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Abstract: With the rapid growth and extensive applications of the spatial dataset, it’s getting more important to solve how 

to find spatial knowledge automatically from spatial datasets. Spatial co-location patterns represent the subsets of features 

whose instances are frequently located together in geographic space. It’s difficult to discovery co-location patterns be-

cause of the huge amount of data brought by the instances of spatial features. A large fraction of the computation time is 

devoted to identifying the table instances of co-location patterns. The essence of co-location patterns discovery and four 

co-location patterns mining algorithms proposed in recent years are analyzed, and a new join-less approach for co-location 

patterns mining, which based on a data structure----iCPI-tree (Improved Co-location Pattern Instance Tree), is proposed. 

The iCPI-tree is an improved version of the CPI-tree which materializes spatial neighbor relationships in order to acceler-

ate the process of identifying co-location instances. This paper proves the correctness and completeness of the new ap-

proach. Finally, an experimental evaluations using synthetic and real world datasets show that the algorithm is computa-

tionally more efficient. 

Keywords: Spatial data mining, co-location rules, table instances (or co-location instances), the iCPI-tree. 

1. INTRODUCTION  

 Spatial data mining is the process to discover interesting 
and previous unknown, but potential useful patterns from 
spatial datasets [1-3]. Extracting interesting patterns from 
spatial datasets is more difficult than extracting the corre-
sponding patterns from transaction datasets due to the com-
plexity of spatial data types, spatial relationships and spatial 
autocorrelation [4]. A spatial co-location pattern represents a 
subset of spatial features whose instances are frequently lo-
cated in a spatial neighborhood. For example, botanists have 
found that there are orchids in 80% of the area where the 
middle-wetness green-broad-leaf forest grows. Spatial co-
location patterns may yield important insights for many ap-
plications. For example, a mobile service provider may be 
interested in mobile service patterns frequently requested by 
geographical neighboring users. The locations which are 
gotten together by people can be used for providing attrac-
tive location-sensitive advertisements, etc. Other application 
domains include Earth science, public health, biology, trans-
portation, etc. 

 Co-location pattern discovery presents challenges due to 
the following reasons: First, it is difficult to find co-location 
patterns with traditional association rule mining algorithms 
since there is no concept of traditional “transaction” in most 
of spatial datasets [1,5,6]. Second, the instances of a spatial 
feature distribute in spatial framework and share complex 
spatial neigh borhood relationships with other spatial in-
stances. So a large fraction of the computation time of min 
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ing co-location patterns is devoted to generating the table 
instances of co-location pattern. 

 In this paper, a novel approach for mining co-location 
patterns is proposed. This method keeps the Apriori-like 
approach to generate size-k prevalence co-locations after 
size-(k-1) prevalence co-locations. Considering efficient 
generating co-location instances, an improved co-location 
pattern instance tree (called iCPI-tree) is defined. Then an 
iCPI-tree based co-location pattern mining algorithm is de-
signed. The time and space complexity of the algorithm are 
analyzed. The experimental evaluations using synthetic and 
real world datasets show the iCPI-tree algorithm outperforms 
the other algorithms which will be mentioned in this paper 
and is scalable in dense spatial datasets. 

 The reminder of the paper is organized as follows. Sec-
tion 2 gives an overview of the basic concepts of co-location 
pattern mining and the problem definition, and then dis-
cusses related works and motivation. The iCPI-tree approach 
is introduced in Section 3. Section 4 presents the proofs of 
completeness and correctness of the new algorithm, and 
gives computational efficiency analysis of the algorithm. The 
experimental results are presented in Section 5. Section 6 
summarizes our study and points out some future research 
issues. 

2. CO-LOCATION PATTERN MINING  

2.1. Basic Concepts 

 Given a set of spatial features F, a set of their instances S, 
and a spatial neighbor relationship R over S. R could be topo-
logical relationships (e.g. linked, intersection), distance rela-
tionships (e.g. Euclidean distance metric) and mixed rela-
tionships (e.g. the shortest distance of two points on a map). 
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As shown in Fig. (1), there are 4 spatial features A, B, C and 
D and their instances. A.1 stands for the first instance of fea-
ture A. If R is defined as a Euclidean distance metric and its 
threshold value is d, two spatial objects are neighbors if they 
satisfy the neighbor relationship: 

( ) ( )( )ddistanceR 1.B,1.A1.B,1.A   

 Given a subset of spatial instances { }
m

iiiI ,...,,
21

= , 

SI . is called as an R-neighbor if I forms a clique un-

der the neighbor relation R. 

 

 

 

 

 

 

 

 

 
Fig. (1). An example of spatial feature instances. 

 

 A co-location c is a subset of spatial features, i.e., 

Fc . An R-neighbor I is a row instance of a co-location c 

if I contains instances of all the features in c and no proper 

subset of it does so. The table instance of a co-location c is 

the collection of all row instances of c. The size of a co-

location c is the number of spatial features in co-location c, it 

is denoted as ( ) ccsize = . 

 The interest degree of a co-location differs from the de-

gree of support in traditional association rules mining. A new 

prevalence measure concept called the participation index 

is introduced by Huang, Shekhar and Xiong in [7]. Participa-

tion ratio will be presented before giving the concept of par-

ticipation index. 

