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Abstract: Water retention is one of the key soil characteristics. Available models of soil water retention relate to the 
curve-fitting type. The objective of this work is to suggest a physical model of water retention (drying branch) for soils 
with a rigid matrix. "Physical" means the prediction based on the a priori measured or estimated soil parameters with a 
clear physical meaning. We rely on the two-factor model of clay that takes into account the factors of capillarity and 
shrinkage. The key points of the model to be proposed are some weak pseudo shrinkage that the rigid soils demonstrate 
according to their experimental water retention curves, and some specific properties of the rigid grain matrix. The three 
input parameters for prediction of soil water retention with the rigid grain matrix include inter-grain porosity, as well as 
maximum and minimum grain sizes. The comparison between measured and predicted sand water retention curves for 
four different sands is promising. 
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1. INTRODUCTION 

The possibility of predicting an observed soil water re-
tention curve from a number of physical soil parameters that 
are measured or estimated independently of the soil water 
retention, is so far lacking, even in the approximation of a 
rigid soil matrix. In this work we are only interested in this 
last case. Available models of the water retention in rigid 
soils (e.g., [1-10]) are eventually reduced to curve-fitting to 
relevant experimental soil water retention data. At least a 
part of the parameters used in the fitting in each of the mod-
els has no clear physical meaning and can only be found by 
fitting. Although the models can be practically useful for 
applications in soil technology and water management, their 
possibilities from the viewpoint of advancement in physical 
understanding and knowledge of the links between soil struc-
ture and soil water retention as a function of the structure, 
are in the best case, limited. 

The objective of this work is to partially "dilute" the 
curve-fitting domination and to suggest some physical alter-
native as applied to the consideration of water retention (dry-
ing branch) in rigid soils. The attempt to be proposed relies 
on the concepts and results of a recent work devoted to pure 
clay water retention [11]. Such paradoxical relations be-
tween the model for clay and water retention of rigid soils at 
first glance seem strange. However, as will be shown, they 
flow out of some pseudo shrinkage property of rigid soils. 
The physical meaning of "pseudo shrinkage" in the case of 
rigid soils will be explained below (Section 4.1). Here, it is 
just worth noting that this "pseudo shrinkage" has no relation 
to the true shrinkage of clay or clay soils. 
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We consider soils that are rigid as a whole, but shrinkage 
of the small clay clusters in the inter-grain pore space, i.e., 
micro-shrinkage can take place. Such soils can be considered 
as a system of silt and sand grains (see [12,13] for a brief 
discussion of the aggregated soil transition to such a system 
with the clay content striving to zero). Meaning such soils, 
for brevity we use the term "sand". Although we only con-
sider rigid soils, possible applications of the to-be-obtained 
results to shrinking soils are briefly indicated in Section 6. 

Some relations of the model [11] that are necessary in the 
following are presented in the beginning of the exposition. 
We also emphasize some points from [11] that should be 
modified to reach the objectives of this work. Notation is 
summarized at the end of the paper. 

2. SOME NECESSARY RELATIONS OF THE CLAY 
TWO-FACTOR MODEL 

The soil suction h can be presented as a product of two 
factors 

h=HQ .             (1) 
The H factor originates from the adsorption-capillary phe-
nomena. The Q factor originates from the shrinkage-swelling 
of the soil matrix. In the particular case of a pure clay h only 
depends (through H) on one characteristic size of water-
containing pores or pore tubes ("water-containing" implies 
different degrees of water filling). This single characteristic 
size can be generalized to the case of a rigid matrix account-
ing for its specifics (see Section 4.6). 

In the case of a clay Q is found as 
Q=(1-v(ζ))2/(1-vz)2 , 0<ζ<1          (2) 
where v is the relative clay volume (see the Notation); ζ is 
the relative water content of clay (see the Notation); vz≡v(ζz) 
is the v value at the shrinkage limit of the clay, ζ=ζz. Note 
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that v(ζ) is known from the physical model of the clay 
shrinkage curve [14,15]. In Eq. (2) ζ=1 is considered to be 
the initial point of clay shrinkage. With that v(ζ) is in the 
range vz≤v<1. 

In the range 
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<ζ<1 H for clay is only connected with 
capillarity as 
H=4Γcosαc/R(ζ), 
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<ζ<1.          (3) 
Here 
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≅0.1ζz (that is higher than residual water content) is 

an upper estimate of the lower ζ boundary (
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 can be lower 
than this estimate, to 
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≅0.05ζz, see e.g., Table 1 of [15]); Γ 

is the surface tension of water; αc is a contact angle; and R(ζ) 
is a characteristic internal size of pore tubes of the clay ma-
trix at a cross-section. 

The R(ζ) size is written as (Fig. (1)) 
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where ρ'm(ζ) (Fig. (1), curve 2) is the maximum internal size 
of pore tube cross-sections in the ζn<ζ<1 range (ζ=ζn is the 
clay air-entry point); ρ'c(ζ) (Fig. (1), curve 4) is the maxi-
mum internal size of the water-containing pore tubes in the 
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<ζ<ζn range. The H presentation in Eq. (3) reflects the 
physical peculiarity of a clay matrix structure. At least in the 
area of normal shrinkage, ζn<ζ<1 there is only one character-
istic size - the maximum internal size of pore-tube cross-
sections ρ'm(ζ) (Fig. (1), curve 2), that coincides with the 
maximum internal size ρ'f(ζ) of the water-filled pore tubes in 
this area. 

In the area ζn<ζ<1 R(ζ)≅ρ'
m(ζ) (Eq. (4); Fig. (1), curve 2) 

is expressed through v(ζ), vz, vs (the relative volume of clay 
solids; see the Notation), rmM (the maximum external size of 
clay pores at ζ=1); and characteristic constants of the clay 
microstructure, α and A [14]. In the area 
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<ζ<ζn 
R(ζ)≅ρ'

c(ζ) (Eq. (4); Fig. (1), curve 4) is found to be a solu-
tion ρ'

c(ζ) of the water balance equation (at a clay cross-
section) as 

F(ζ)=ϕ(ρ'
f)+
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<ζ<ζn          (5) 

where F is the saturation degree at a relative water content ζ; 
ϕ(ρ') is the pore tube-size distribution; ρ'

f(ζ) is the maximum 
internal size of the water-filled pore-tube cross-sections in 
the area 
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<ζ<ζn (Fig. (1), curve 3); and g(ρ') is the degree 
of filling of the pore tubes of internal ρ' size with water 
(0<g<1). The first and second terms in the right part of Eq. 
(5) give the contributions of the water-filled and water-
containing pores, respectively. For clay F(ζ) in Eq. (5) is 
found to be [14] 

F(ζ)=[(1-vs)/(v(ζ)-vs)]ζ, 0<ζ<1.          (6) 

The expression for ϕ(ρ'), and the details for solving Eq. (5) 
to find ρ'

c(ζ) should be modified compared to [11] (see Sec-
tions 3.2 and 3.3) accounting for the specifics of the rigid 
grain matrix (Section 4.6). 

The ρ'
c(ζ) solution of Eqs. (5) and (6) determines R(ζ) 

(Eq. (4)) and H (Eq. (3)). The final expression for the clay 
suction, h(w) (Eqs. (1)-(3)) is given by 

h(w)=[4Γcosαc/R(w/wM)] [1-v(w/wM)]2/(1-vz)2, 

*
w <w<wM (
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<ζ=w/wM<1) .          (7) 

The input physical parameters of the model are vs, vz, rmM, 
and the density of clay solids, ρs. However, rmM is connected 
with the maximum size of clay particles in the oven-dried 
state, rmz as rmM=rmzvz

-1/3 [14]. If we take rmz≅2µm (accord-
ing to the generally accepted definition of the maximum size 
of clay particles in the oven-dried state) rmM is estimated to 
be rmM≅2vz

-1/3 (µm). This result is used in Section 4.6. Some 
approximations of the two-factor model should be specified. 

