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Abstract:

Background:

This paper provides the experimental validation of an efficient iterative procedure to correct known position errors in a spherical near
to far-field (NTFF) transformation for elongated antennas which uses a minimum number of NF measurements.

Method:

This transformation exploits a non-redundant sampling representation of the voltage detected by the probe obtained by shaping a
long antenna with a prolate ellipsoid. The uniform samples, those at the points set by the representation, are accurately reconstructed
from the acquired not regularly distributed (non-uniform) ones by using an iterative scheme, which requires a one to one relationship
between each uniform sampling point and the corresponding non-uniform one. Then a 2-D optimal sampling formula is adopted to
evaluate the input data needed to perform the traditional spherical NTFF transformation from the retrieved non-redundant uniform
samples.

Conclusion:

Finally, laboratory proofs have been reported to demonstrate the validity of the presented technique from a practical viewpoint.

Keywords: Near to far-field transformations,  Non-redundant representations of  electromagnetic fields,  Probe positioning errors
correction, Spherical scan, 2D Optimal sampling, Elongated antennas.

1. INTRODUCTION

Near to far-field (NTFF) transformation techniques are widely employed tools for the prediction of the antenna FF
pattern  from NF measurements  [1  -  4].  Among these  techniques,  the  one  wherein  the  NF data  are  acquired  over  a
spherical surface [5] is the most appealing because of its unique feature to allow the reconstruction of the whole antenna
radiation pattern avoiding the measurement area truncation. Therefore, it has attracted a considerable attention (see, f.i.,
[5 - 16]).

The traditional spherical NTFF transformation has been properly optimized in [13] by taking into account that the
electromagnetic (EM) fields radiated by finite sizes sources are spatially quasi-bandlimited functions [17]. This has
made possible to rigorously determine the highest spherical wave to be considered, instead to fix it according to the rule
of the minimum sphere, i.e.,  the smallest one containing the Antenna Under Test (AUT). In addition,  it  has  been
 proved
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that  the  number  of  NF  measurements  to  be  collected  on  the  parallels  reduces  as  their  distance  from  the  equator
increases. The non-redundant sampling representations of the EM fields [18] have been usefully exploited in the same
paper for developing effective non-redundant NTFF transformations, requiring a NF data number drastically lower than
the one necessary for the standard transformation [5], when considering quasi-planar or elongated antennas, which are
supposed  as  contained  in  an  oblate  or  a  prolate  spheroid.  These  NTFF  transformation  techniques  employ  optimal
sampling interpolation (OSI) formulas to precisely reconstruct the NF data necessary for the standard transformation
from the acquired non-redundant ones. In such a way, a very considerable saving of the measurement time is gained
which is an important outcome, since the time required to acquire the NF data is greater and greater than the one needed
to execute the NTFF transformation. The non-redundant sampling representations [18] can be exploited also for the
voltage measured by a non-directive probe, because its spatial bandwidth practically coincides with that of the AUT
radiated field. Accordingly, the hypothesis of an ideal probe made by Bucci et al. [13] has been relaxed by D’Agostino
et al. [14], thus developing efficient probe compensated NTFF transformations with spherical scan tailored for quasi-
planar or long antennas, which require a non-redundant, i.e. minimum, number of NF data. In particular, quasi-planar
AUTs have been considered as contained in an oblate ellipsoid [13] or in a surface consisting of two circular bowls
having the same aperture and eventually different lateral surfaces (double bowl) [14], whereas a prolate ellipsoid [13] or
a cylindrical surface with two hemispherical caps (rounded cylinder) [14] has been employed to model long antennas.
The experimental validations of the aforementioned non-redundant spherical NTFF transformations [13] and [14] have
been then provided by D’Agostino et al. [15] and [16], respectively.