 The participation ratio ( )ifcPR ,  for feature type 
if  in 

a size-k co-location c={ }kff ...
1

 is the fraction of instances of 

feature 
if  which participate in any row instance of co-

location c. The participation ratio can be computed as 

( )ifcPR , =

| fi
table_ instance(c)( )|

table_instance fi( )
, where is the rela-

tional projection operation with duplication elimination. 

 The participation index of a co-location c={ }kff ...
1

 is 

the minimum in all ( )ifcPR ,  of co-location c: 

( )cPI = ( ){ }i

k

i fcPR ,min 1=
. 

 Example 1 Take Fig. (1) as an example. A has 4 in-

stances, B has 5 instances, and C has 3 instances. Suppose 

co-location c= A,B,C{ } , the table instance of co-location c 

has {{A.2,B.4,C.2}, {A.3,B.3,C.1}, {A.3,B.3,C.2}}. 

( )A,cPR =2/4 since there are only A.2 and A.3 in the table 

instance. Similarly, ( )B,cPR =2/5, ( )C,cPR =2/3. 

( )CPI = ( ) ( ) ( )( ) 5/2C,,B,,A,min =cPRcPRcPR . 

 Given a minimum prevalence threshold min_prev, a co-

location c is a prevalent co-location if ( )cPI min_prev 

holds. 

 Lemma 1 The participation ratio and the participation 

index are monotonically non-increasing with the size of the 

co-location increasing. 

 Proof Suppose a spatial instance is included in the table 

instances of co-location c. For co-location cc' , the spatial 

instance e must be included in the table instances of 'c . The 

opposite is not true. Therefore, the participation ratio is 

monotonically non-increasing. 

 Suppose },,{ 1 k
eec = , 

PI(c ek+1) =

i=1

k+1

min{PR(c ek+1,ei )}  

)},({min 1
1

ik

k

i

eecPR
+

=

)()},({min
1

cPIecPR
i

k

i

=
=

 

 Therefore, the participation index of co-location is also 

monotonically non-increasing.  

 Lemma 1 ensures that the participation index can be used 

to effectively prune the search space of co-location pattern 

mining. 

2.2. Problem Definition 

 The co-location mining problem is formalized as follows. 

We focus on finding a correct and complete set of co-

location rules with reducing the computation cost. 

Given: 

1) A spatial framework  

2) A set of spatial features { }nffF ,...,
1

=  and a set of 

their instances 
n

SSSS ...
21

= , where 

( )niS
i

<<1  is the set of instances of the feature if  

and each instance is a vector <feature type, instance 

id, location>, where locatio . 

3) A spatial neighbor relation R over S. 

4) A minimum prevalence threshold min_prev and a 

minimum conditional probability threshold 

min_cond_prob. 

Find: 

A set of co-location rules with participation index  

min_prev and conditional probability  min_cond_prob. 

Objective: 

1) Find a correct and complete set of co-location rules. 

2) Reduce the computation cost. 
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Constraints: 

1) R is a distance metric based neighbor relationship and 

has symmetric property. 

2) The spatial dataset is a point dataset. 

2.3. Related Work 

 In previous work on mining co-location patterns, Mori-

moto [4] defined distance-based patterns called k-

neighboring class sets. In his work, the number of instances 

for each pattern is used as the prevalence measure, which 

does not possess an anti-monotone property by nature. How-

ever, Morimoto used a non overlapping instance constraint 

to get the anti-monotone property for this measure. In con-

trast, Shekhar & Huang [8] developed a feature centric 

model, which does away with the non-overlapping instance 

constraint. The related works in the approach proposed by 

Shekhar & Huang can be classified into three kinds for iden-

tifying co-location table instances: the full-join approach [7], 

the partial-join approach [9] and the join-less approach 

[10,11]. 

 The full-join approach is mainly based on the computa-

tion of the join operation between table instances for identi-

fying co-location instances. This approach is similar to Apri-

ori method and it could generate correct and complete preva-

lent co-location sets. However, scaling the algorithm to sub-

stantially large dense spatial datasets is challenging due to 

the increasing number of co-locations and their table in-

stances. 

 The partial-join approach is to build a set of disjoint 

clique in spatial instances to identify the intraX instances of 

co-location (belonging to a common clique) and interX in-

stances of co-location (all instances have at least one cut 

neighbor relation), and merge the intraX instances and interX 

instances to calculate the value of the PI. This approach re-

duces the number of expensive join operations dramatically 

in finding table instances. However, the performance de-

pends on the distribution of the spatial dataset, exactly the 

number of cut neighbor relations. 

 The join-less approach puts the spatial neighbor relation-

ships between instances into a compressed star neighbor-

hood. All the possible table instances for every co-location 

pattern were generated by scanning the star neighborhood, 

and by 3-time filtering operation. The join-less co-location 

mining algorithm is efficient since it uses an instance-lookup 

scheme instead of an expensive spatial or instance join op-

eration for identifying co-location table instances. So the 

idea of the join-less is great. However, the star neighborhood 

structure is not an ideal structure for generating table in-

stances, for the table instances generating from this structure 

have to be filtered. Therefore, the computation time of gen-

erating co-location table instances will increase with the 

growing of length of co-location patterns. 