3. THE NECESSARY MODIFICATIONS OF THE 
CLAY TWO-FACTOR MODEL 

3.1. Accounting for the More Accurate Maximum Swel-
ling Point of Clay 

The above two-factor model neglects the difference be-
tween the maximum swelling point of clay, wh and the clay 
liquid limit, wM. This approximation (wh≅wM, i.e., ζh≅ζM=1) 
influences the Q factor (Eq. (2)) and changes the clay suction 
h in the ζn<ζ<ζh range compared to a real case when wh<wM, 
ζh<1 (see ζh in Fig. (1)). The interrelation between wh and 
wM for clay as 

 

Fig. (1). Qualitative view of relative characteristic internal pore-
tube cross-section sizes of a clay matrix against the relative water 
content (the modified Fig. (4) from [11]). "Relative" size means the 
ratio of a size to rmM (the maximum pore size at the liquid limit); 
subscript i of ρ'i corresponds to the index of the shown curves, 
i=1,…,4. 1-the maximum internal size of pore-tube cross-sections, 
ρ'm(ζ)/rmM at 0<ζ<ζn: 2-the same size as on curve 1, but at ζn <ζ<1; 
3-the maximum internal size of water-filled pore-tube cross-
sections, ρ'f(ζ)/rmM at 
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<ζ<ζn; 4-the maximum internal size of 

water-containing pore-tube cross-sections, ρ'c(ζ)/rmM at 
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<ζ<ζn. 

The smooth curve composed of curve 2 at ζn<ζ<1 and curve 4 at 
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<ζ<ζn gives the relative characteristic size, R(ζ)/rmM that deter-

mines the capillary factor H as a function of the relative water con-
tent. 

 
!
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, ζz, ζ', ζn, and ζh are relative water contents corresponding 

to the lower boundary of the model applicability, shrinkage limit, 
point where ρ'f(ζ')=ρ'c(ζ'), air-entry point, and maximum swelling 
point, respectively. 
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wh≅0.5wM (ζh=wh/wM≅0.5)           (8) 

was obtained recently [16,17]. Following the derivation of 
Eq. (2) [11], in the case where wh≅0.5wM<wM (i.e., at 
ζh≅0.5), one should replace 1=vM=v(ζM=1) in the numerator 
and denominator of Eqs. (2) and (7) with vh=v(ζh≅0.5) and 
the 0<ζ<1 range with the 0<ζ<ζh≅0.5 range (see ζh in Fig. 
(1)). Using the clay shrinkage curve, v(ζ) [14,15] gives 
vh=v(ζh≅0.5)=0.5(vs+1). Thus, in the modified model Eq. (2) 
is replaced with 

Q=(vh-v(ζ))2/(vh-vz)2 , 0<ζ<ζh≅0.5 .          (9) 

The final expression for h(w) (Eq. (7)) is modified as 

h(w)=[4Γcosαc/R(w/wM)] [vh-v(w/wM)]2/(vh-vz)2, 

*
w <w≤0.5wM (
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<ζ<ζh) .        (10) 

3.2. More Convenient Presentation of Pore Size Distribu-
tion 

The form of the presentation of a pore-size distribution 
plays an important role. Chertkov [14,15] used the presenta-
tion that is convenient for considering clay shrinkage. The 
convenience consists in the use of external pore (r) and pore 
tube (ρ) sizes (i.e., the sizes that include a half-thickness of 
clay particles limiting the pores). In this case the volume of 
any pore, that is proportional to r3, is proportional to the clay 
volume at shrinkage. However, such a presentation does not 
include, in an explicit form, the clay porosity that is con-
nected with internal pore sizes (r' and ρ') which determine 
the clay water retention. The generalization, giving a more 
convenient presentation of pore-size distribution, using in-
ternal pore sizes, and explicitly including porosity as a dis-
tribution parameter, was suggested recently [18]. In addition, 
this presentation in a natural way is generalized to a two- or 
multi-mode porosity case that can be topical for clay and 
soil. The modified presentation of the pore-tube size distri-
bution ϕ(ρ') will be indicated as applied to rigid soils in an 
explicit form in Section 4.6. 

3.3. Simplifying the Solution of the Water Balance Equa-
tion 

Solving Eq. (5) in the clay two-factor model was based on 
some assumptions about g(ρ') and pore shape. The solution 
can be simplified and specified. In the following considera-
tion of a rigid grain matrix we rely on the above two-factor 
model for clay and, in particular, Eq. (5). In the case of a rigid 
soil, however, dependences F(ζ) and ϕ(ρ') in this equation 
qualitatively and quantitatively differ. We consider the solv-
ing modification in Section 4.6 to be applied to a rigid soil. 

4. WATER RETENTION OF A RIGID-GRAIN MATRIX 

4.1. Specific Physical Features of the Rigid-Grain Matrix 
Compared with a Clay One 

The presentation itself of the suction h through the Q and 
H factors (Eq. (1)) is general [11]. However, in Sections 2 
and 3.1 we essentially relied on the specific physical features 
of the shrink-swell network of clay particles. The specific 
features of the rigid grain matrix are also essential in the 
consideration of the Q and H factors for this case. Fig. (2) 
shows the general qualitative view of the Q factor for any 

soil. Indeed, in some range, 0<ζ≤ζz Q=1 (Fig. (2)) and in a 
point, ζ=ζo (Fig. (2)) the suction h(ζo)=0. Since the maxi-
mum pore size at ζ=ζo usually remains a capillary one, we 
have H(ζo)≠0 (Fig. (2)). Hence, Q(ζo)=0 (Fig. (2)). Thus, Q 
smoothly decreases to zero in the ζz<ζ≤ζo range (Fig. (2)). In 
the case of a clay ζ=ζz is the shrinkage limit, and ζ=ζo≡ζh is 
the maximum swelling point (for ζh see Section 3.1). In the 
case of a sand we keep the same designations of the charac-
teristic points ζz and ζo on the Q(ζ) curve (Fig. (2)), but their 
physical meaning, naturally, changes (see below). 

Owing to the indicated qualitative similarity of the Q(ζ) 
curve for both a shrink-swell clay and rigid sand (Fig. (2)) 
and accounting for the Q expression for a clay through the 
clay shrinkage curve (Eq. (9)), we can formally consider the 
Q factor for a sand as originating from some "shrinkage" 
curve (like Eq. (9)) with a number of specific features (Fig. 
(3)). These features flow out of the simple generally known 
facts. 

(i) The sand volume should not change with water-filling 
in its pores up to saturation (rigid matrix). This means that 
the range 0<ζ≤ζz where Q=const=1 (Fig. (2)) and the relative 
volume v=const=vz (Fig. (3)), correspond to increasing the 
water content up to saturation at ζ=ζz. This condition (of 
water saturation) at ζ=ζz (the first specific feature) can be 
written using the saturation degree, F(ζ) (Eq. (6); note that 
this expression for F(ζ) from [14] is suitable for any soil 
because the specific geometry of clay particles was not used 
in its derivation) as 

Fz≡ F(ζz)=[(1-vs)/(vz-vs)]ζz=1        (11) 

(note that for a clay Eq. (11) is not true). The vs and vz pa-
rameters for sand formally have the same meaning as for 
clay. They are discussed in Section 4.2. Thus, the physical 
meaning of ζ=ζz for a sand matrix (Figs. (2) and (3)) is the 
water saturation point. In addition, regarding the rigid matrix 
as a boundary case of clay one can consider ζ=ζz for sand to 
be the coincidence of two points, the shrinkage limit, ζz and 
the air-entry point, ζn (cf. the separate ζz and ζn positions for 
clay in Fig. (1); note that for clay F(ζn)=1, but F(ζz)<1, see 
Eq. (6) and [14]). 