It must be noticed that, owing to the not accurate control of the positioners and/or to their limited resolution, it could
not be possible to get the NF measurements at the points prescribed by the non-redundant sampling representation, even
if  the  positions  of  the  actual  acquisition  points  can  be  precisely  revealed  through  laser  interferometric  techniques.
Hence, the development of an effective and robust procedure, allowing a possibly accurate retrieval of the NF data to be
used in  the  NTFF transformation from the  positioning errors  affected  (non-uniform)  ones,  appears  to  be  of  crucial
importance. For this purpose, a procedure based on the conjugate gradient iterative technique and adopting the fast
Fourier transform for non-equispaced data [19] has been exploited to correct the position errors in the traditional NTFF
transformation  techniques  employing  the  planar  [20]  and  spherical  [21]  scans.  In  any  case,  such  a  procedure  is
inappropriate for the abovementioned non-redundant spherical NTFF transformations, where the information about the
AUT geometry is conveniently exploited and proper OSI expansions are applied to efficiently evaluate the NF data
needed by the traditional NTFF transformation from the non-redundant acquired ones. As it has been explicitly pointed
out by Bucci et al. [22] and by D’Agostino et al. [23], where the interested reader can find a more complete discussion,
the available formulas, which allow one to directly reconstruct the needed data from the non-uniform samples, are not
stable and easy to use, and applicable only to specific samples grids. As stressed by Bucci et al.  [22], a viable and
opportune policy is to recover the regularly spaced (uniform) samples from the non-uniform ones and then evaluate the
required  values  through  a  precise  and  robust  OSI  expansion.  Two  distinct  procedures  have  been  proposed  to  this
purpose. The first adopts an iterative technique, which converges only when it is possible to set up a bijective relation
between every uniform sampling point and the nearest non-uniform one, and has been employed for recovering the
uniform samples in a plane-rectangular grid [22]. The second exploits the singular value decomposition (SVD) method,
does not suffer from the aforementioned shortcoming, allows one to benefit from the data redundancy for increasing the
algorithm robustness with regard to errors corrupting the data, and has been employed to develop non-redundant NTFF
transformations from positioning errors affected samples with plane-polar [24] and cylindrical [25] scans. Anyhow, it
can be profitably adopted if the starting 2-D problem of the retrieval of the uniformly spaced samples can be subdivided
in two independent 1-D problems; otherwise, the sizes of the related matrices remarkably increase, thus requiring a
bulky computing effort. Both the procedures have been numerically compared and experimentally demonstrated in [26]
with reference to the cylindrical NTFF transformation from irregularly spaced samples,  whereas their experimental
assessment in the plane-polar scanning case has been recently provided in [27]. Coming now to the spherical scanning
case, these procedures have been applied and numerically compared with reference to the correction of the errors of
probe positioning in the NTFF transformations for long [28] and quasi-planar [29] antennas using a prolate and oblate
ellipsoidal AUT modelling, respectively. Then, both the iterative and SVD based approaches have been numerically
compared and experimentally assessed in the cases of the spherical NTFF transformations for quasi-planar [23] and
elongated [30] antennas based on the double bowl and rounded cylinder source models, respectively. At last, they have
been  experimentally  assessed  in  the  case  of  the  NTFF transformation  adopting  oblate  spheroids  to  fit  quasi-planar
AUTs [31], whereas only the experimental assessment of the SVD based approach has been provided [32] for the NTFF
transformation relying on the prolate ellipsoidal modelling.
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The goal of the paper is to give a laboratory assessment of the iterative technique proposed by F. D’Agostino et al.
[28] for correcting the position errors in the non-redundant spherical NTFF transformation for elongated AUTs [13],
using the prolate ellipsoidal source model (see Fig. 1). The measurements have been accomplished by using the roll-
over-azimuth spherical NF scanning system available at the Antenna Characterization Lab of the UNIversity of SAlerno
(UNISA).

Fig. (1). Spherical scan for a long antenna.

2.  PROBE  VOLTAGE  NON-REDUNDANT  REPRESENTATION  ON  A  SPHERICAL  SURFACE  FROM
NON-UNIFORM SAMPLES

2.1. Uniform Samples Representation

Let us consider an elongated AUT, a non-directive probe which scans a sphere of radius d located in its NF region,
and a spherical reference system (r, ϑ, φ) to denote any observation point P. As discussed in the Introduction, the non-
redundant sampling representations [18] can be profitably exploited to represent the voltage measured by such a type of
probe.