 The CPI-tree algorithm proposed by Wang et al. in [11] 

is a new join-less algorithm. In this method, a new structure 

called CPI-tree (Co-location Pattern Instance Tree) is intro-

duced. It could materialize the neighbor relationships of a 

spatial data set, and find all the table instances recursively 

from it. Different from the star neighborhood structure in the 

join-less approach of the paper [10], all information of the 

neighbor relationships in a spatial dataset is organized to-

gether by the CPI-tree. So, the third phase filter in the join-

less algorithm, which might be an expensive step, need not 

be performed. However, this method gives up the Apriori-

like model, i.e., to generate size-k prevalence co-locations 

after size-(k-1) prevalence co-locations. In many cases the 

Apriori candidate generate-test method reduces the number 

of candidate sets significantly and leads to performance gain. 

 Besides the above representative co-location mining al-

gorithms, Huang, Pei and Xiong address the problem of min-

ing co-location patterns with rare spatial events [12]. In this 

paper, a new measure called the maximal participation ratio 

(maxPR) was introduced and a week monotonicity property 

of the maxPR measure was identified. Verhein and AI-

Naymat considered mining complex spatial co-location pat-

terns from spatial dataset [13]. They introduced the idea of 

maximal clique and applied the GLIMIT [14] (it is a very 

fast and efficient itemset mining algorithm that has been 

shown to outperform Apriori and FP-Growth) itemset min-

ing algorithm to their task. Celik et al. studied zonal co-

location patterns discovery problem [15]. 

2.4. Motivation 

 Let us see the spatial instances in Fig. (1). If a pair of 

spatial instances satisfy neighbor relationship R, connect 

them with a solid line (as shown in Fig. 1), then a graph G 

can be obtained. Each co-location instance is a complete sub-

graph (clique) in G. Mining co-location patterns is equal to 

the process of mining all cliques in G and calculating the PI 

value of each co-location pattern. However, such process has 

been proved as a NP-Hard problem
 
[16]. In fact, in the proc-

ess of finding cliques, according to the definition of co-

location pattern, the same spatial features cannot appear in a 

clique, and according to the anti-monotonic property of PI 

value (Lemma 1), not all the cliques should be calculated. 

The most existed co-location pattern mining algorithms 

adopt an Apriori-like approach. 

 Can the cliques be calculated efficiently by simply scan-

ning G? Can a structure which contains the information of 

table instances be built? In this paper, a new structure called 

iCPI-tree (improved Co-location Pattern Instance Tree), 

which is an improved version of the CPI-tree [11], will be 

introduced. The join-less idea used in the join-less approach  

[10] and CPI-tree approach [11] is efficient since it uses an 

instance-lookup scheme instead of an expensive spatial or 

instance join operation for identifying co-location table in-

stances, but their efficiency depends on the distribution of 

the datasets. Because for join-less approach, the third phase 

filter might be an expensive step when there are many non-

co-location instances in the star instances of candidate co-

locations. For CPI-tree approach, though the table instances 

generating is efficient, the storing and searching of whole 

CPI-tree will be a problem with input datasets become big-

ger. In addition, no candidate pruning by Lemma 1 will 

bring on mining algorithms require time-consuming in the 
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dense datasets. Therefore, remaining the Apriori candidate 

generate-test model of the join-less approach and the tree 

structure advantage of the CPI-tree approach, a new iCPI-

tree method is proposed in this paper. The new method is 

expected to reduce the computation cost of co-location pat-

tern mining in any kinds of datasets. 

3. AN ICPI-TREE BASED APPROACH FOR CO-

LOCATION PATTERN MINING 

 In this section, an iCPI-tree based approach for mining 

co-location patterns is discussed. First, an iCPI-tree data 

structure is defined, and then the iCPI-tree based co-location 

mining algorithm is presented. 

3.1. iCPI-tree 

 Although the CPI-tree approach [11] materializes the 

neighbor relationships of a spatial dataset for efficient co-

location instance identifying, the storages of the CPI-tree and 

co-location instances are expensive. In addition, the number 

of recursions in the CPI-tree algorithm is also enormous with 

the size of datasets become huge. In other words, the per-

formance of the CPI-tree algorithm should be improved. An 

improved CPI-tree is proposed for more efficient co-location 

instance identifying. 

 Definition 1 Given a subset of spatial instances 

{ }
vl
iiI ,...,= , },,2,1{, mvl , If 

ji
ii  ( the spatial fea-

tures in alphabetic order, and then the different instance of 

the same spatial feature in numerical order) holds for any 

vjil , the I is called as an ordered instance set. If I 

is a table instance, it is called as an ordered table instance. 

If the feature-name of 
i
i  is not the same as the feature-name 

of 
l
i  and ),(

il
iiR (represents il and ii is neighbor) holds for 

any vil < , The I is called as ordered neighbor relation-

ship set of the instance 
l
i . The set of ordered neighbor rela-

tionship sets of all instances of a spatial feature x is denoted 

as 
x
. 

 Example 1 Take Fig. (1) as an example. Spatial feature A 

has 4 instances, B has 5 instances, and C has 3 instances. 

Two instances are connected if they are neighbors in Fig. (1). 

Therefore, I={A.3,B.3,C.1} is an ordered instance set, it is 

also an ordered table instance. The ordered neighbor rela-

tionship set of the instance A.3 is {A.3,B.3,C.1,C.2,C.3}. The 

set of ordered neighbor relationship sets of all instances of 

the feature A is denoted as 
A

={{A.1,B.1,C.1}, 

{A.2,B.4,C.2}, {A.3,B.3,C.1,C.2,C.3}, {A.4,B.3}}. 