(ii) In any case, irrespective of the physical nature of the 
sand "shrinkage" in Fig. (3) (see below) the change of the 
relative volume, 1-vz should obviously be very small. Thus, 
the second specific feature of sand (unlike clay) is (Fig. (3)) 

1-vz<<1.           (12) 

(iii) Many data (e.g., Hillel [19], Fig. 6.9, p.157) evi-
dence that (unlike in clay or the clay soil case) the water re-
tention of soils with a rigid matrix is characterized by a very 
steep suction decrease (sharp bend) down to zero in the small 
vicinity of water saturation. It follows that ζz and ζo (Fig. 
(2)) are very close (ζo-ζz<<1). Since in the case of sand ζz 
corresponds to the water saturation state (the first specific 
feature), the ζo water content (note, ζo>ζz) should have the 
maximum possible value, ζo=1 (unlike clay for which 
ζo=ζh<1). Thus, the third specific feature of sand is (Figs. (2) 
and (3)) 

1-ζz<<1.           (13) 

The physical nature and meaning of the small water content 
variation (1-ζz) and small sand volume variation (1-vz) in the 
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area of the sand "shrinkage", ζz<ζ≤1 (Fig. (2) at ζo=1 and 
Fig. (3)) flow out of the following considerations. Because 
ζ=ζz is the water saturation point, the water addition, 1-ζz 
(and corresponding sand volume addition, 1-vz) is that to the 
already saturated sand. That is, this water addition (unlike 
true shrinkage-swelling case) can only be in the form of 
some water film between the sand grains along their contact 
surfaces. The appearance of such an additional water film 
means some transition of the saturated sand to the state that 
should differ from the saturated one in the minimum possible 
degree because we consider the rigid matrix. This means that 
the (1-ζz) water addition should correspond to the film of a 
minimally possible characteristic thickness. The latter is dis-
cussed in Sections 4.4 and 4.5. 

 
Fig. (2). The general view of the Q factor and relative H factor of a 
swell-shrink clay and rigid sand matrix. ζz and ζo are characteristic 
points. 

 
Fig. (3). The illustrative "shrinkage" curve of a sand matrix in the 
relative coordinates at ζz and vz close to unity. 

4.2. The "Shrinkage Curve" of the Rigid-Grain Matrix 

To explicitly present the sand "shrinkage" curve (illus-
trated in Fig. (3)), one should first express the vs, vz, and ζz 
parameters of the "shrinking" sand through values that are 
more convenient and relevant to describe the sand. As in the 
consideration of clay [14] we introduce the minimum vol-

ume of "shrinking" sand (in the area of the rigid matrix), Vz; 
the maximum volume, VM; the volume of solid phase, Vs; 
and the volume of pores, Vp in the area of the rigid matrix, 
0<ζ≤ζz (Fig. (3)). Additionally we introduce the total incre-
ment, ΔV of "shrinking" sand volume between VM and Vz as 

VM=Vz+ΔV ,          (14) 

and the total increment, ΔVw of water volume associated with 
sand volume "shrinkage" between VM and Vz. Then, the rela-
tive additional sand volume, Δv (per unit volume of dry sand 
or, in fact, the sand in the area of rigid matrix, 0<ζ≤ζz), and 
the relative additional water volume, Δvw (per unit volume of 
dry sand) are defined as 

Δv≡ΔV/Vz , Δvw≡ΔVw/Vz .          (15) 

Similar to the definition of the relative oven-dried volume, vz 
and relative solids volume, vs for clay [14,15] and accounting 
for Eqs.(14) and (15), for the "shrinking" sand (see Fig. (3)) 
one can write 

vz≡Vz/VM=Vz/(Vz+ΔV)=1/(1+Δv)        (16) 

and 

vs/vz≡Vs/Vz=(Vz-Vp)/Vz=(1-p)        (17) 

where p is the (constant) sand porosity in the area 0<ζ≤ζz 
(Fig. (3)). According to Eqs.(16) and (17) 

vs=(1-p)/(1+Δv) .          (18) 

To find ζz one can use the first specific feature of the 
"shrinking" sand (Eq. (11)) with vz and vs from Eqs. (16) and 
(18), respectively. Then, 

ζz=p/(p+Δv) .          (19) 

On the other hand, since ζz is the saturation point (see Sec-
tion 4.1) we directly have 

ζz=Vp/(Vp+ΔVw)=(Vp/Vz)/(Vp/Vz+ΔVw/Vz) 

= p/(p+Δvw) ,          (20) 

and from Eqs. (19) and (20) 

Δv=Δvw .          (21) 

Using Eqs. (12) and (13) one can easily show that the above 
specific features of the "shrinking" sand [(1-vz)<<1 and (1-
ζz)<<1] can be presented in the following form 

Δvw<<1 (or Δv<<1) and       (22a) 

Δvw/p<<1 (or Δv/p<<1) .       (22b) 

For this reason one can rewrite Eqs. (16), (18), and (20) in the 
linear approximation with respect to small value Δvw(=Δv) as 

vz≅1-Δvw, vs≅(1-p)(1-Δvw), 

ζz≅(1-Δvw/p) .          (23) 

Note, that Δv=1-vz (see Fig. (3)) only in the linear approxi-
mation (cf. Eq. (16)), and Δvw≠1-ζz (see Fig. (3)) even in the 
linear approximation. Eq. (23) gives the simple expressions 
of vz, vs, and ζz through the more convenient parameters of 
"shrinking" sand, the usual sand porosity, p and the small 
additional relative volume of the water films at sand grain 
contacts, Δvw (or the corresponding small additional relative 
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sand volume, Δv). The Δvw is estimated below (Sections 4.4 
and 4.5). 

Now, accounting for the physical conditions from Eqs.12 
and 13 one can write the small difference (v(ζ)-vz) for the 
"shrinkage" curve v(ζ) of the sand in the very small range, 
ζz<ζ≤1 (Fig. (3)) as an expansion in powers of the small dif-
ference (ζ-ζz) and be limited by the second power as (note 
that v-vz has the minimum at ζ=ζz) 

v(ζ)-vz≅k(ζ-ζz)2 , ζz<ζ≤1.         (24) 

The condition, v(1)=1 (Fig. (3)) and vz, ζz from Eq. (23) al-
low one to estimate the major term of the expansion of the k 
coefficient in powers of the small Δvw value as 

k≅p2/Δvw .          (25) 

Thus, the "shrinkage" curve of the sand is presented as (cf. 
Fig. (3)) 
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with vz and ζz expressed through p and Δvw from Eq. (23). 

4.3. The Q Factor of the Rigid-Grain Matrix 

According to Sections 4.1 and 4.2 the Q factor for sand 
has the same form as for clay (Eq. (9)), but with the follow-
ing essential modifications. In the case of sand ζo (Fig. (2)) is 
equal to 1 instead of ζh for clay. Correspondingly, for sand 
v(ζo)=v(1)=1 instead of v(ζh)=vh for clay. The "shrinkage" 
curve for sand, v(ζ) is given by Eq. (26) instead of v(ζ) for 
clay from [14,15]. Finally, vz for sand is given by Eq. (23). 
As a result the Q factor for sand is given by Eq. (2) with v(ζ) 
from Eq. (26) and vz from Eq. (23). In the explicit form Q is 
presented as 

Q(ζ)=1 , 0≤ζ≤1-Δvw/p, 
           (27) 
Q(ζ)=[1-(p/Δvw)2(ζ-1+Δvw/p)2]2, 1-Δvw/p<ζ≤1. 

Equation (27) cannot be simplified in the area 1-Δvw/p<ζ≤1 
using Δvw/p<<1 (Eq. (22)) because the variation range of ζ, 
Δζ=Δvw/p is very small. The smaller the Δvw/p ratio is, the 
steeper is the decrease of Q(ζ) and h(ζ)(=HQ) for the sand at 
ζ>ζz in Fig. (2). 

To obtain the Q factor for sand as a function of its gra-
vimetric water content, W one should replace ζ in Eq. (27) 
with the ratio, ζ=W/WM. The maximum value WM (see Fig. 
(2) with replacement ζ→W and ζo→WM) corresponds to 
ζo=1 (Fig. (2)), i.e., to the state of the sand with additional 
water film of the minimum characteristic thickness along 
grain contacts. WM is estimated using the same expression as 
for the clay liquid limit [14], WM=[(1-vs)/vs](ρw/ρs) (ρw - wa-
ter density; ρs - sand solid density). Using the specific ex-
pression for vs in the case of sand (Eq. (23)) and in the linear 
approximation with respect to Δvw one has 

WM=(ρw/ρs)(1+Δvw/p)/[(1-p)/p].        (28) 

The gravimetric water content of the saturated state of the 
sand, Wz (see Fig. (2) with replacement ζ→W and ζz→Wz) 
corresponds to ζ=ζz (Fig. (2)). In the lowest (square) ap-
proximation with respect to Δvw Wz is written as 

Wz=ζz WM=(ρw/ρs)[1-(Δvw/p)2]/[(1-p)/p] .       (29) 

From Eqs.(28) and (29) one can estimate the Δvw/p ratio for 
the sand through Wz and WM as 

Δvw/p≅ΔW/WM≅ΔW/Wz   (30) 

where ΔW=WM-Wz. The definitions of Δvw, p, and W also 
lead to Eq. (30). 

