[29] Abel L, Demenais F, Prata A, Souza AE, Dessein A. Evidence for 
the segregation of a major gene in human susceptibility/resistance 
to infection by Schistosoma mansoni. Am J Hum Genet 1991; 48: 
959-70. 

[30] Ouma JH. Transmission of Schistosoma mansoni in an endemic 
area of Kenya with special reference to the role of human defaeca-
tion behaviour and sanitary practices. [Ph. D.]. Liverpool: Univer-
sity of Liverpool; 1987. 

[31] Nooman ZM, Hasan AH, Waheeb Y, et al. The epidemiology of 
schistosomiasis in Egypt: Ismailia governorate. Am J Trop Med 
Hyg 2000; 62(2 Suppl): 35-41. 

[32] Butterworth AE, Dunne DW, Fulford AJ, Ouma JH, Sturrock RF. 
Immunity and morbidity in Schistosoma mansoni infection: quanti-
tative aspects. Am J Trop Med Hyg 1996; 55(5 Suppl): 109-15. 

[33] Hagan P, Blumenthal UJ, Dunne D, Simpson AJG, Wilkins HA. 
Human IgE, IgG4 and resistance to reinfection with Schistosoma 
haematobium. Nature 1991; 349: 243-5. 

[34] Chen MG, Mott KE. Progress in assessment of morbidity due to 
Schistosoma haematobium infection. Trop Dis Bull 1989; 86: R1-
36. 

[35] Chan MS, Anderson RM, Medley GF, Bundy DA. Dynamic as-
pects of morbidity and acquired immunity in schistosomiasis con-
trol. Acta Trop 1996; 62(2): 105-17 

[36] van der Werf MJ, de Vlas SJ, Brooker S, et al. Quantification of 
clinical morbidity associated with schistosome infection in sub-
Saharan Africa. Acta Trop 2003; 86(2-3): 125-39. 

[37] King CH, Muchiri EM, Ouma JH. Evidence against rapid emer-
gence of praziquantel resistance in Schistosoma haematobium, 
Kenya. Emerg Infect Dis 2000; 6(6): 585-94. 

[38] WHO. Prevention and control of schistosomiasis and soil-
transmitted helminthiasis: Report of a WHO expert committee. 
Technical Report Series 912. Geneva: World Health Organization; 
2002. Report No.: 912. 

[39] Alexander N, Moyeed R, Stander J. Spatial modelling of individ-
ual-level parasite counts using the negative binomial distribution. 
Biostatistics 2000; 1(4): 453-63. 

 

 
 
 

Received: April 8, 2008 Revised: June 27, 2008 Accepted: July 2, 2008 
 
© Gurarie and King; Licensee Bentham Open. 
 

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which 
permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 