 The concept of iCPI-tree can be defined based on the 

following observations: 

(1). Since spatial neighbor relationships between in-

stances make certain all table instances, it is neces-

sary to perform one scan of spatial datasets to identify 

the set of spatial neighbor relationships. 

(2). If the set of neighbor relationships can be stored in an 

ideal data structure, it may be possible to avoid re-

peatedly scanning the set of neighbor relationships. 

Furthermore, it may be cost-efficient to generate table 

instances using a pile-instance-lookup scheme instead 

of instance join operation. 

(3). The recursive and hierarchical properties of tree struc-

ture ensure the clarity and simplicity of the algo-

rithms’ description. If all spatial instances are sorted 

in ascending order (the spatial features in alphabetic 

order, and then the different instance of the same spa-

tial feature in numerical order), a graph G represent-

ing spatial neighbor relationships may correspond to a 

unique tree structure. 

 With the above observations, a tree structure (called 

iCPI-tree (Improved Co-location Pattern Instance Tree), for 

all table instances can be generated in batch from it) can be 

defined as follows. 

 Definition 2 (iCPI-tree). Given a set of spatial features 

{ }nffF ,...,
1

=  and a set of ordered instance neighbor rela-

tionship of spatial features 
nfff ...

21

= , 

( )ni
if

<<1  is the set of ordered neighbor relationship sets 

of all instances of the feature
if , a tree designed as below is 

called as an improved co-location pattern instances tree 

(iCPI-tree, for short). 

1). It consists of one root labeled as “null”, a set of the 

spatial feature sub-trees as the children of the root. 

2). The spatial feature fi sub-tree consists of the root fi 

and each subset of 
if
as a branch of the root. Each 

branch records an ordered neighbor relationship set of 

corresponding instance and relevant feature-name. 

 Example 2 Fig. (2) is the iCPI-tree of the example in 

Fig. (1). The feature ‘A’ sub-tree consists of the root ‘A’ and 

branches A.1, A.2, A.3, and A.4. The branch A.1 records the 

content of ordered neighbor relationship set of the instance 

A.1 and relevant feature-name, i.e., there are )1.,1.( BAR  

and )1.,1.( CAR . 

 

 

 

 

 

Fig. (2). The iCPI-tree of the example in Fig. (1). 

 

 The iCPI-tree of a spatial dataset constructed based on 

definition 2 will be unique. The iCPI-tree materializes the 

neighbor relationships of a spatial dataset with no duplica-

tion of the neighbor relationships and no loss of co-location 

instances, and the more important thing is that it is conven-

ient and efficient to generate the co-location instances from 

it. 
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3.2. iCPI-tree Based Co-Location Mining Algorithm 

 The iCPI-tree based co-location mining algorithm has 

two phases. The first phase converts an input spatial dataset 

into an iCPI-tree for efficient co-location instance identify-

ing. The second phase recursively generates prevalent co-

locations and co-location rules based on the iCPI-tree. In this 

phase, Size-k table instances are expanded from the size-(k-

1) table instances whose object feature types are the same as 

the first (k-1) features of the candidate co-locations. Fig. (3) 

illustrates an iCPI-tree based algorithm trace. Algorithm 1 

shows the pseudo code. 

 Algorithm 1 iCPI-tree based co-location mining algo-

rithm. 

Input 

{ }nffF ,...,
1

= : a set of spatial feature types; 

S: a set of spatial instances and each instance is a vector 

<feature type, instance id, location>; 

R: the spatial neighbor relationship (e.g. Euclidean distance); 

min_prev: prevalence value threshold; 

min_cond_prob: conditional probability threshold; 

Output 

 A set of all prevalent co-location rules with participant 

index greater than min_prev and conditional probability 

greater than min_cond_prob; 

Variables 

K: co-location size; 

: A set of spatial ordered neighbor relationships between 

instances; 

Ck: a set of size-k candidate co-locations; 

Pk: a set of size-k prevalent co-locations; 

Ik: a set of table instances of co-locations in Ck; 

Method 

1) = gen_neighborhood (F, S, R); 

2) iCPI-tree= gen_iCPI-tree ( , F); 

3) P1=F K=2; 

4) While (not empty Pk-1) Do 

5) Ck=gen_candidate_colocations(Pk-1); 

6) Ik=gen_instances(Ik-1,ICPI-tree,Ck); 

7) Pk=gen_prev_co-location (Ck,Ik,min_prev); 

8) Rk=gen_co-location_rule (Pk,Ik,min_conf); 

9) K=K+1 

10) Enddo 

11) Return U(
2

R ,…, 
k

R ) 

 Convert a Spatial Dataset to a Set of Spatial Ordered 
Neighbor Relationships Between Instances (Step 1): Given 
an input dataset and a neighbor relationship, first find all 
neighboring object pairs using a geometric method such as 
plane sweep [17], or a spatial query method using quaternary 
tree or R-tree [18]. The set of ordered neighbor relationships 
are generated by grouping the neighborhoods sorted by the 
feature type in lexical order. The set of spatial ordered 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). iCPI-tree algorithm trace. 
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neighbor relationships between instances is denoted as . 
Fig. (3) shows the ordered neighborhoods sorted by the fea-
ture type. 