For sand grains the volumetric water content, θ is more 
convenient. To pass from ζ to θ in Eq. (27) one can use the 
general relation between θ and W as 

θ=(ρs/ρw)W[1-P(W)]         (31) 

where by definition of ζ (WM from Eq. (28)) 

W=ζWM ,          (32) 

and by definition of soil porosity, P(W) the difference [1-
P(W)] is the solid volume to soil volume ratio. For clay (see 
[14]) or "shrinking" sand 

1-P(W)=1-P(ζ)=vs/v(ζ) , 0≤ζ≤1.        (33) 

Then, the relation, 

θ=(ρs/ρw) WM [vs/v(ζ)]ζ , 0≤ζ≤1        (34) 

permits one to recalculate the ζ values to θ ones, accounting 
for v(ζ) from Eq. (26), vz, vs, and ζz from Eq. (23), and WM 
from Eq. (28). Thus, one can find θz (at ζ=ζz, v(ζ)=vz) and 
θM (at ζ=1, v(ζ)=1) as well as the lower boundary of the 
model applicability, 

 
!
*

 (see Fig. (2)) (at ζ=
 
!
*
∼0.1ζz,, 

v=v(
 
!
*

)) that was noted in the lines before and after Eq. (3). 

4.4. The Relative Additional Water Volume (Δvw) of the 
Rigid-Grain Matrix 

The objective of this section is to present the Δvw value 
as a simple function of a characteristic sand grain size (Xm) 
and characteristic minimum thickness (l) of the additional 
water film between the grains. The sand volume of cubic 
shape with side size, L (Fig. (4a)) is considered to consist of 
layers of rounded grains. The layer thickness is taken to be 
equal to the mean grain size, d=Xm/4 (Fig. (4a)) where Xm is 
the maximum grain size (see [18]). The grains in the cubic 
volume can be attributed to the three different layer systems 
that are normal to axes x, y, z, respectively (Fig. (4a)). The 
mean number of the layers in each the system is equal to the 
mean number of boundaries between the layers and given by 
the ratio, L/d=L/(Xm/4) (Fig. (4a)). The total number of such 
boundaries in the cubic sand volume in all the three grain 
layer systems is 3L/(Xm/4). Fig. (4b) shows (in the magnified 
view) the part of the cross-section, normal to a layer system 
in the water saturated state. One can see grains entering two 
vertical layers (with one boundary between them - the 
dashed line) and four horizontal ones (with three boundaries 
between them - the dashed lines) as well as water-filled in-
ter-grain pores. Fig. (4c) shows the same situation, but in the 
state when the water films of the minimum characteristic 
thickness, l are added along the boundaries of the grain lay-
ers, moving the latter apart. Within the limits of the cubic 
sand volume the volume of each added water film of thick-
ness l and surface area L2 is l L2. We take the natural as-
sumption, l/Xm<<1 (at least l/Xm< or ∼0.1) that will be justi-
fied below. Then, the total number of the water films in the 
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sand cube (Fig. (4a)) is 3L/(Xm/4) (see above the number of 
boundaries between grain layers), and the total additional 
volume of the water films is lL2 3L/(Xm/4)=12(l/Xm)L3. As a 
result the relative additional water volume, Δvw per unit vol-
ume of the sand (including both grains and inter-grain pores) 
is simply estimated as 

Δvw=12 l/Xm .          (35) 

Using terms proportional to (l/Xm)2 and (l/Xm)3 this estimate 
can be specified. However, accounting for the above as-
sumption, l/Xm<<1 and numerical estimates in Section 4.5 
we can neglect these possible corrections in Eq. (35). 

 
Fig. (4). Schematic illustration for estimating the relative additional 
water volume, Δvw of a rigid grain matrix. (a) Three different layer 
systems, normal to axes x, y, z; L is the size of the sand cube; 
d=Xm/4 is the mean grain size. (b) Part of the cross-section, normal 
to a layer system in the water saturated state. (c) The same situa-
tion, but in the state when the water films of the minimum charac-
teristic thickness, l(<<Xm) are added along the boundaries of the 
grain layers, moving them apart. 

4.5. The Characteristic Thickness of the Additional Wa-
ter Film (l) 

The thickness, l of the water films appearing between 
sand grains, in addition to the saturated state, should not be 
affected by gravity and capillarity. Indeed, there are only 
three characteristic lengths for such a grain system in water: 
Xm, the thickness lo of a monomolecular water layer (∼3Å), 

and the so-called capillary constant, [2Γ/(ρwg)]1/2 (e.g., Lan-
dau et al. [20]; Γ is the surface tension of water; ρw is the 
water density; g is the specific gravity) that reflects the pos-
sible joint effects of gravity and capillarity. For this reason 
the characteristic thickness l of the water film can be pre-
sented, from dimension considerations, as 

l=lo λ(lo/Xm, lo/[2Γ/(ρwg)]1/2)        (36) 

where λ is a function of the ratios of lo to Xm and 
[2Γ/(ρwg)]1/2, respectively. Since lo<<Xm (usually Xm∼2mm) 
and lo/[2Γ/(ρwg)]1/2<<1 (for water at 20oC [2Γ/(ρwg)]1/2∼  
3.9mm), we can, with high accuracy, be limited by the first 
constant term (λo) of the expansion of λ in the powers of 
lo/Xm and lo/[2Γ/(ρwg)]1/2. Therefore, the characteristic thick-
ness, l∼loλo of the additional water film practically does not 
depend on the characteristic grain size, Xm as well as gravity 
and capillarity. This result is used below in the estimation of 
the l value. 

In estimating l we rely on the consequences of known 
experimental facts and the analysis of the applicability con-
ditions of Eq. (35). These consequences are as follows. 

(i) As shown above, the known experimental facts relat-
ing to the rigid grain matrix lead to the condition, Δvw<<1 
(Eq. (22)). 

(ii) On the other hand, in the case of the shrink-swell clay 
matrix this condition is obviously violated because in this 
case (also according to known experimental facts) ζo-ζz∼1 
[or (1-ζz)∼1] and (1-vz)∼1 (cf. Section 4.1 and Figs. (2) and 
(3)). The violation of the condition Δvw<<1 means that for 
the shrink-swell clay matrix the similar value, Δvw [the ratio 
of the water volume, ΔVw that the clay loses when shrinking 
from the maximum swelling point to the shrinkage limit, to 
the clay matrix volume Vz at shrinkage limit; see Eq. (15)] 
meets the following condition: Δvw> or ∼1. 

(iii) Still another known experimental fact states that in 
terms of grain (particle) sizes the rigid grain matrix (Δvw<<1) 
and swell-shrink clay one (Δvw> or ∼1), are separated each 
from other by some grain size band between ∼20 and ∼2µm. 

As follows from the derivation of Eq. (35), this equation 
gives the single-valued connection between the Δvw value 
and the l/Xm ratio, and relates to rounded grains (see Fig. (4)) 
that meet the condition l/Xm<<1 (at least l/Xm< or ∼0.1). 
Equation (35) was derived implying the silt-sand grain ma-
trix, i.e., at least Xm>20µm. However, we assume below that 
l is so small (note, that l does not depend on the Xm size; see 
the paragraph after Eq. (36)) that the l/Xm<<1 condition is 
also fulfilled for smaller rounded grains (particles) with sizes 
at least up to ∼2µm, i.e., up to the maximum clay particles. 
In other words, this assumption means that the single-valued 
dependence between Δvw and Xm given by Eq. (35) also re-
lates to rounded grains of size up to the maximum clay parti-
cles. We will show that the l estimate flowing out of the 
above assumption is in the agreement with it and thereby 
justifies it. 

