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1. PERSPECTIVE

The terrible story of the coronavirus disease (COVID-19)
needs no introduction in the present hour. It is evident that viral
diseases have always appeared as a mystery and are the fatal
ailments in human beings. The history justifies this fact of viral
epidemics,  such  as  SARS-CoV  prevailed  during  2002-2003,
H1N1 during 2009, MERS-CoV in 2012 and the most dreadful
COVID-19 from December 2019 to till date [1]. This ailment
has  emerged  as  a  wonderstruck  and  put  the  whole  world  in
worry and confusion.  According to the latest  WHO situation
report-90, up to 29th April, there are 30,18,681 total confirmed
cases  of  COVID-19  and  approximately  2,07,973  people  had
lost their lives all over the world [2]. Coronaviruses (CoVs) are
the  major  microorganisms  causing  fatal  respiratory  disease
outbreaks worldwide. These constitute a large group of single-
stranded RNA viruses and can be isolated from a wide variety
of animal species [3,4]. CoVs have an appearance like a crown
(coronam  a  Latin  term)  due  to  the  presence  of  glycoprotein
spikes on its envelope [5]. To date, seven human coronaviruses
(HCoVs)  have  been  identified.  The  common  HCoVs  are
HCoV-OC43,  and  HCoV-HKU1;  HCoV-229E  and  HCoV-
NL63  (αCoVs),  which  are  responsible  for  the  common  cold
and lower extent of upper respiratory disorders. Other HCoVs
are  severe  acute  respiratory  syndrome  causing  coronavirus
(SARS-CoV),  SARS-CoV-2  and  the  Middle  East  respiratory
syndrome  causing  the  coronavirus  (MERS-CoV),  which  can
cause epidemics with severe respiratory manifestations [6].

2. PATHOGENESIS OF COVID-19

The progression of COVID-19  can be  divided  into  three
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major  stages:  Asymptomatic  stage,  upper  airway  response
stage and progression to Acute Respiratory Distress Syndrome
(ARDS) [7]. The first stage is regarded as the stage after 1-2
days  of  the  infection.  In  this,  SARS-CoV-2  enters  the  nasal
cavity and gets bounded to epithelial cells there with the help
of the ACE2 receptor [8, 9]. When it enters inside the cell, the
viral RNA gets released into the cytoplasm of the cell where
translation  occurs,  leading  to  the  formation  of  proteins  and
replication  [10].  It  starts  replicating  and  ciliated  cells  are
believed  to  be  infected  here  [11].  It  is  the  local  propagating
stage, viral loads are low, and the infection can be detected by
using nasal swabs. The innate immune response at this stage is
low. In the next few days, the virus starts propagating towards
lower respiratory track along with conducting organs and the
extent of innate immune response gets elevated. At this stage,
the  sputum  analysis  represents  a  virus  and  other  markers  of
innate immunity. It confirms the manifestation of COVID-19
disease.  The level  of  cytokine CXCL10 can be  predicted for
clinical studies [12]. The infected epithelial cells yield beta and
lambda  interferons  [13].  CXCL10  is  a  gene  that  is  highly
responsive to interferons in alveolar type II cell response in the
case of SARS-CoV and is also a disease marker for SARS [14 -
16]. It was evident that for about 80% of infected people, the
disease  was  mild  and  limited  only  to  the  upper  respiratory
region.  The rest  of  about 20% sufferers,  unfortunately,  go to
severe  stage  3  and are  associated with  respiratory  infiltrates.
The virus enters the lungs and alveolar type II cells and liesin
peripheral or pleural sites [17]. A large population of viruses
gets released and cells  undergo apoptosis and ultimately die.
The  results  are  the  development  of  pulmonary  toxin,  which
invades  the  adjacent  cells  leading  to  secondary  pathway
initiation foe regeneration of epithelial cells [18]. It is reported
that  these  manifestations  led  to  alveolar  damage  with  the
evident presence of fibrin rich membranes and giant cells [19].
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To  recover  at  this  stage,  a  vigorous  immune  response  is
required with extremely rapid epithelial regeneration. The elder
people  are  at  very  much  higher  risk  at  this  stage  due  to  low
immune  response  and  slow  epithelial  regeneration.  This
pathogenesis  is  not  still  100% clear  and  may  take  few  more
months to resolve the unclear mechanisms.

A  huge  number  of  research  groups  from  all  parts  of  the
world are continuously working in order to develop therapeutic
agents  against  COVID-19,  but  no  vaccine  or  therapeutic

candidate has been developed to date. The rapidly expanding
knowledge regarding SARS-CoV-2 virology provides a signi-
ficant number of potential drug targets. These targets include
spike protein (S), an envelope protein (E), membrane protein
(M),  protease,  nucleocapsid  protein,  hemagglutinin  esterase,
helicase and several  Nonstructural  Proteins (NSPs) [20 -  22]
which are currently being focussed for drug discovery and drug
development. The drugs or vaccines which are currently under
investigation or in clinical trials against COVID-19 have been
depicted in (Table 1).