 Generate the iCPI-tree of the Set of Spatial Ordered 

Neighbor Relationships (Step 2): From the set of ordered 

spatial neighbor relationships between spatial instances  

and a set of spatial features { }nffF ,...,
1

= , the iCPI-tree 

can be built by iteratively creating n-1 spatial features 

branches of the iCPI-tree. Each branch is created by scan-

ning a sub-set of the set . For example, in Fig. (3), scan-

ning the subset A={{A1,B1,C1}, {A2,B4,C2}, 

{A3,B3,C1,C2, C3}, {A4,B3}}, the branch A of the iCPI-tree 

is built. This step is specified as follows. 

Procedure Gen_iCPT-tree ( , F) 

Input 

F: A set of spatial features. 

 = f1
= { f1

l1 ,... f1

lk1 }, f2
= { f2

l1 ,... f2

lk 2 }... fn
= { fm

l1 ,... fm

lk m }{ } : 

A set of spatial ordered neighbor relationships between in-

stances, where ( )ni
if
1 is the set of the set i

i

l

f
 of or-

dered neighbor instances (they are “bigger” than the in-

stance
i

l ) of instances 
i
l of feature

if , whose order is sorted 

in ascending order. 

Output 

iCPI-tree: An improved co-location pattern instance tree. 

Method 

1) Create a root “Null” for iCPI-tree; 

2) i=1; 

3) While i<n Do; 

4) { Create a sub-tree 
if  of the root “Null”; 

5) Create a branch 1

i
f

l
for sub-tree 

if ; 

6) For each il

i
f

( )
i

ki<1  of 
i

f
 in  

7) create a child-node of the branch 1

i
f

l
; 

8) i=i+1; 

9) } 

10) Return the root ‘Null’ 

 Assign Starting Values to Various Data Structures Used 
in the Algorithm (Step 3): First, all features to size-1 preva-
lent co-locations by the definition of the participation index 
measure. The number of instances per feature can be known 
during the scan of the input spatial dataset for computing the 
set of ordered neighbor relationships. 

 Iteratively Mining Co-Location Rules (Step 4-10): Step 
4) to Step 10) of algorithm iteratively perform four basic 
tasks, namely, generation of candidate co-locations, genera-
tion of table instances of candidate co-locations, pruning, 
and generation of co-location rules. These tasks are carried 
out a loop iterating over the size of the co-locations. Itera-
tions start with size-2 since the definition of prevalence 
measure allows no pruning for co-locations of size-1. 

3.2.1. Generation of Candidate Co-Locations 

 Size-k (k>1) candidate co-locations are generated from 

prevalent size-(k-1) co-locations. Here, we have a feature 

level pruning of candidate co-locations. If any subset of a 

candidate co-location is not prevalent, the candidate co-

location is pruned. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The process of generating table instances based on the iCPI-tree. 
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3.2.2. Generation of Table Instances of Candidate Co-

Locations 

 Size-k table instances are expanded from the size-(k-1) 

table instances whose object feature types are the same as the 

first (k-1) features of the candidate co-locations. The opera-

tion of expanding is performed based on the iCPI-tree. For 

example, the table instances of candidate co-location 

{A,B,C} are expanded from the table instances of co-location 

{A,B}. The expanded process has three steps. The first step 

takes count of instances of expanded features based on the 

iCPI-tree. The second step adds the instance whose count is 

equal to (k-1) into an expanded list. The third step combines 

size-(k-1) table instance with the instances of the expanded 

list to generate size-k table instances. Fig. (4) shows the 

process of generating table instances of candidate co-location 

{A,B,C} from table instance {A.3,B.3} of size-2 co-location 

{A,B}. As shown in Fig. (4), In the iCPI-tree, instances of 

feature “C” can be expanded from instance “A.3” are “C.1”, 

“C.2” and “C.3”, while child of “B.3”, whose feature is “C”, 

is “C.1” and “C.2”. They are counted in the first step. Then 

instance “C.1” and “C.2” are added into expanded list since 

its count is 2 (i.e., k-1). Finally, the table instance {A.3, B.3} 

is combined with “C.1” and “C.2” of expanded list to gener-

ate two table instances {A.3,B.3,C.1} and {A.3,B.3,C.2} of 

candidate co-location {A,B,C}. 

3.2.3. Pruning 

 Candidate co-locations can be pruned using the given 

threshold min_prev on prevalence measure. In addition, 

iCPI-tree pruning can be used for more efficient identifying 

table instances from the iCPI-tree. 

Prevalence-Based Pruning 

 The prevalence-based pruning of co-locations is done by 

the participation index values calculated from the set of co-

location instances Ik. Bitmaps data structure can be used for 

efficient computation the participation index of a candidate 

co-location [7]. Prevalent co-locations satisfying the thresh-

old min-prev are selected. For each selecting prevalent co-

location c after prevalence-based pruning, a counter to spec-

ify the cardinality of the table instance of c. The relevant 

(since the generation of the table instances of candidate co-

location {A,B,C} uses only the table instances of co-location 

{A,B} based on iCPI-tree) table instances of the prevalent 

co-locations in this iteration will be kept for generation of 

the prevalent co-locations of size-(k+1) and discarded after 

the next iteration. 

iCPI-tree-Based Pruning 

 Although generating co-location instances from a iCPI-

tree will be No loss of co-location instances and no duplica-

tion of co-location instances, the following pruning strategies 

can be used to improve efficiency of generating co-location 

instances from CPI-tree. 

