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Abstract: HIV/AIDS is an important public health problem globally. An affordable, easy-to-deliver and protective HIV 
vaccine is therefore required to curb the pandemic from spreading further. Recombinant Salmonella bacteria can be 
harnessed to vector HIV antigens or DNA vaccines to the immune system for induction of specific protective immunity. 
These are capable of activating the innate, humoral and cellular immune responses at both mucosal and systemic 
compartments. Several studies have already demonstrated the utility of live recombinant Salmonella in delivering 
expressed foreign antigens as well as DNA vaccines to the host immune system. This review gives an overview of the 
studies in which recombinant Salmonella bacteria were used to vector HIV/AIDS antigens and DNA vaccines. Most of 
the recombinant Salmonella-based HIV/AIDS vaccines developed so far have only been tested in animals (mainly mice) 
and are yet to reach human trials. 
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INTRODUCTION TO SALMONELLA AND 
STRATEGIES FOR VECTORING VACCINES 

 Salmonella bacteria infect their host via the intestine by 
crossing the epithelial barrier through the M cells overlying 
lymphoid follicles [1.2]. The translocation of Salmonella 
into the Peyer’s patches of the intestine through the M cells 
is important for the systematic spread of the bacteria to 
distant organs such as the spleen and liver [3,4]. The bacteria 
are engulfed by the macrophages, dendritic cells and 
neutrophils, into which replication occurs [5,6]. To achieve 
this, the bacteria utilize the type-III secretion systems, 
(TTSS) designed to transport pathogenic proteins through 
both the bacterial and target host cell membranes [7]. 
Salmonella encode at least 2 virulence-associated TTSS. The 
first, Salmonella Pathogenicity Island 1 (SPI-1), is important 
for epithelial cell invasion and enteric pathogenesis [8,9]. 
The second pathogenicity island, SPI-2, is critical for 
intracellular pathogenesis and systemic infection by the 
bacteria [8,10]. After contact with target cells, TTSS-
mediated translocation of effector proteins occurs and this 
results in successful bacterial invasion [11]. SPI-2 gene 
expression is induced by phagocytosis and SPI-2 mutants 
cannot replicate efficiently within host cells [12]. Several 
other Salmonella pathogenicity islands such as SPI-3, SPI-4, 
SPI-5, SPI-6, SPI-7, SPI-8, SPI-9 and SPI-10 have also been 
identified and play various roles in intracellular survival and 
virulence of the bacteria [13-18]. Since most Salmonella 
enterica virulence genes are encoded on known 
pathogenicity islands, it is now possible to systematically 
attenuate the bacteria using genetic engineering tools in 
order to develop vaccines. These vaccines can be harnessed 
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to carry foreign genes and can be used as recombinant 
vaccines. Other mutants of Salmonella generated or 
identified by traditional methods can also be used as vaccine 
vectors although some of them may be unsafe for use [19-
21]. Several reviews have been written on the feasibility of 
using attenuated recombinant Salmonella enterica to vector 
foreign antigens or DNA vaccines [22-28]. 
 Two fundamentally different approaches are employed 
when using Salmonella to vector vaccines. The first 
approach involves the expression of the foreign antigens by 
the engineered recombinant bacterium. The foreign antigen 
genes are cloned on plasmid or onto the bacterial 
chromosome and the expression is driven by a prokaryotic 
promoter. The foreign antigens are expressed by the bacteria 
and presented to the immune system of the host after 
infection. In general, MHC Class II restricted and 
immunoglobulin responses are recorded in a number of 
studies [29-32]. However, other groups have also 
demonstrated the generation of MHC Class I-restricted 
CD8+ T cells after vaccination of animals with recombinant 
Salmonella expressing the foreign antigens [33-39]. The 
second approach to vector vaccines using recombinant 
Salmonella enterica involves the delivery of DNA vaccines 
by the bacteria [40,41]. The recombinant bacteria carrying 
the recombinant plasmid DNA harbouring foreign antigen 
gene under eukaryotic promoter enter the host cells for 
delivery. The host cells will use the host machinery to 
express the foreign antigens that can ultimately be presented 
to immune system [42,43]. The two approaches have already 
been used in development of candidate bacteria-vectored 
HIV-1 vaccines. 