Table 1. Drugs under investigation against COVID-19.

Therapeutic
Class

Therapeutic
Agent

Description Current Status Reference

Interleukin
Antagonist

Anakinra Interleukin-I (IL-I) receptor
antagonist with an intent to end

cytokine invasion

Under clinical trial (NCT04330638) [23]

Antibody Baricitinib Janus Kinase (JAK) inhibitor,
recommended through an artificial

intelligence approach

Clinical data not available [24]

Antibody Bevacizumab A recombinant humanized antibody
which prevents the association of
vascular endothelial growth factor
with its receptors which is official

in the USA against multiple cancers

Under evaluation in a clinical trial in China against
COVID-19 (NCT04275414)

[25]

Antibiotic Brilacidin A defensive peptidomimetic under
development by Innovation

Pharmaceuticals

Under evaluation against SARS-CoV-2 [26]

Anti-Malarial Chloroquine Elevates endosomal pH and
interferes with ACE2 glycosylation

Under evaluation in a clinical trial (NCT04344951) against
COVID-19

[27]

Antiviral Darunavir HIV-protease inhibitor Under evaluation in a clinical trial (NCT04252274), still, no
clinical human data is reported in support of its use against

COVID-19

[28]

Antibody Eculizumab Humanized monoclonal IgG
antibody, responsible for the
prevention of formation of

membrane attack complex by
binding to complement protein C5

Under evaluation in a clinical trial (NCT04288713) for
COVID-19

[29]

Antiviral Favipiravir RNA dependent RNA polymerase
(RdRp) inhibitor with wide anti-

viral activity

Under evaluation in a clinical trial (NCT04273763) against
COVID-19

[30]

Antiviral Galidesivir Nucleoside RNA polymerase
inhibitor against Ebola virus

Currently under evaluation by Biocryst Pharma [31]

Antiviral Griffithsin An algae derivative as a potent HIV
entry inhibitor

Reported active against SARS-CoV-1 and under evaluation
against SARS-CoV-2

[32]

Antiviral Lopinavir Viral proteases inhibitor (3CLpro
or PLpro)

The repurposed drug, currently under clinical trials
(NCT04307693)

[33]

Antiviral Nelfinavir HIV-1 protease inhibitor Homology modelling in silico activity is reported but no
clinical data available

[34]

Antihelmintic Niclosamide Kills tapeworms Have in vitro activity against SARS-CoV-1, under
investigation against SARS-CoV-2

[35]

Antiviral Remdesivir RdRp inhibitor and blocks viral
replication

Under evaluation against SARS-CoV-2 in clinical
trials(NCT04302766,NCT04292899, NCT04292730,

NCT04280705)

[36 - 38]

Antiviral Sofosbuvir Antiviral against Hepatitis C Reported in vitro activity against SARS-CoV-1, under
investigation against SARS-CoV-2

[39]

Anti-oxidant Vitamin C Anti-oxidant A clinical trial is going on in China for COVID-19
(NCT04264533)

[40]

Antiviral Umifenovir Antiviral against Influenza Evaluated in Chinese clinical trials (200mg orally thrice a day
for no more than 10 days) for COVID-19 revealed potent in

vitro activity

[41]
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Therapeutic
Class

Therapeutic
Agent

Description Current Status Reference

Herb XueBijing Chinese herbal extract Administration of this extract has remarkably reduced the
mortality rate due to COVID-19 in China, administered as

100ml intra venous infusion twice a day

[42]

Interleukin
Antagonist

Tocilizumab Interleukin-6 (IL-6) receptor
inhibitor humanized monoclonal

antibody which can restore T Cell
counts

Under evaluation in a clinical trial (NCT04317092) against
COVID-19

[43, 44]

Various  treatment  strategies  to  treat  and  manage  the
SARS-CoV-2 infection have been summarized in the following
sections.