Pruning 1 

 A node, which is the child of the branch “fi” ( ) 

and has no child, can be pruned. 

 Proof. If a node is the child of the branch “fi” ( ) 

and it has not a child node, it must be the spatial instance 

without neighborhood. So it can be pruned. 

 Example 3 In Fig. (2), the nodes B.2 and B.5 can be 

pruned from the iCPI-tree with Pruning 1. 

Pruning 2 

 By using Pruning 1, If the number of the pruned in-

stances of a feature fi is greater than min_prev*|fi|, then all 

the instance nodes of the feature fi and, the relevant edges 

and the child nodes in the iCPI-tree can be pruned. 

 Proof. If the number of the pruned spatial instances of a 

feature fi with Pruning 1 is greater than min_prev*| fi|, the 

number of the remaining instances of the feature is less than 

the min_prev*| fi|. Therefore, all instances of this spatial fea-

ture might be pruned due to the co-location containing the 

feature might not be prevalent. 

 Example 4 Suppose that three instances of spatial feature 

B was pruned with Pruning 1, and there are five instances in 

feature B and the min_prev is 50%, then all the instances of 

B and, the relevant edges and child nodes can be pruned with 

Pruning 2. 

3.2.4 Generating Co-Location Rules 

 The gen_co-location_rule function generates all the co-

location rules satisfying the user defined threshold 

min_cond_prob from the set of prevalent co-locations and 

their table instances. Bitmaps or other data structures can be 

used for efficient computation using the same strategies for 

prevalence-based pruning. 

4. ANALYSIS OF THE ICPI-TREE ALGORITHM 

 Here, the iCPI-tree based co-location mining algorithm 

for completeness, correctness and computational complexity 

is analyzed. 

4.1. Completeness and Correctness 

 Completeness means the iCPI-tree algorithm finds all co-

location rules whose participation index and conditional 

probability satisfy a user specified minimum prevalence 

threshold min_prev and conditional probability threshold 

min_cond_prob. Correctness means that all co-location rules 

generated by the iCPI-tree algorithm have a participation 

index and a conditional probability above the min_prev and 

min_cond_prob. First related lemmas are provided. 

 Lemma 2 The iCPI-tree model does not miss any neigh-

bor relationships of an input spatial data. 

 Proof: according to Definition 2, all the spatial instances 

are scanned and their neighbor relationships are recorded in 

an iCPI-tree. Therefore, none of the spatial instance neighbor 

relationships is missed in CPI-tree. 

 Lemma 3 The iCPI-tree materializes the neighbor rela-

tionships of an input spatial data with no duplication of the 

spatial neighbor relationships. 
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 Proof: according to Definition 1, there are not duplica-

tion spatial neighbor relationships in the set of ordered 

neighbor relationships. So, it is obvious because each branch 

of an iCPI-tree records an ordered neighbor relationship set 

of corresponding instance. 

 Lemma 4 Given a size-(k-1) table instance Ik-1={o1,…,ok-

1} of a co-location Ck-1={f1,…,fk-1}. If any spatial instance ok 

of a spatial feature fk (fk is not belong to Ck-1) is a child-node 

of each instance oi ( ), the co-location instance 

Ik={o1,…ok-1,ok} is a table instance of co-location Ck={f1,…,fk-

1,fk}. 

 Proof: First the size-(k-1) table instance Ik-1={o1,…,ok-1} 

means each instance oi ( ) has neighbor relation-

ships to all other instances in Ik-1. Second if the instance ok of 

a spatial feature fk (fk is not belong to Ck-1) is a child-node of 

the nodes o1,…,ok-1, the instance ok has neighbor relationship 

to the instance oi ( ). Thus each instance oi 

( ) has neighbor relationships to all other instances in 

Ik since the neighbor relationship is symmetric. The co-

location instance Ik={o1,…,ok} is a table instance of co-

location Ck={f1,…,fk}. 

 Theorem 1 The iCPI-tree based co-location mining algo-

rithm is complete. 

 Proof: The completeness of the iCPI-tree algorithm can 

be shown by the following two parts. The first is that the 

method to materialize the neighbor relationships of an input 

spatial data based on the iCPI-tree (step 1 and step 2) is cor-

rect. The iCPI-tree does not miss and duplicate any neighbor 

relationship of an input spatial data by Lemma 2 and 

Lemma 3. The method to generate co-location instances 

from iCPI-tree is correct by Lemma 4. Next, it is shown that 

no table instance can be generated out of the method. Sup-

pose a size-k table instance can be generated out of the 

method. If this is a size-2 table instance, and then there is not 

a parent-child-link between the two instances in iCPI-tree. 

According to lemma 2, there is not a spatial neighbor rela-

tionship between the two instances, this reduces to absurdity. 

For size-k table instances Ik={o1,…ok-1,ok} (k>2), the in-

stance-node ok is at least not a child-node of a instance-node 

oi (1 i k-1) in the iCPI-tree. According to lemma 2, there 

is not a spatial neighbor relationship between the two in-

stances. This also reduces to absurdity. 