Since, for the clay matrix (i.e., at Xm< or ∼2µm) Δvw> or 
∼1 [see the above point (ii)], the indicated assumption (the 
single-valued Δvw(Xm) dependence starting from silt-sand 
grains and up to the rounded grains with Xm∼2µm) means 
that for the rounded particles at Xm∼2µm one can write 
Δvw(Xm∼2µm)∼1. This relation and Eq. (35) determine the l 
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value. However, before simple joint solving of these equa-
tions two specifications (or reservations) are necessary. 

(a) The above assumption only relates to rounded clay 
particles. In connection with that one should note that clay 
particles differ from silt-sand grains not only in size, but in 
shape also (in statistical meaning). Sand and silt grains are 
characterized by some shape distribution (e.g., [18]), but as a 
whole they can be considered as rounded. Clay particles are, 
as a whole, plate-like. However, for our aims it is only im-
portant that many approximately rounded clay particles (in-
cluding those of the maximum size) can be found among 
others. In estimating the l value we use such clay particles of 
the maximum size.  

(b) In connection with using Eq. (35) not only at silt-sand 
sizes, but also at the maximum clay particle size, it is impor-
tant to remember that clay particles differ from the silt-sand 
grains not only in size and shape, but shrink-swell property 
as well. Equation (35) relates to the grain (particle) matrix in 
the water saturated state (see the derivation in Section 4.4 
and Fig. (4)). The silt-sand grain size is retained, but the clay 
particle size increases with the increase in water content. In 
Δvw(Xm∼2µm)∼1 for simplicity we used the maximum clay 
particle size in the oven-dried state (∼2µm). The correspond-
ing maximum clay particle size in the water saturated state, 
rmM is usually in the range ∼(3÷4)µm depending on the vz 
value of the clay (see the estimate rmM≅2vz

-1/3(µm) at the end 
of Section 2; as a rule vz∼(0.1÷0.4)). In estimating the l value 
below, we use the relation Δvw(Xm∼2µm)∼1 with corrected 
Xm∼3.5µm as 

Δvw(Xm∼3.5µm)∼1.         (37) 

Equations (35) and (37) estimate the thickness of the addi-
tional water film, l as 

l∼0.3µm.          (38) 

One can be convinced that with the found universal (not de-
pending on Xm) l value the condition, l/Xm<<1 is fulfilled not 
only at Xm>20µm, i.e., for silt and sand grains (as we as-
sumed in Section 4.4), but also at Xm∼3.5µm, i.e., for 
rounded clay particles of maximum size (as we assumed 
above in this Section). Thus, the above assumptions are justi-
fied and confirmed. Table 1 gives the estimates of the Δvw 
and Δvw/p values to illustrate the order of magnitudes at the 
typical Xm and p values of rigid grain matrices. These esti-
mates seem to be quite reasonable since the physical condi-
tions from Eq. (22) reflecting the specific features of rigid 
grain matrices are fulfilled. Below Eqs. (35) and (38) will be 
used in the analysis of available data at different Xm values. 

Thus, to calculate the Q factor of the rigid grain matrix 
(Eq. (27)) one needs to know the usual sand parameters, the 
porosity, p and maximum grain size, Xm instead of the vs and 
vz parameters in the case of the Q factor of the shrink-swell 
clay matrix. Indeed, p and Xm [plus the universal water film 
thickness, l from Eq. (38)] permit the step-by-step estimation 
of Δvw [Eq.(35)], vs and vz [Eq. (23)], v(ζ) [Eq. (26)], and Q 
[Eq. (27)] for "shrinking" sand formally using the approach 
that was earlier developed for clays. In addition, the solid 
density (of silt-sand grains or clay particles), ρs is needed to 
transit to gravimetric water content in both cases of sand 
(Section 4.3) or clay. 

Table 1. Illustrative Estimates of the Δvw and Δvw/p Values at 
Typical Xm and p Values† 

Xm p Δvw Δvw/p 

mm    

  

0.3 6 10-3 

2 

0.5 

1.8 10-3 

3.6 10-3 

  

0.3 1.2 10-2 

1 

0.5 

3.6 10-3 

7.2 10-3 

  

0.3 2.4 10-2 

0.5 

0.5 

7.2 10-3 

1.4 10-2 

  

0.3 4.8 10-2 

0.25 

0.5 

1.4 10-2 

2.9 10-2 

  

0.3 1.2 10-1 

0.1 

0.5 

3.6 10-2 

7.2 10-2 

  

0.3 2.4 10-1 

0.05 

0.5 

7.2 10-2 

1.4 10-1 

† Xm, maximum grain size; p, sand porosity; Δvw, relative additional water volume of 
rigid grain matrix; Δvw/p, the same divided by sand porosity. 

4.6. The H Factor of the Rigid-Grain Matrix 

In Sections 4.1-4.5 we showed that the method that was 
proposed for finding the Q factor of clay (Section 2) after 
some adaptation can be applied for finding the Q factor of 
sand. The key point of the adaptation is the consideration of 
the sand Q factor as originating from some specific "shrink-
age" curve. The physical nature of the "shrinkage" (unlike 
the true clay matrix shrinkage) is connected with the addi-
tional water film of the characteristic minimum thickness 
between grains of preliminarily saturated matrix. After ex-
pressing the sand "shrinkage" curve parameters, vs, vz, ζz 
(Fig. (3)) through the usual parameters of the sand, the po-
rosity, p and maximum grain size Xm as well as the universal 
characteristic thickness of the water film, l (see Eq. (23), 
(35), and (38)) we can consider the sand to be a "clay" with 
some specific shrinkage features (Section 4.1), and then, 
relying on the general formalism for clays (Section 2) we can 
ascribe to the sand the "shrinkage" curve (Eq. (26)) and Q 
factor (Eq. (27)). 

In light of that stated above, it is clear that after express-
ing the sand "shrinkage" parameters, vs, vz, ζz, and the satura-
tion degree, F(ζ) through p, Xm, and l, the general method for 
finding the H factor of clay (Section 2), taking its modifica-
tions into account (see Sections 3.2, 3.3, and below), can 
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also be used for finding the H factor of sand with some small 
adaptation. 

Thus, we proceed from the sand parameters, p and Xm 
plus l to find vs, vz, ζz (Eq. (23), (35), and (38)) and "shrink-
age" curve (Eq. (26)) for the sand. The expression for the H 
factor of the "shrinking" sand and the range of its applicabil-
ity are given by Eq. (3) because in this case the relative water 
content is in the !

*
<ζ≤ζo=1 range (for ζo see Fig. (2)), but 

not !
*

<ζ≤ζo=ζh as for clay (after modification noted in Sec-

tion 3.1). 
In the case of sand the characteristic size, R(ζ) (entering 

Eq. (3)) is presented as 

 

R(!)=
" 'm , !z <! #1

"'c (!) , !
*
$ 0.1!z <! #!z

%
&
'

('
.        (39) 

That is, in the case of sand the structure of the R(ζ) expres-
sion for clay (Eq. (4)) is kept, but with (i) replacement ζn→ζz 
(as noted after Eq. (11) ζz for sand plays part of both ζz and 
ζn); (ii) ρ'm=const; and (iii) quantitatively another ρ'c(ζ) de-
pendence. The similarity and difference between sand and 
clay is visually illustrated by comparison between Figs. (5) 
and (1). In particular, the range, ζn<ζ≤ζh in Fig. (1) corre-
sponds to ζz<ζ≤1 in Fig. (5), and curves 1, 2, 3, 4 correspond 
with each other. At ζz<ζ≤1 the maximum size of a pore-tube 
cross-section, R(ζ)=ρ'm=const (Eq. (39) and Fig. (5), curve 2) 
is connected with its 3D analogue (see below). To find the 
characteristic size of a pore-tube cross-section, R(ζ)=ρ'c(ζ) in 
the range !

*
<ζ≤ζz (Eq. (39); Fig. (5), curve 4), we should 

solve the same Eq. (5) that expresses the water balance in a 
sand cross-section. However, the F(ζ) and ϕ(ρ') functions 
entering Eq. (5) in the case of sand are different than for clay. 