According to these representations, the AUT must be considered as surrounded by a rotational surface Σ bounding a
proper convex domain, which fits well the antenna geometry, an optimal parameter η has to be adopted for describing
each of the curves Γ (meridians and parallels) which represent the spherical surface, and a suitable phase factor e−jψ(η)

must be singled out from the voltage Vp or Vr acquired by the probe in its two orientations (probe/rotated probe). The so
obtained “reduced voltage”

(1)

is spatially quasi-bandlimited and not strictly bandlimited, thus an error arises when approximating it by means of a
bandlimited function. Such a bandlimitation error can be made reasonably small  as the bandwidth is greater than a
critical  value  Wη  [18]  and successfully  reduced by  considering  an  increased  bandwidth  χ'Wη,  where  χ'  is  an  excess
bandwidth  factor  a  bit  greater  than  one  when  the  antennas  have  large  sizes  in  terms  of  wavelengths  [18].  For  the
assumed hypothesis on AUT, a very efficient source model is obtained by assuming Σ coincident with the smallest
prolate ellipsoid, with semi-axes a and b, able to include it (see Fig. 1).

If Γ is a meridian, the bandwidth Wη, the optimal parameter η to be adopted for describing it, and the associated
optimal phase function ψ are [13, 18]:

V() e j ()V() 
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(2)

(3)

(4)

wherein E(·|·) is the elliptic integral of the second kind, λ and β are the free space wavelength and wavenumber,
respectively, σ = f / a is the ellipsoid eccentricity, 2f is the interfocal distance, and v = (r1−r2)/2f, u = (r1+r2)/2a are the
elliptic coordinates, with r1,2 being the distances from the foci to P.

The  optimal  parameter  to  describe  a  parallel  is  the  angle  φ,  the  phase  function  results  to  be  constant  for  the
symmetry, and the related bandwidth [13, 18] becomes:

(5)

where ϑ∞ = sin−1v+π/2 is the angle between the z axis and the asymptote to the hyperbola through P.

At any point P(ϑ, φ) on the sphere, the voltage can be evaluated from the uniform samples through the 2-D OSI
expansion [13, 18]:

(6)

where  2q,  2p  are  the  numbers  of  the  considered  nearest  reduced  voltage  samples  (ηn, φm, n), n0 = Int (η/Δη),
m0 = Int(φ/Δφn), Int(x) denoting the greatest integer less than or equal to x, and

(7)

is the interpolation function of the OSI expansion. In (7),

(8)

(9)

are the Tschebyscheff and Dirichlet sampling functions, TL (τ) being the Tschebyscheff polynomial of degree L. The
uniform sampling points are specified by:

(10)
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where,

(11)

(12)

(13)

with χ > 1 being an oversampling factor allowing the control of the error introduced by truncating the sampling
expansion [18].

It must be stressed that the 2-D OSI expansion (6) can be applied to accurately recover Vp and Vr at any point on the
sphere  and,  in  particular,  at  those  needed by  the  NTFF transformation  with  spherical  scan  [5]  or  by  its  rearranged
version [13, 14].

2.2. Uniform Samples Retrieval

In the following, it is supposed that, except for the sample at the pole ϑ = 0, all the others are not regularly spaced
over the scanning sphere and are such that it is possible to set up a biunique relation linking each of the Q uniform
sampling points and the nearest non-uniform one. By applying the 2-D OSI expansion (6), it is possible to express the
values of the reduced voltages at every non-uniform sampling point (ξk , ϕj,k) in terms of the unknown ones at the nearest
uniform sampling points (ηn , φm, n), thus obtaining the linear system:

(14)

which, in matrix formalism, can be expressed as X = B, where X is the unknown uniform samples vector, B the
non-uniform samples one, and  is a Q × Q matrix. The above linear system can be efficiently solved via an iterative
procedure,  which  is  derived  through  the  following  steps.  First,  the  matrix  ,  whose  elements  are  related  to  the
interpolation functions of the 2-D OSI expansion, is subdivided in its diagonal part D and non-diagonal one , then,
both the sides of the equation X = B are multiplied by , thus getting:

(15)

By rearranging the terms in (15), the following iterative scheme is obtained:

(16)

wherein X(v) is the uniform samples vector at the vth iteration.