RATIONALE OF USING RECOMBINANT SALMO-
NELLA AS HIV-1 VACCINE VECTORS 

 One of the key features of mucosal sites is the presence 
of M cells that play important roles in uptake and transport 
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of pathogens [2,44,45]. HIV-1 and Salmonella utilize these 
M cells in the mucosal surfaces as their gateways for 
systemic transmission [2,44,45]. Besides mucosal 
transmission, HIV-1 and Salmonella replication also occurs 
in the mucosal lymphoid tissue before systemic spread 
[3,45,46]. The MALT is rich in immune cells such as 
dendritic cells, macrophages, CD4+ and CD8+ T cells which 
play important roles in provoking mucosal immunity to HIV-
1 or Salmonella [6,47]. The rationale of using recombinant 
Salmonella to vector candidate HIV-1 vaccines is therefore 
based on the fact that the two pathogens use the same mode 
of infection. The two pathogens provoke the same type of 
immune responses, that is, innate, mucosal and systemic 
cellular and humoral immune responses [28,48-51]. In recent 
years, the innate immune responses to HIV, especially the 
role of NK cells have attracted a lot of interest in the 
development of HIV/AIDS vaccines. Recombinant 
Salmonella vectoring HIV/AIDS vaccines are capable of 
activating such immune responses that are also key in the 
induction of the adaptive responses [28]. Therefore 
Salmonella vectors can be exploited to deliver HIV-1 
antigens for induction of protective mucosal and systemic 
immune responses to potentially block the invasion of HIV 
after sexual intercourse. 
 There are a number of advantages of using Salmonella as 
vectors for HIV-1 vaccines. The recombinant bacteria can be 
used as oral vaccines that can be delivered easily. Vaccine-
induced immune responses or protection can be achieved at 
mucosal surfaces as well as in the systemic compartments 
[52]. The bacteria are capable of stimulating broad humoral 
as well as cell-mediated immune responses in both mucosal 
and systematic lymphoid tissues [52,53]. The bacteria are 
fast growing and vaccines can therefore be manufactured 
expeditiously. Several genetic engineering techniques 
developed for E. coli manipulation can be applied to 
Salmonella easily as the two bacteria are closely related 
[52,54]. Attenuation of specific Salmonella genes to generate 
vaccines can now easily be done using recombinant DNA 
technology. Salmonella also possess intrinsic adjuvantic 
properties that will make the vaccines very immunogenic 
[55]. Despite disarmed virulence, attenuated recombinant 
Salmonella can still colonize the lymphoid tissues after 
inoculation, but they do not cause disease. They are therefore 
safe for use and can even be used in HIV-positive patients 
[54,56]. 

RECOMBINANT SALMONELLA VECTORS EXPRES-
SING HIV-1 VACCINE ANTIGENS 

 Recombinant Salmonella expressing HIV-1 antigens 
have a great potential in the development of vaccines to curb 
AIDS globally. A number of studies have already been done 
in which recombinant Salmonella-vectored HIV-1 antigens 
were tested, mostly in small animals such as mice. 
Generally, HIV-1 antigens can be expressed by the 
recombinant Salmonella bacterium either from its 
chromosome harboring the HIV-1 gene or from a plasmid 
carrying the gene. Chromosomal integration has the 
advantage of increasing the stability of foreign antigens and 
also protects them against proteolytic degradation [52,57]. 
Expression of genes from the plasmid has the advantage of 
increasing gene dosage [58]. The expressed antigens can be 