3. DEVELOPMENT OF ANTIBODIES TO SARS-COV-2

It is well known that the entry of coronavirus is mediated
by  S  protein  followed  by  the  release  of  viral  nucleocapsid
inside the cell for the purpose of replication [45]. S protein also
causes symplasm formation between normal receptor-bearing
cells and infected cells around them. Targeting the surface of
SARS-CoV-2 with a neutralizing antibody has been looked for
thoroughly  by  various  research  groups  in  order  to  provide  a
passive immunity [46]. The gene synthesis can be carried out
in a laboratory considering the expression of  S protein as an
immunogen utilizing the recently launched genome sequence
of  SARS-CoV-2  (GenBank:  MN908947.3).  Traditional
methods using experimental animals are also available but they
are  too  slow  as  per  the  current  situation  of  this  pandemic.
Instead, faster methods such as the utilization of phage library
or  yeast  display library to  express  specific  antibodies  can be
utilized for viral neutralization [47, 48]. The challenges in this
task  are  rigorous  testing  in  cell  culture  labs,  animal  models,
information from other CoV species and use of a cocktail  of
antibodies. For quick production of antibodies, lead therapeutic
candidates  can  be  utilized  for  protein  expression  in  bacteria,
yeast  or  insect  cells  [49].  A  much  promising  approach  for
producing  neutralizing  antibodies  can  be  immunizing  sheep,
goat,  cow  or  large  animals  with  the  SARS-CoV-2  proteins
followed by purification of antibodies from the animals [50].
The challenge associated with the use of large animals is that
there  is  no  guarantee  that  they  will  produce  neutralizing
antisera  or  not.  Another  complication  may  be  the  human
immune  response  against  foreign  antibodies.

4. UTILIZING OLIGONUCLEOTIDES AGAINST SARS-
COV-2

The RNA genome of the SARS-CoV-2 could be targeted
against  COVID-19.  RNA  genome  sequence  (GenBank:
MN908947.3) for this has been recently published and it can be
targeted through small interfering RNAs or antisense oligonu-
cleotides [51]. But the challenging task in this approach is to
deliver oligonucleotides into the lungs. Another complication
associated  with  this  strategy  is  the  non-availability  of  RNA
sequence  domains  of  SARS-CoV-2.  Advancements  in  lipid
nanoparticle-based drug delivery systems can deliver into the
lungs but  only up to  a  limited extent  [52].  But  if  it  becomes
possible to deliver small RNAs or antisense oligonucleotides
even up to 25% of epithelial cells, it may lead to great success
for traditional gene therapy. The need of the hour is to discover
the  gene  homology  of  SARS-CoV-2  and  solve  it  for  future

drug development.

5. UTILIZING RECOVERED PATIENT SERA

Another promising and simple approach is the transfer of
passive antibodies from the serum of a patient recovered from
COVID-19  to  treat  a  suffering  patient.  These  polyclonal
antibodies neutralize the virus and can prevent the possibility
of a new infection. The cured patients can donate their plasma,
which can be transfused to the suffering patient [53, 54]. The
challenging task  in  this  approach is  variability  in  the  sera  of
cured  and  infected  individuals.  Although  exponential
prevalence of this disease may retard the scope of this therapy
it still should be considered as an important strategy in the field
of transfusion medicines.

6. DEVELOPMENT OF ACE2 BINDING ANTIBODIES

Administration of  antibodies that  can bind and block the
action of ACE2 could be a significant approach to prevent the
prevalence  of  COVID-19  infection.  This  strategy  has  been
proved  experimentally  against  SARS  entry  and  replication
[55]. Although no sequence of ACE2 genome is published, still
monoclonal antibodies exist and hybridoma sequences can be
cloned only in  a  few days.  It  is  not  concerned with  the  viral
escape from the ACE2 binding antibody unlike the approaches
against S protein [56]. The limitation of this approach is that
other  ACE2  receptors  in  different  locations  will  also  get
inhibited.  Also,  the  dose  to  block  the  ACE2  receptor  in
different  organs  of  the  body  is  not  known.  Another  compli-
cation  is  turnover  number  of  the  ACE2  receptor,  which  will
greatly influence the effect of the administered antibody. This
issue can be resolved by increasing the concentration of ACE2
antagonists at the site of infection in the lungs via nebulization
technique. Another unfortunate possibility is that direct binding
to ACE2 may cause lung injury or may alter the physiology of
the lungs.

7. DEVELOPMENT OF ANTIBODY LIKE MOLECULE
AGAINST ACE2

Beyond developing antibodies, design and development of
antibody-like  therapeutic  candidate  against  ACE2  is  a  much
more promising approach which will  directly bind and block
ACE2.  The  validity  of  this  approach  has  already  been
supported by literature  where SARS virus  was blocked from
infecting  cells  utilizing  soluble  ACE2  [57].  The  reported
affinity of soluble ACE2 for the SARS S protein was 1.70 nM,
which is comparable to the affinities of monoclonal antibodies.
The life span of the circulating molecule can be increased by
converting  soluble  ACE2  into  immunoadhesin  format  by
fusing with the immunoglobulin Fc domain (ACE2-Fc) [58].
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Using  ACE2  as  SARS-CoV-2  neutralizing  agent  is  advan-
tageous  because  it  can  directly  treat  pneumonia  patho-
physiology. The advanced therapy suggested that the adminis-
tration  of  recombinant  ACE2  has  significantly  improved  the
acute  lung  injury  by  reducing  angiotensin  II  levels  by
successive attachment of hormones to its 1a type receptor. Due
to  such  excellent  clinical  abilities,  recombinant  ACE2  was
moved  to  clinical  trials  where  it  revealed  significant  results.
The  limitation  of  ACE2-Fc  therapy  is  that  elevated
extracellular levels of ACE2 in body may lead to undesirable
effects.  Another important  outcome is  that  receptor targeting
through an antibody can direct SARS-CoV-2 towards infecting
Fc receptor-positive cells which has the capability to neutralize
the antibodies. But this aspect is unclear and more clinical data
is required to reveal the undiscovered mechanisms.