In  order to  ensure that  this iterative  scheme convergences,  it is necessary  but not sufficient, as stressed by Bucci
et al. in [22], that the amplitude of every element belonging to the main diagonal of  be different from zero and greater
than the amplitudes of the others lying on the same column or row. It can be easily seen that the considered hypothesis
of bijective relation between every uniform sampling point and the “nearest” non-uniform one guarantees the fulfilment
of these conditions. Finally, it can be shown that (16) can be rewritten in the following explicit form:
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(17)

wherein

(18)

Such an iterative relation allows one to evaluate in an easy,  fast,  and accurate way,  the non-redundant  uniform
samples based on the knowledge of the irregularly distributed ones.

3. EXPERIMENTAL TESTING

Some laboratory results are reported in this section to give the experimental assessment of the described iterative
technique for the correction of known probe position errors in a non-redundant spherical NTFF transformation for long
AUTs. The proofs have been performed by means of the roll-over-azimuth spherical NF scanning system available at
the UNISA Antenna Characterization Lab. The pyramidal absorbers, which cover the walls of the anechoic chamber,
guarantee a reflection level lesser than – 40dB. A vector network analyzer is employed to carry out the measurements of
the  amplitude  and  phase  of  the  voltage  detected  by  the  probe,  an  open-ended  WR-90  rectangular  waveguide.  A
waveguide slot array antenna manufactured by PROCOM and working at 10.4GHz is used as AUT. Such an antenna
has been assembled by welding two cylinders on the narrow walls of a WR-90 waveguide and making 12 round-ended
slots over its broad walls (Fig. 2). The AUT is positioned in such a way that its axis coincides with the z axis and its
broad walls are parallel to the plane y = 0 (Figs. 1 and 2). A prolate spheroid having 2a = 36.34cm and 2b = 7.5cm has
been adopted as source modelling. In order to assess experimentally the validity of the proposed technique in severe
operative conditions, the acquired NF samples are intentionally not regularly spaced on a sphere with radius d = 42.0cm
and  their  distribution  is  such  that  the  imposed  random shifts  in  η  and  φ  between  the  positions  of  the  non-uniform
samples and the related uniform ones result to be uniformly distributed in (−Δη/3, Δη/3) and (−Δφn/3,  Δφn/3).

Fig. (2). Photograph of the slotted waveguide antenna.
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The comparisons  between the  amplitudes of  the probe  voltage Vp directly  measured (references)  on the cut
planes φ = 0° and φ = 90° and those recovered from the non-uniform samples by applying the iterative procedure are
shown in Figs. (3 and 4), respectively. The errors in the corresponding reconstructed amplitudes are reported in the
same figures. The corresponding results obtained without applying any correction procedure to the same non-uniform
samples  are  reported  in  Figs.  (5  and  6)  for  sake  of  comparison.  As  can  be  clearly  seen,  the  reconstruction  error  is
remarkably greater when the iterative procedure is not applied. For completeness, the recovery of the phase of Vp on the
cut  plane  φ  =  0°  is  also  shown in  Fig.  (7).  It  can  be  clearly  observed that,  notwithstanding  the  large  values  of  the
imposed position errors, the reconstructions result to be very accurate, save for the zones characterized by very low
voltage levels.  It  should be noticed that  the above results  have been obtained by using only 10 iterations,  since,  as
shown by D’Agostino et al. in [28], this number of iterations guarantees that the iterative scheme converges with very
low errors. Note that the uniform samples reconstruction process has taken a CPU time of about 0.67 seconds on a PC
equipped with an Intel Core i5 @ 3.6GHz.

Fig. (3). Amplitude of Vp on the cut plane φ = 0°. Black line: reference; crosses: obtained from the knowledge of the irregularly
spaced NF samples by applying the iterative procedure; green line: error in the corresponding reconstructed amplitude.