 Theorem 2 The iCPI-tree co-location mining algorithm 

is correct. 

 Proof: The correctness of the iCPI-tree algorithm can be 

guaranteed by step 7 and 8. Step 7 selects only co-locations 

whose participation index satisfies a user specific prevalence 

threshold min_prev. The generated co-location rules by step 

8 also satisfy a user specific conditional probability 

min_cond_prob. 

4.2. Computational Complexity Analysis 

 This section analyzes the time and space complexity of 

the new method and then, compares the computational cost 

of the iCPI-tree algorithm with the join-based algorithm, the 

join-less algorithm and the CPI-tree algorithm. 

 Time complexity: The time complexity of the algorithm 

includes Gen_neighborhood, gen_iCPI-tree, and the loop 

step 4-10. Suppose m is the total number of instances of all 

features. In the worse case, the computational complexity of 

the procedure Gen_neighborhood will be )log( 2

2
mmO . 

For procedure gen_iCPI-tree, if Nins is the number of spatial 

neighbor relationships, the cost is )()( 2
mONO

ins
. 

 For the loop k of Step 4 in Algorithm 1, the bulk cost is 

to generate co-location instances Ik of the set of candidate co-

locations Ck. This cost depends on the number of spatial in-

stances, the number of features, the number of spatial neigh-

bor relationships between instances, the number and the size 

of candidate co-locations, and the number of table instances 

in co-locations. But by sorting spatial instances and co-

locations, and using expanding method based on the iCPI-

tree to generate table instances, which dramatically reduces 

the cost of algorithms. The real performance of the algorithm 

is discussed in Section 5. 

 Computational cost comparison: Let Ticpi, Tcpi, Tjb and 

Tjl represent the costs of the iCPI-tree algorithm, the CPI-tree 

algorithm, the join-based algorithm and the join-less algo-

rithm respectively. 

++= )()( ___ treeiCPIgenneibgeniCPI TdatasetTT  

),()(( 1_1_ treeiCPIITPT kinstgen

k

kcandigen +  

))( kprune CT+  

k

kinstgen treeiCPIIT ),( 1_
          (1) 

++= )()( ___ treeCPIgenneibgencpi TdatasetTT  

))()( 1_ kprunekinstgen CTInsT +  

 )(_ treeCPIT instgen
            (2) 

++=

k

kcandigencolsizegenjb PTdatasetTT )(()( 1__2_
 

)()(_ CTtreeCPIT pruneinstgen +  

k

kinstgen InsT )( 1_
           (3) 

++=

k

kcandigenneibstargenjl PTdatasetTT )(()( 1__
 

+),(__ neibstarCT kinststargen
 

))(),(__ kprunekinststarfilter CTneibstarCT +  

+

k

kinststargen neibstarCT ),(( __
 

)),(__ neibstarCT kinstcliquefilter
          (4) 

 In the above Equation (1), )(__ datasetT neibgen
 repre-

sents the cost of generating ordered neighbor relationship set 
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 with the dataset. )(_ treeiCPIgenT  represents the cost of 

building the iCPI-tree. 

k

kcandigen PT )( 1_
 is the cost of gen-

erating all candidate co-locations. 

k

kinstgen treeiCPIIT ),( 1_
 represents the cost of identify-

ing table instances of all candidate co-locations based on the 

iCPI-tree and relevant size-(k-1) co-location instances. 

+

k

kprune CT )( 1
 is the cost for pruning non-prevalent size k 

co-locations. The bulk of time is consumed in identifying 

table instances of all candidate co-locations. 

 In equation (2), Tgen _ neib _ (dataset)  represents the cost 

of generating ordered neighbor relationship set  with the 

dataset. )(_ treeCPIgenT  is the cost of building the CPI-tree 

based the . )(_ treeCPIT instgen
 represents the cost of 

generating all co-location instances from CPI-tree. 

)(CTprune
is the cost for pruning non-prevalent co-locations. 

The bulk of time is consumed in generating all co-location 

instances from CPI-tree. 

 In equation (3), )(_2_ datasetT colsizegen
 represents the 

cost of generating size-2 co-locations and their table in-

stances with the dataset. 

))()()(( 1_1_ kprunekinstgen

k

kcandigen CTInsTPT ++  represents 

the all cost of generating all prevalence co-locations, where 

)( 1_ kcandigen PT  is the cost of generating size k candidate co-

location with the prevalent size k-1 co-locations, 

)( 1_ kinstgen InsT  represents the cost of generating table in-

stances of size k candidate co-locations with size k-1 table 

instances, )( kprune CT  is the cost for pruning size k co-

locations. The bulk of time is consumed in generating table 

instances of all candidate co-locations. 

 In equation (4), )(_ datasetT neibstargen
 represents the cost 

of converting a spatial dataset to a disjoint star neighbor-

hood. 

k

kcandigen PT )( 1_
 is the cost of generating all candi-

date co-locations. +

k

kinststargen neibstarCT ),(( __

 

)),(__ neibstarCT kinstcliquefilter
 is the cost of generating 

the star instances and filtering co-location instances of all 

candidate co-locations with the star neighborhoods. 

)( kprune CT  is the cost for pruning non-prevalent size k+1 co-

locations. The bulk of time is consumed in generating the 

star instances and filtering co-location instances of size k 

candidate co-locations with the star neighborhoods. 