8.  REPURPOSING  OF  PREVIOUSLY  APPROVED
ANTI-VIRAL DRUGS

Previously approved anti-HIV drugs can be repurposed for
their efficacy against SARS-CoV-2 by focussing their inhibi-
tory potentials against SARS-CoV-2 target proteins. Therefore
drug repurposing is an attractive approach to the researchers,
medicinal  chemists,  clinicians  and  drug  developers  in  the
present  situation  [59].  Drug  repurposing  is  a  technique  for
utilization  of  the  therapeutic  value  of  an  existing  drug  by
focusing on infections other than that for which it was initially
proposed [60]. Several drugs have already been repurposed in
order  to  develop  a  suitable  therapeutic  candidate  against
COVID-19.  The  repurposed  drugs  include  Lopinavir,
Ritonavir, Darunavir (against protease); Remdesivir, Ribavirin,
Gallidesivir,  Penciclovir  (against  RNA  dependent  RNA
polymerase);  Baloxavir  (against  endonuclease),  chloroquine
(against  ACE2)  and  Baricitinib  (against  JAK  kinase)  [61].
Most of the repurposed drugs have cleared phase I trials (Table
1), have low risk of failure as well as a very small investment.
This approach is able to facilitate great clinical developments
at a very low cost. Drug repurposing sometimes may come into
light through chance observations, but target based repurposing
is based on a thorough understanding of molecular mechanisms
or cellular events [62, 63]. The repurposed drug may or may
not work through the same target  or  mechanism for which it
was previously approved. Many recent reports are there where
researchers have carried out drug repurposing by targeting on
different-different receptors or biomolecules. Hobartner et al.
have  carried  out  repurposing  of  antiviral  drug  tenofovir  for
orthogonal  RNA  catalyzed  labeling  of  RNA  [64].  Sun  et  al.
carried out drug repurposing of pyrimidine analogs as potent
antiviral compounds against human enterovirus A71 infection
with  potential  clinical  applications  [65].  Bhatia  et  al.  have
reported repurposing of RdRp inhibitors against SARS-CoV-2
through molecular docking tools with promising results [60].
Zhou et al. has carried out network based repurposing of drugs
against SARS-CoV-2 and screened out 16 repurposable drugs,
including  melatonin,  quinacrine,  colchicine,  mercaptopurine,
irbesartan etc [66]. Another work was put forward by Singh et
al. where they screened out a library of 123 drugs and isolated
inhibitors  (Raltegravir,  Paritaprevir,  Bictegravir  and  Dolute-
gravir)  of  3CL  pro  and  ribose  methyltransferase  through
repurposing approach [67].  Kang et  al.  identified the SARS-

CoV-2 3C like protein inhibitory potentials of atazanavir (anti-
HIV  drug)  by  utilizing  Molecule  Transformer-Drug  Target
Interaction (MT-DTI) for repurposing [68]. In another report,
Yelekci et al. have utilized the drug repurposing approach by
targeting 3CL hydrolases and proteases of SARS-CoV-2. They
screened  out  talampicillin,  lurasidone,  rubitecan  and  lopra-
zolam  as  potential  inhibitors  of  these  enzymes  through
molecular  modelling  tools  [69].  Beyond  these  reports,  many
others are available in the literature and continuous work is in
progress utilizing this drug repurposing approach.

The  challenge  associated  with  drug  repurposing  is  the
inadequate  efficacy  of  single  therapeutic  candidate.  Another
complication  associated  with  this  approach  is  to  search  and
analyze the huge amount of previously reported data to make
efficient  and  effective  use  against  a  new  indication.  The
complex/unclear  events  of  the  pathophysiology  of  SARS-
CoV-2  also  offer  a  great  challenge  to  select  a  candidate  for
repurposing.

CONCLUSION

Although there is continuous work in progress in some of
the  above  mentioned  approaches,  but  there  is  still  no
drug/vaccineavailable  to  treat  COVID-19.  Drug  repurposing
offers an economical and rapid strategy to discover a potential
therapeutic  agent  in  the  current  hectic  situation.  This
compilation may be helpful to the researchers, drug developers
and health agencies to look into the matter and work against
the possible targets to develop a therapeutic candidate against
COVID-19.
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