The saturation degree of the sand, F(ζ) is given by Eq. 
(6) with the "shrinkage" curve, v(ζ) from Eq. (26). One can 
check that for sand (unlike clays, see Eq. (6)) 

F(ζ)=ζ/ζz , 0<ζ≤ζz          (40) 

[use Eq. (11)] and F(ζ)=1 at ζz<ζ≤1. This expression for 
F(ζ) of sand can be written directly from definitions of ζ and 
ζz. Obtaining it from Eq. (6) and (26) gives additional evi-
dence that the sand "shrinkage" curve (Eq. (26)) is reasonable. 

For sand we use the simplest distribution, ϕ(x(ρ')) for the 
two-dimensional situation from the intersecting-surfaces 
approach [18] as 

ϕ(x(ρ'))=[1-(1-p)I(x(ρ'))/I(1)]/p ,        (41) 

x(ρ')=(ρ'-ρ'min)/(ρ'm-ρ'min), 0<x≤1;        (42) 

I(x)=ln(6)(3x)3exp(-3x), 

(I(1)=2.4086) 0<x≤1;         (43) 

with constant values of the minimum (ρ'min) and maximum 
(ρ'm) pore-tube cross-section sizes (unlike clay case [11]) and 
the constant sand porosity, p at 0<ζ≤ζz (unlike the varying 
clay porosity [14]). 

When solving Eq. (5) with F(ζ) from Eq. (40) and ϕ(ρ') 
from Eqs. (41)-(43), we use the following boundary conditions. 

(i) At the boundary water content ζ=
 

!
*

 the maximum in-
ternal size of the water filled (ρ'f(ζ); Fig. (5), curve 3) and 
water containing (ρ'c(ζ); Fig. (5), curve 4) pore-tube cross-
sections should coincide (this condition was not used in [11]) 

ρ'f(!
*

)=ρ'c( !
*

).          (44) 

(ii) At the boundary water content ζ=ζz ρ'f(ζ) (Fig. (5), 
curve 3) and ρ'c(ζ) (Fig. (5), curve 4) also coincide (Fig. (5)) 

ρ'f(ζz)=ρ'c(ζz).          (45) 

(iii) R(ζ) (Eq. (39)) should be smooth at ζ=ζz (Fig. (5)). 
That is, 

ρ'c(ζz)=ρ'm and dρ'c(ζ)/dζ
 
!=!z =0.        (46) 

In addition, the ρ'f(ζ) and ρ'c(ζ) functions (Fig. (5)) should 
meet the obvious physical condition (which was not used in 
[11]) that the water-containing (i.e., non-totally filled) pore 
tubes give a small contribution to the water balance equation 
(Eq. (5)). That is, in Eq. (5) 

ϕ(ρ'
f)>>

  

g(!')
!'

f

!'c
"

d#

d!'
d!' .         (47) 

It follows that independently of an exact form of g(ρ') 
dependence, ρ'c(ζ) differs from ρ'f(ζ) by the small addition of 
δρ'f as (Fig. (5)) 

ρ'c=ρ'f+δρ'f , δρ'f(ζ)<<ρ'f(ζ), !
*

<ζ<ζz       (48) 

 

Fig. (5). Qualitative view of relative characteristic pore-tube cross-
section sizes of a sand matrix against the relative water content. 
"Relative" size means the ratio of a size to r'm; subscript i of ρ'i 
corresponds to the index of the shown curves, i=1,…,4. 1-the 
maximum size of pore-tube cross-sections, ρ'm/r'm at 0<ζ<ζz: 2-the 
same size as on curve 1, but at ζz <ζ<1; 3-the maximum size of 
water-filled pore-tube cross-sections, ρ'f(ζ)/r'm at 

 
!
*

<ζ<ζz; 4-the 

maximum size of water-containing pore-tube cross-sections, 
ρ'c(ζ)/r'm at 

 
!
*

<ζ<ζz.. The smooth curve composed of curve 2 at 

ζz<ζ<1 and curve 4 at 
 
!
*

<ζ<ζz gives the relative characteristic 

size, R(ζ)/r'm that determines the capillary factor H as a function of 
the relative water content. 
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and according Eq. (44) and (45) 

δρ'f( !
*

)=δρ'f(ζz)=0.         (49) 

Then, without additional assumptions with respect to the 
g(ρ') function and pore shape, we can find ρ'c(ζ) in the range 
!
*

<ζ<ζz in the first approximation as ρ'c(ζ)=ρ'f(ζ) where 

ρ'f(ζ) (Fig. (5), curve 3) is the solution of the equation 

F(ζ)=ϕ(ρ'
f).          (50) 

Solving Eq. (50) with F(ζ) from Eq. (40) and ϕ(x) from Eqs. 
(41) and (43), one finds x(ζ) at !

*
<ζ≤ζz. Then, equalizing 

the x(ζ) found to x(ρ') from Eq. (42) at given ρ'm and ρ'min, 
one finds from x(ζ)=x(ρ') the ρ'f(ζ) dependence at !

*
<ζ≤ζz. 

In the second approximation one can write ρ'c(ζ) at 
!
*

<ζ≤ζz (Fig. (5), curve 4) as 

  

!'c (" ) =
!'

f
(" ) , "

*
< " # " '

!'
f
(" )+$!'

f
(" ) , " ' < " # "z

%
&
'

('
.       (51) 

It follows from the general qualitative picture (Fig. (5)) that 
max(δρ'f)=max(ρ'c-ρ'f) is reached close to ζ=ζz. That is, the 
point of "sewing" ζ=ζ' (Fig. (5)) is also close to ζ=ζz (i.e., ζz-
ζ'<<ζ'- !

*
; that is confirmed by direct calculations in Section 

5). For this reason we approximate ρ'c=ρ'f+δρ'f at ζ'<ζ≤ζz to 
be 

ρ'c(ζ)/ρ'm=1+D(ζ-ζz)2 , ζ'<ζ≤ζz .        (52) 

Then conditions at ζ=ζz (Fig. (5)) given by Eq. (46) are ob-
viously fulfilled. The D coefficient and "sewing" point ζ=ζ' 
(Fig. (5)) are found from conditions of the smooth connec-
tion between ρ'c(ζ)=ρ'f(ζ) from Eq. (51) and ρ'c(ζ) from Eq. 
(52) at ζ=ζ'. The ρ'c(ζ) found in good approximation meets 
Eq. (5) and conditions from Eq. (44)-(47) at !

*
<ζ≤ζz (Fig. 

(5)). 
Finally, calculation of R(ζ) (Eq. (39); Fig. (5), curves 2 

and 4) together with Eq. (3) gives H(ζ). The Q(ζ) factor from 
Eq. (27) and this H(ζ) give the sand-water retention curve, 
h(ζ)=H(ζ)Q(ζ). Replacement of ζ with W/WM (Eqs. (32) and 
(28)) or recalculation of ζ to θ (Eq. (34) with v(ζ) from Eq. 
(26)) enables transition to the customary gravimetric water 
content, W or volumetric water content, θ (in particular, θ' 
corresponds to ζ=ζ' and v=v(ζ') in Eq. (34)). 

The minimum (ρ'min) and maximum (ρ'm) internal sizes of 
pore-tube cross-sections in sand, that were used above (see 
Eqs. (39) and (42)), can be expressed through the minimum 
(r'min) and maximum (r'm) (three-dimensional) internal pore 
sizes as ρ'min=(3/4)r'min and ρ'm=(3/4)r'm [14, 11]. Thus, the 
sand-water retention, in general, is determined by the follow-
ing parameters, ρs, p, Xm, r'm and r'min. When using the volu-
metric water content one only needs input data on p, Xm, r'm 
and r'min. 

5. DATA AND THEIR ANALYSIS 

The important requirement to possible data is the pres-
ence of all the natural sand fractions from Xm to Xmin∼20-
50µm (Xmin is the minimum sand grain size). Otherwise, the 

estimate Δvw=12l/Xm (Eq. (35)) is non-applicable (because 
d≠Xm/4). 