presented to the immune system after uptake of the 
bacterium by the host. 
 A recombinant Salmonella enterica serovar Typhi 
constitutively expressing HIV-1 gp120 from the bacterial 
chromosome was previously constructed [59]. High levels of 
the gp120 were shown to be expressed by the vector [59]. 
The same antigen was also cloned chromosomally and 
expressed in recombinant Salmonella enterica serovar 
Typhimurium and its immunogenicity evaluated in mice 
[60]. Another recombinant Salmonella enterica serovar 
Typhimurium expressing the antigen episomally from a 
multicopy plasmid was constructed by the same group [60]. 
The recombinant Salmonella expressed more gp120 from the 
plasmid than from the chromosome [60]. Oral vaccination of 
mice with the two recombinant Salmonella vaccines did not 
induce HIV-1 env-specific CD8+ T cell responses or a 
significant antibody response [60]. However, there was some 
gp120-specific Th1 response in mice vaccinated with the 
Salmonella vector expressing gp120 from the plasmid [60]. 
This was the first study to demonstrate that a recombinant 
Salmonella expressing cytoplasmic HIV-1 gp120 could 
induce an immune response in mice. Later, recombinant 
Salmonella expressing the HIV-1 gp120 on the bacterial 
surface was constructed and found to be more immunogenic 
than the one expressing the antigen in the bacterial 
cytoplasm [61]. Another recombinant Salmonella expressing 
a truncated derivative of HIV-1 gp120 and displayed in the 
bacterial periplasm was later constructed and found to be 
highly immunogenic after only a single inoculation of mice 
[62]. The vector induced systemic gp120-specific splenic 
CD4+ Th1and Th2 responses in the spleen after vaccination 
of mice [62]. The vector also induced strong mucosal gp120-
specific IgA antibody-secreting cell responses [62]. This 
study clearly demonstrated that recombinant Salmonella-
vectored secreted HIV-1 antigens could induce better T cell 
responses than those expressed cytoplasmically. More 
recently, a recombinant Salmonella enterica serovar Typhi 
expressing HIV-1 gp120 from a plasmid and HIV-1 Gag 
from the bacterial chromosome was constructed and tested 
[63]. Mice inoculated intranasally with the recombinant 
vector elicited high titers of gp120-specific IgG in the sera 
and gp120-specific IgA in fecal washes [63]. Systemic Gag-
specific and gp120-specific CD8+ T cell responses were also 
induced in vaccinated animals [63]. This study further 
highlighted that recombinant Salmonella bacteria could 
potentially be used to vector HIV/AIDS vaccines. It is now 
generally accepted that induction of HIV-1 envelope-specific 
humoral responses is very critical in developing successful 
HIV vaccines. Although recombinant Salmonella may 
induce Env-specific humoral responses as shown by the 
studies mentioned above, the antibodies are unlikely to be 
neutralizing since the Env expressed by the bacteria lacks 
post-translational modifications found in nature. However, 
the Env-specific CD8+ and CD4+ T cell responses elicited 
by the recombinant bacteria should have the potential to 
protect against HIV infection. The non-neutralizing Env-
specific antibodies induced by the bacteria may also have the 
potential to protect against HIV infection through antibody-
dependent cell-mediated pathway. 
 Salmonella enterica vaccine vectors have also been used 
to express HIV-1 Gag antigens [reviewed in 28]. Most of the 
studies have shown that Gag expressed in Salmonella could 
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provoke HIV-specific immune responses in mice [28]. 
Briefly, recombinant Salmonella expressing HIV-1 Subtype 
C Gag elicited Gag-specific CD4+ Th1 and Th2 cytokine 
responses as well as Gag-specific IgG1 (Th1) and IgG2a 
(Th2) responses [29]. Recombinant Salmonella enterica 
serovar Typhimurium vaccine secreting HIV-Gag (p24) 
using the hemolysin secretorial signal of E. coli was also 
shown to elicit Gag-specific humoral and T cell responses in 
mice [64]. A recombinant Salmonella expressing HIV-1 Gag 
fused to the secretable bacterial Type III secretion system 
SopE protein elicited Salmonella-specific mucosal immune 
responses in vaccinated human volunteers, but no HIV-Gag 
specific responses were detected after a single dose [65]. 
Boosting with the same recombinant vector could have 
induced HIV-Gag-specific responses. Recombinant 
Salmonella enterica serovar Typhi expressing HIV-1 Gag 
from the bacterial chromosome also elicited systemic Gag-
specific cytotoxic T lymphocyte responses in mice 
vaccinated intranasally [63]. Recombinant Salmonella 
vaccine vector expressing codon optimized HIV-1 Gag 
induced Gag-specific mucosal CD8+ T cell and humoral 
responses in mice vaccinated orally [66]. Other HIV-1 
antigens have also been expressed in recombinant 
Salmonella vaccine vectors for delivering to the immune 
system. In our previous study, we successfully 
overexpressed codon-optimized HIV-1 Tat and Nef in 
Salmonella enterica serovar Typhimurium [67]. Animal 
studies to investigate the immunogenicity of the recombinant 
Salmonella expressing the two antigens are underway. All 
these studies showed that recombinant Salmonella could 
vector an HIV antigen, Gag, to induce specific immune 
responses. So far the target antigens for expression in 
recombinant Salmonella have been Env and Gag. These 
antigens have most of the B- and T-cell epitopes which are 
important in induction of protective immune response 
against HIV/AIDS infection [68-70]. 