Fig. (4). Amplitude of Vp on the cut plane φ = 90°. Black line: reference; crosses: obtained from the knowledge of the irregularly
spaced NF samples by applying the iterative procedure; green line: error in the corresponding reconstructed amplitude.
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Fig. (5). Amplitude of Vp on the cut plane φ = 0°. Black line: reference; crosses: obtained from the knowledge of the irregularly
spaced NF samples without using the iterative procedure; green line: error in the corresponding reconstructed amplitude.

Fig. (6). Amplitude of Vp on the cut plane φ = 90°. Black line: reference; crosses: obtained from the knowledge of the irregularly
spaced NF samples without using the iterative procedure; green line: error in the corresponding reconstructed amplitude.

Fig. (7). Phase of Vp on the cut plane φ = 0°. Black line: reference; crosses: obtained from the knowledge of the irregularly spaced
NF samples by applying the iterative procedure.
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The FF patterns in the E- and H-plane recovered from the non-uniform NF samples are compared in Figs. (8 and 9)
with the references patterns evaluated from the NF data directly measured at the points of the traditional spherical grid.
The MI Technologies’ software MI 3000, implementing the traditional NTFF transformation [5], has been employed in
both cases to get the FF patterns. For completeness, Fig. (10) shows the reconstruction of the antenna FF pattern in the
cut plane φ = 90°. As can be recognized, also the FF reconstructions are excellent. It must be noticed that the collected
irregularly  spaced  NF samples  are  1032,  which  are  considerably  lesser  than  those  (5100)  required  when  using  the
traditional  NTFF transformation with  spherical  scanning.  At  last,  for  the  sake of  comparison,  the  reconstructed FF
patterns in the H-plane and in the cut plane φ = 90°, obtained from the non-uniform NF samples without applying the
iterative procedure, are reported in Figs. (11 and 12). These last reconstructions appear significantly worsened with
respect to the ones got when applying the iterative technique, thus further assessing its effectiveness for compensating
known position errors. This becomes even more evident by comparing the very low reconstruction error levels in Figs.
(9 and 10) with the remarkably greater ones in Figs. (11 and 12).

Fig. (8). FF pattern in the E-plane (ϑ = 90°). Black line: reference; crosses: obtained from the knowledge of the irregularly spaced NF
samples by applying the iterative procedure.

Fig. (9). FF pattern in H-plane (φ = 0°). Black line: reference; dashes plus crosses: obtained from the knowledge of the irregularly
spaced NF samples by applying the iterative procedure; green line: error in the corresponding reconstructed amplitude.
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Fig.  (10).  FF pattern  in  the  cut  plane  φ  =  90°.  Black  line:  reference;  dashes  plus  crosses:  obtained  from the  knowledge  of  the
irregularly spaced NF samples by applying the iterative procedure; green line: error in the corresponding reconstructed amplitude.

Fig. (11). FF pattern in H-plane (φ = 0°). Black line: reference; dashes plus crosses: directly obtained from the knowledge of the
irregularly spaced NF samples without using the iterative procedure; green line: error in the corresponding reconstructed amplitude.
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Fig. (12). FF pattern in the cut plane φ = 90°. Black line: reference; dashes plus crosses: directly obtained from the knowledge of the
irregularly spaced NF samples without using the iterative procedure; green line: error in the corresponding reconstructed amplitude.

CONCLUSION

The experimental validation of an efficient technique for compensating known position errors in a spherical non-
redundant NTFF transformation for elongated antennas has been provided in this paper. This technique, based on a
iterative procedure, allows one to evaluate in an easy, fast, and accurate way the uniform samples at the points set by
the non-redundant sampling representation based on the prolate ellipsoidal AUT modelling from the knowledge of the
irregularly distributed ones. The very good NF and FF recoveries achieved when employing it in presence of large and
pessimistic positioning errors, as compared with the worsened ones obtained when this procedure is not applied, assess
experimentally its effectiveness.
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