As noted, to obtain the model prediction one needs input 
data on p, Xm, r'm and r'min. To estimate the r'm and r'min val-
ues we used relations r'm≅0.15Xm and r'min≅0.15Xmin that are 
explained in Fig. (6). Thus, input data are only reduced to the 
p, Xm, and Xmin values (usually Xmin∼20-50µm). We used the 
available suitable drainage data of four sandy soils: one sand 
from Lamara and Derriche [21] and three sands from Elrick 
et al. [22] (quoted by [2]). Data on the sand porosity (p) and 
the minimum grain size (Xmin) for the four sands are indi-
cated in Figs. (7)-(10) and Table 2. The Xm value that was 
extracted from [21] is indicated in Fig. (7) and Table 2. 
Haverkamp and Parlange [2] do not give a clear indication 
on Xm for soils presented in Figs. (8)-(10). However, it is 
obvious that in any case Xm∼1000-2000µm. The Xm values 
for the corresponding three sands were estimated in the data 
analysis and also indicated in Figs. (8)-(10) and Table 2. 
They are in the above range (for these Xm values see Section 
6). 

 
Fig. (6). The approximate estimate of the maximum (r'm) or mini-
mum (r'min) internal size, of the inter-grain pores (white circle of 
BC radius) at the maximum (Xm) or minimum (Xmin) size of grains 
(grey circles of AB radius). One successively has: (i) AE=Xm; (ii) 
AD=(√3/2)AE=(√3/2)Xm; (iii) AC=(2/3)AD=(√3/3)Xm; (iv) 
AB=AE/2=Xm/2; (v) r'm=2BC=2(AC-AB)=2(√3/3-1/2)Xm≅0.15Xm. 
After replacing the above Xm with Xmin and r'm with r'min one ob-
tains r'min≅0.15Xmin. 

The p, Xm, and Xmin data (Table 2) were analyzed accord-
ing to the Two-Factor Model of sand water retention (Sec-
tion 4). It was natural to present the model predicted water 
retention curves in Figs. (7)-(10) (solid lines) in the same 
units as the corresponding experimental data and fitted 
curves from [21] and [22] (quoted by [2]) (Figs. (7)-(10); 
white circles). Then, we compared the model predicted water 
retention curves with the experimental sand-water retention 
curves as well as with the fitted water retention curves from 
[21] and [2] (Figs. (7)-(10); dashed lines) and with the bands 
of the maximum probable error of the fitted curves from [2] 
(Figs. (8)-(10); dotted lines). 
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6. RESULTS AND DISCUSSION 

The results presented in Figs. (7)-(10) (solid lines) and 
Table 2 clearly show that the sand water retention curves 
predicted by the two-factor model developed in Section 4 are 
in the good agreement with the experimental data and the 
fitted curves found in [21] and [2] as well as with the bands 
of the maximum probable error of the fitted curves [2] in 
Figs. (8)-(10). In Figs. (8)-(10), in fact, we used Xm as a pre-
liminarily estimated parameter with accuracy ∼±50µm for 
lack of reliable data. However, evaluating the good agree-
ment found above one should take into account the following 
points: (i) the agreement between prediction and data in Fig. 
(7) where Xm is a given experimental value (but not a pre-
liminarily estimated one) emphasizes the feasibility of the 
model as applied to the prediction of the sand (or rigid ma-
trix) water retention; (ii) the agreement between the non-
fitted prediction (solid line) and curve fitted with Fredlund 
and Xing's [23] fitting model in Fig. (7) (dashed line) as well 
as between the prediction and curve fitted with van Genuch-
ten's [1] fitting model (not shown in Fig. (7); cf. Fig. (7) with 
Fig. (3) in Lamara and Derriche [21]) additionally underlines 
the feasibility of the model; (iii) Xm has the clear and simple 
physical meaning and is an obviously measurable parameter; 
(iv) the preliminarily estimated Xm values (Figs. (8)-(10)) are 
in the reasonable range 1000µm<Xm<2000µm; and, finally, 
(v) we were limited in Figs. (8)-(10) to only one preliminar-
ily estimated parameter (Xm) (unlike several such parameters 
in [21] and [2] as well as in other models indicated in Sec-
tion 1). In any case the predicted curves are within the limits 
of experimental errors. 
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Fig. (7). The water retention (drying branch) curve data (white 
circles) of a dune sand [21], and the curve (solid line) that was pre-
dicted (without fitting) by the two-factor model from the data on the 
sand porosity (p=0.321) as well as maximum and minimum grain 
sizes (Xm=900µm and Xmin=45µm) (the data from [21]). The black 
circles indicate the lower boundary of model applicability (

 

!
*

) and 

water content of the saturated sand (θz). θM is the maximum water 
content (close to θz) that corresponds to the zero suction. The 
dashed line gives the fitted curve [21] of the data (white circles) 
that was found from Fredlund and Xing's [23] fitting model. 

The model estimated parameters in Table 2, in addition, 
illustrate that for the real sandy soils as noted above, θz and 
θM are very close each other and Δvw<<1 (cf. Table 1). In 
addition, the "sewing" point θ' is less than θz, as it should be, 

but very close to θz for all the four sands and for this reason 
is not given in Table 2. 

In this work we considered the simplest version of the 
two-factor model as applied to sand water retention (Section 
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Fig. (8). The water retention (drying branch) curve data (white 
circles) of Preston sand from Elrick et al. [22] (quoted by 
Haverkamp and Parlange [2]), and the curve (solid line) that was 
predicted (without fitting) by the two-factor model using the data 
on the sand porosity (p=0.393) from [22]) (quoted by [2]) as well as 
maximum and minimum grain size, Xm=1200µm and Xmin=50µm. 
The meaning of black circles is as in Fig. (7). The dashed line gives 
the fitted curve [2] to the data (white circles). Two dotted lines 
determine the band [2] that corresponds to the maximum probable 
error of the fitted curve (dashed line). 

 
Fig. (9). As in Fig. (8), but for Gormley sand (p=0.357, Xm= 
1700µm, Xmin=50µm). 

 
Fig. (10). As in Fig. (8), but for Bolton sand (p=0.373, Xm= 
1200µm, Xmin=50µm). 
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4). The model can be specified and improved (keeping its 
physical, but not fitting character) as follows. 

 (i) One can consider the two-factor model of sand water 
retention in the following, second (square) approximation 
with respect to the small Δvw value. This approximation can 
additionally soften the sharp bend of the sand water retention 
curve near saturation (see Figs. (2) and (7)-(10)), and be 
relevant for finer sands (i.e., sufficiently small Xm). 

(ii) For the more accurate water retention description of 
many real sands one can use the two-mode ϕ(ρ') distribution 
from [18] instead of Eqs.(41)-(43). 

(iii) The prediction accuracy of the sand water retention 
at small water contents, near θ=

 
!
*

 (see Figs. (7)-(10)) (in 

the vicinity of the model applicability boundary, 
 
!
*

) can be 

improved accounting for some possible internal transforma-
tion of the initial ϕ grain size distribution in the range of the 
smallest grains at the expense of the self-comminution of the 
larger contacting grains. 

Finally, it is worth noting the possibility of the simple 
adaptation of the above model and results to the more com-
plex, but related case of the matrix consisting of saturated 
aggregates. When dewatering the inter-aggregate pores of an 
aggregated soil (if they are water filled), aggregates remain 
saturated and should behave similar to the rigid grain system. 
If the inter-aggregate pores are capillary ones the corre-
sponding possible small "tail" of the main soil water reten-
tion curve (this tail is connected with the loss of inter-
aggregate water), can be considered using the above model 
after replacing the inter-grain pores of a sand with inter-
aggregate ones of the soil. Unfortunately, reliable data for 
such consideration of the "tail" are lacking at present. 