RECOMBINANT SALMONELLA VECTORS DELIVE-
RING HIV DNA VACCINES 

 The use of naked DNA as vaccines was originally 
demonstrated about two decades ago [71]. Since then, naked 
DNA vaccines have been used for induction of potent 
immune responses, especially cell-mediated [72,73]. The 
DNA inoculated by intradermal or intramuscular injection is 
taken by professional antigen presenting cells such as 
macrophages and dendritic cells which express the foreign 
antigen for presentation and induction of specific immune 
response [74]. In recent years, it has been demonstrated that 
Salmonella vaccines can vector naked DNA vaccines to 
deliver these DNA vaccines directly to the antigen-
presenting cells such as macrophages and dendritic cells 
[23,74-78]. A number of studies have already demonstrated 
that recombinant Salmonella vectors can deliver HIV/AIDS 
DNA vaccines. Most of the studies have been done in animal 
models. 
 HIV-1 DNA vaccines delivered by recombinant 
Salmonella have been constructed. Most of the vaccines 
developed so far were based on the HIV-1 env (gp160) gene. 
A recombinant Salmonella Env DNA vaccine vector was 
constructed and used to vaccinate mice intragastrically [78]. 
Both mucosal and systemic HIV-1 Env-specific CD8+ T-cell 
responses were induced in vaccinated mice [78]. The 

plasmid HIV-1 Env DNA vaccine delivered intramuscularly 
only generated systemic but not mucosal CD8+ T cell 
responses in the vaccinated animals [78]. Such vaccine-
induced T cell responses are very important in protecting or 
controlling sexual HIV transmission. This study was the first 
to demonstrate the feasibility of using recombinant 
Salmonella in vectoring HIV-1 DNA vaccine to induce 
specific cellular immune responses. Later, recombinant 
Salmonella and Shigella were compared in the capacity to 
vector the HIV-1 Env DNA vaccine [79]. Better cellular 
immune responses were generated by the recombinant 
Shigella than by the Salmonella [79]. This could be because 
the Shigella normally escapes the phagosome into the 
cytosol while the Salmonella remains confined in the 
phagosome. To further improve the immunogenicity of 
recombinant Salmonella vector, the HIV-1 Env (gp120) 
DNA vaccine was constructed with the gp120 and cholera 
toxin catalytic domain (CTA1) genes co-expressed [80]. 
Mice vaccinated with recombinant Salmonella vectoring the 
DNA vaccine co-expressing Env and CTA1 induced HIV-1 
gp120-specific IgG responses that were more than 1000-fold 
greater than in mice vaccinated with a vector delivering the 
DNA vaccine only expressing the gp120 antigen [80]. The 
mice vaccinated with recombinant Salmonella delivering the 
DNA vaccine expressing gp120 and CTA1 also generated 
significantly more gp120-specific IFN-gamma ELISPOTs 
than mice vaccinated with the Salmonella carrying DNA 
expressing gp120 DNA vaccine alone [80]. These results 
demonstrated that HIV-1 DNA vaccines could be vectored 
more efficiently by recombinant Salmonella when adjuvants 
such as the cholera toxin were used. Recombinant 
Salmonella enterica serovar Typhimurium delivering an 
HIV-1 DNA vaccine expressing a polyepitope protein 
(composed of more than 80 CTL epitopes from HIV-1 
subtype A, B and C proteins) was previously evaluated. The 
recombinant Salmonella elicited better HIV specific serum 
antibody, proliferative and CTL responses than by naked 
DNA vaccine in vaccinated mice [81]. The ability of 
recombinant Salmonella enteritidis to vector the same HIV-1 
DNA vaccine was also later evaluated by the same research 
group [82]. Mice vaccinated with the Salmonella vector 
elicited both HIV-1 –specific humoral and cellular responses 
[82]. This study further demonstrated the capacity of 
recombinant Salmonella bacteria in vectoring even HIV-1 
DNA vaccines expressing polyepitopes. HIV-1 Gag (p24) 
DNA vaccine was successfully delivered using recombinant 
Salmonella in mice which elicited HIV-specific immune 
responses [64]. An adjuvant, MCP3 was used to improve the 
immunogenicity of the Salmonella vector [64]. 
 The use of bacterial ghosts as a vaccine delivery platform 
has gained momentum in recent years [83-85]. Some of them 
have been found to be immunogenic [86]. Recently, 
recombinant Salmonella typhi Ty21a carrying HIV-1 gp140 
DNA vaccine has been used as bacterial ghosts (BGs) [87]. 
It was demonstrated that the Ty21a BGs carrying the HIV-1 
gp140 DNA vaccine could be taken up and efficiently 
expressed by macrophages [87]. Mice inoculated with BGs-
DNA vaccine elicited significantly higher immune responses 
than those inoculated with the plasmid DNA vaccine alone 
[87]. The results demonstrated that recombinant Salmonella 
bacterial ghosts could be used to vector HIV-1 DNA 
vaccines. 
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 The use of heterologous prime-boost vaccination 
strategies to induce better cellular and humoral responses to 
vaccination has become popular in development of HIV 
vaccines in recent years. This has been successful especially 
when DNA and viral vectors are used to deliver HIV 
vaccines. In literature, we did not come across studies in 
which recombinant Salmonella vectoring was used in 
heterologous prime-boost strategy. We hope future 
Salmonella-based vaccines should employ this strategy since 
it may improve the immune responses elicited. 