7. CONCLUSION 

The aim of this work is to propose an approach to the wa-
ter retention of rigid soils that, unlike the models of the 
curve-fitting type, could be useful not only for engineering 
applications, but also for improving our knowledge and un-
derstanding. The novelty points are as follows. (1) The gen-
eral analysis of the observed soil water retention curves in 
the frame of the two-factor model of clay water retention, 
enabled us to formally ascribe some "shrinkage" curve to any 
soil, including a soil with a rigid grain matrix. (2) As applied 

to the rigid soil we use the term pseudo shrinkage because its 
nature has no relation to true shrinkage of clay or clay soil. 
The analysis of the number of specific features of a rigid 
matrix that flow out of the simple generally known facts, 
permitted us to connect this very weak "shrinkage" of rigid 
soil with an additional water volume that is distributed in the 
already saturated rigid matrix as a supplementary water film 
along the grain surfaces. (3) This additional water film (with 
the thickness ∼0.3µm) is associated with the closest vicinity 
of the zero suction point and is quickly lost with rigid soil 
dewatering and the rapid (nearly vertical) ascent of soil suc-
tion (in shrink-swell soils the similar ascent is rather 
smoother owing to the "work" of real shrinkage). (4) The 
pseudo shrinkage of rigid soils allows one to consider the 
soils as "clay" and use the available method of the two-factor 
model of clay water retention, after some preliminary ex-
pression of the corresponding parameters of such (pseudo) 
clay through the usual parameters of the rigid grain matrix. 
(5) Eventual input parameters of the developed model of 
rigid-soil water retention have a clear physical meaning, are 
simply measured, and include the porosity (p) of a rigid 
grain system as well as the maximum (Xm) and minimum 
(Xmin) sizes of grains. 

The major result is the promising agreement between 
predicted and experimental water retention curves of the four 
sandy soils. The principle result is the confirmed fruitfulness 
of the two-factor model not only for a shrinking clay, but 
also for a rigid soil. This suggests the possibility of develop-
ing the similar model in the general case of an aggregated 
soil. 

NOTATION 

A Characteristic constant of a clay microstructure 
[14], dimensionless 

D Coefficient in Eq. (52), dimensionless 
d Mean grain size, µm 
F(ζ) Saturation degree, dimensionless 
g  Specific gravity, m s-2 
g(ρ') Filling degree of the pore tubes of internal ρ' size 

with water, dimensionless 
H Factor originating from the adsorption-capillary 

phenomena, kPa or cm of H2O 

Table 2. Input and Estimated Parameters of the Two-Factor Model of Sand Water Retention 

Input parameters† Model estimated parameters‡ 

p Xmin Xm Δvw θ* θ z θM 

Data source Fig 

 µm µm  cm3 cm-3 cm3 cm-3 cm3 cm-3 

Lamara, Derriche [21]. A dune sand 7 0.321 45 900 0.0040 0.032 0.317 0.324 

Elrick et al. [22] Preston sand 8 0.393 50 1200 0.0030 0.039 0.390 0.395 

Elrick et al. [22] Gormley sand 9 0.357 50 1700 0.0021 0.036 0.355 0.358 

Elrick et al. [22] Bolton sand 10 0.373 50 1200 0.0030 0.037 0.370 0.375 
† p, sand porosity; Xmin, minimum grain size; Xm, maximum grain size. 
‡ Δvw, relative additional water volume per unit volume of dry sand (distributed in the saturated sand matrix as water film along grain surfaces); θ*, lower boundary of the model 
applicability in terms of volumetric water content; θz, volumetric water content at sand saturation; θM, volumetric water content at zero suction. 
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h Soil suction, kPa or cm of H2O 
I(x) Function from Eq. (43), dimensionless 
k Coefficient in the "shrinkage" curve of the sand, 

dimensionless 
L Side size of sand volume of cubic shape, m 
l Characteristic minimum thickness of the addi-

tional water film between the grains, µm 
lo Thickness of a monomolecular water layer, ∼3Å 
P(W) Soil porosity, dimensionless 
p Constant sand porosity in the area 0<ζ≤ζz, dimen-

sionless 
Q Factor originating from the shrinkage-swelling of 

the soil matrix, dimensionless 
R Characteristic size of pore-tube cross-section of 

clay matrix or sand, µm 
r External pore size that includes a half-thickness of 

clay particles limiting the pores, µm 
rmM Maximum external size of clay pores at ζ=1, µm 
rmz Maximum size of clay particles in oven-dried 

state, µm 
ro Minimum pore size of the solid particle system, 

µm 
roM Minimum size of the water saturated pores in clay, 

µm 
r' Internal pore size, µm 
r'm Maximum (three-dimensional) internal pore size, 

µm 
r'min Minimum (three-dimensional) internal pore size, 

µm 
VM Maximum volume of "shrinking" sand with the 

minimum water film at ζ=1, m3 
Vp Pore volume of sand in the area of the rigid ma-

trix, 0<ζ≤ζz, m3 
Vs Volume of sand solid phase, m3 
Vz Minimum volume of "shrinking" sand when its 

matrix is rigid, 0<ζ≤ζz, m3 
v(ζ) Shrinkage curve of clay in terms of relative vol-

ume (the ratio of the specific volume to that at the 
liquid limit of the clay); "shrinkage" curve of 
sand, dimensionless 

vs Relative volume of clay solids (the ratio of the 
solid volume to clay volume at the liquid limit); 
corresponding parameter of "shrinking" sand, di-
mensionless 

vz v value at the shrinkage limit of clay; correspond-
ing parameter of "shrinking" sand, dimensionless 

W Gravimetric water content of sand, g g-1 
WM Maximum value of W at ζ=1, g g-1 
w Gravimetric water content of clay, g g-1 
wM Liquid limit of clay, g g-1 

wh Maximum swelling point of clay, g g-1 

*
w  Gravimetric water content of clay at ζ=!

*
, gg-1 

Xm Characteristic (maximum) sand grain size, µm 
Xmin Minimum sand grain size, µm 
x, y, z Orthogonal axes in the sand cube, m 
x(ρ') Parameter from Eq. (42), dimensionless 
α Characteristic constant of a clay microstructure 

[14], dimensionless 
αc Contact angle, degrees 
Γ Surface tension of water, N m-1 
ΔV Increment of "shrinking" sand volume between 

VM and Vz, m3 
ΔVw Increment of water volume associated with sand 

volume increment ΔV, m3 
Δv Relative additional sand volume (per unit volume 

of dry sand), dimensionless 
Δvw Relative additional water volume (per unit volume 

of dry sand), dimensionless 
δρ'f Small difference between ρ'c(ζ) and ρ'f(ζ), dimen-

sionless 
ζ Relative water content of clay (the ratio of the 

gravimetric water content, w to the liquid limit of 
the clay, wM) or sand, dimensionless 

ζM ζ=1 value at clay liquid limit or sand zero suction, 
dimensionless 

ζh ζ value at maximum swelling point of clay, di-
mensionless 

ζn Clay air-entry point, dimensionless 
ζz Shrinkage limit of clay or "shrinking" sand, di-

mensionless 
ζo Zero suction point; for clay ζo≡ζh; for sand ζo=1, 

dimensionless 

!
*

 Estimate of the range !
*

<ζ<1 boundary where H 

is only connected with capillarity, dimensionless 
ζ' ζ value where δρ'f(ζ')=0, dimensionless 
θ Volumetric water content of sand, cm3 cm-3 
θM Value of θ at ζ=1, cm3 cm-3 
θz Value of θ at ζ=ζz, cm3 cm-3 
θ* Value of θ at ζ=ζ*, cm3 cm-3 
λ Function of the ratios of lo to Xm and [2Γ/(ρwg)]1/2, 

dimensionless 
λo Value of λ at lo/Xm=0 and lo/[2Γ/(ρwg)]1/2=0, di-

mensionless 
ρ External pore-tube size that includes a half-

thickness of clay particles limiting the pores, µm 
ρs Sand solid density, g cm-3 
ρw Water density, g cm-3 
ρ' Internal pore-tube size, µm 
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ρ'c(ζ) Maximum internal size of the water-containing 
pore tubes, µm 

ρ'f(ζ) Maximum internal size of the water-filled pore 
tubes, µm 

ρ'm(ζ) Maximum internal size of pore tube cross-sections 
(constant for sand), µm 

ρ'min Minimum internal size of pore tube cross-sections 
(constant for sand), µm 

ϕ(ρ') Pore tube-size distribution, dimensionless 
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