ANTI-SALMONELLA PRE-EXISTING IMMUNITY 
AND VECTORING OF HIV-1 VACCINES 

 The existence of prior immunity to vaccine vectors needs 
to be considered when developing vaccines for HIV/AIDS. 
This comes after one of the HIV/AIDS vaccines vectored by 
a recombinant adenovirus failed to induce the expected 
immune responses, but enhanced infection [88]. The impact 
of pre-existing anti-vector immunity on the efficiency of 
recombinant Salmonella vaccine vectors in delivering 
foreign antigens is still poorly understood. It is currently not 
clear whether prior exposure to Salmonella enhances or 
decreases the immune response to vectored antigens. In early 
studies, it has been found that pre-existing Salmonella 
immunity in mice improved their subsequent humoral and 
mucosal immune responses [89]. These observations were 
later supported by studies which showed that antibody 
responses to a viral antigen expressed by a recombinant 
Salmonella were enhanced in mice that were previously 
primed with the vector alone [90]. It was also demonstrated 
that secondary immune responses to a recombinant 
Salmonella expressing Streptococcus mutans antigen were 
not affected by pre-existing immunity [91]. In humans 
vaccinated with recombinant Salmonella enterica serovar 
Typhi Ty21a expressing Helicobacter. pylori ureases A and 
B, it was shown that that prior vector immunity enhanced 
immune responses to the foreign antigens [92]. It was also 
shown that animals previously exposed to the vector induced 
much higher CD8+ T cell responses when compared with 
animals that did not have any pre-existing Salmonella 
immunity [93]. These studies, though limited, suggest that 
prior exposure to the vector enhances immunogenicity to the 
heterologous antigens. The mechanisms of this enhancement 
of immune responses are not yet clear. However, it has been 
suggested that this could be due to enhanced uptake of 
antibody-coated vector by antigen-presenting cells such as 
macrophages and dendritic cells during antigen presentation 
[94]. However, contrasting results have been found in other 
studies. One study showed that pre-existing Salmonella 
immunity reduced memory serum responses and further 
interfered with immune response to the foreign antigen 
[95,96]. It was also shown that subsequent rapid clearance of 
the vector was due to better Salmonella-specific CD8+ T cell 
responses induced after initial priming [97]. After 
inoculation, the vector was cleared within 7 days, and after 
the second booster inoculation, the clearance was within 4 
days [97]. Whether rapid clearance of the vector affects the 
immune response to the delivered antigen, is not clear. Some 
studies also showed that ability of the recombinant 
Salmonella vector to colonize was significantly 
compromised in animals that had previously been exposed to 
the vector [98]. A recent review of the literature has however 

concluded that recombinant bacterial vaccine vectors such as 
Salmonella, in most cases, enhance immunogenicity, mainly 
humoral immune responses, while for viral vectors such as 
adenovirus, pre-existing immunity hinders subsequent 
induction of cell-mediated responses [99]. Further research 
needs to be done to clarify whether pre-existing vector 
immunity will have any impact on the use of Salmonella 
bacterial vaccines vectors, especially in Africa, where the 
wild-type Salmonella enterica serovars are endemic. 

CONCLUSIONS 

 This review shows that there is a growing body of 
literature on the use of recombinant Salmonella bacterial 
vaccines as potential delivery vectors for HIV/AIDS 
antigens and DNA vaccines. So far a number of Salmonella-
based HIV/AIDS vaccines have already been tested in 
animal trials. 
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