 The difference of the three algorithms’ computational 

cost is affected by the number of table instances, the number 

of candidate co-locations and the distribution of spatial fea-

tures and spatial instances. When the number of table in-

stances and candidate co-locations increase, the cost of the 

join-based algorithm, the join-less algorithm and the CPI-

tree algorithm are greater than the cost of the iCPI-tree algo-

rithm. This happens because the pile-instance-lookup 

scheme (as shown in Fig. 4) based on the iCPI-tree improves 

the running performance of identifying table instances in the 

iCPI-tree algorithm. In our experiments, as described in the 

next section, we use the data density, the prevalence thresh-

old Min_prev and the neighbor distance d as key parameters 

to evaluate the algorithms. We can expect that the iCPI-tree 

approach is likely more efficient than the join-based method, 

the join-less method and the CPI-tree when the spatial 

dataset is dense (containing many table instances). 

Space Complexity 

 The store space of the tree iCPI-tree is the most costly in 

the algorithm, if it is always in the main memory, the space 

cost of the algorithm is )()( 2
mONO

ins
. But a method 

which partial sub-trees of the iCPI-tree are remained to re-

duce the need of the space can be adopted, because in one 

iterative of generating a candidate co-location c, the in-

stances of features related to the c only need to be in the 

main memory. 

5. EXPERIMENTAL RESULTS 

 In this section, the performance of the algorithms is 

evaluated with the join-based approach, the join-less ap-

proach and the CPI-tree approach using both synthetic and 

real datasets. All the experiments were performed on a 3-

GHz Pentium PC machine with 2G megabytes main mem-

ory, running on Microsoft Windows/XP. All programs are 

written in Java. 

 Synthetic datasets are generated using a methodology 

similar to the methodology used in paper [7], which has 20 

spatial features and 11292 spatial instances in an area 

100  The synthetic data generator allows us to bet-

ter control the study of the algorithms and the effects of in-

teresting parameters. 

 To test the practicability of the iCPI-tree method, a real 

dataset, the plant distribution dataset of the “Three Parallel 

Rivers of Yunnan Protected Areas” area, is used. It contains 

the number of plant species (feature types) is 16. The total 

number of plant instances is 3908. When Min_prev and dis-

tance d are set to 0.1 and 1900 respectively, the maximum 

size of co-location is 4 and the total number of size 2 co-

location patterns is 42. There are a huge number of spatial 

neighbor relationships between instances due to the plants’ 

particularity of growing in group. 

5.1. Evaluation with the Neighbor Distance Threshold d 

 The experiments are implemented in the synthetic 

datasets. The runtime of iCPI-tree, CPI-tree, Join-based and 

Join-less on the synthetic datasets, when the prevalence 

threshold min_prev is set as 0.3, as the neighbor distance 

threshold d increases from 18 to 28 is shown in Fig. (5). The 

iCPI-tree algorithm and the CPI-tree algorithm show less 

increase in the execution time with the increase of distance 

threshold d. The join-based algorithm and the join-less algo-
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rithm show a rapid increase since the neighbor distance in-

crease makes the neighbor areas larger and increase the 

number of co-location instances. 

 

 

 

 

 

 

 

 

Fig. (5). Evaluation with the distance d over the synthetic dataset. 

 

5.2. Evaluation with the Prevalence Threshold Min_prev 

 Fig. (6) presents the execution time of the four algo-

rithms as a function of the prevalence threshold Min_prev 

over the synthetic dataset, while the comparison between the 

costs of the iCPI-tree algorithm and the CPI-tree algorithm is 

shown in Fig. (7). The neighbor distance threshold d is set as 

25 in the experiments. The iCPI-tree shows much better per-

formance at the lower threshold values. The reason is that 

the decrease of the Min_prev causes the number and the size 

of prevalent co-locations to be increased, which in turn may 

lead to an increase in the number of co-location instances. 

As shown in Fig. (7), the CPI-tree algorithm is not affected 

by the threshold since the CPI-tree didn’t use the threshold 

Min_prev to prune. 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Evaluation with the Min_prev on the synthetic dataset. 

 

5.3. A Comparison of Generating Co-Locations Over the 

Size 

 Fig. (8) shows the execution times for generating the 

three size co-locations with the prevalence threshold 

Min_prev set to 0.3 and the neighbor distance threshold d set 

to 25 in the synthetic dataset. In the figure, the first column 

reports the execution time needed to discover co-locations of 

size 2. As can be seen, the iCPI-tree method is much faster 

than the join-based method and the join-less method for gen-

erating size 3 and size 4 co-locations. Thus, the iCPI-tree 

algorithm is expected to achieve the best performance when 

the size of co-locations becomes larger. 

 

 

 

 

 

 

 

 

Fig. (8). Comparison of generating size 2, size 3 and size 4 preva-
lent co-locations on the synthetic dataset. 

 

5.4. Experiment on a Real Dataset 

 The mining result over a real dataset, a plant distribution 

dataset of the “Three Parallel Rivers of Yunnan Protected 

Areas” area, is shown in Fig. (9), while the comparison be-

tween the costs of the iCPI-tree algorithm and the CPI-tree 

algorithm is shown in Fig. (10). In this experiment, the 

neighbor distance threshold d set to 1500, and the prevalence 

threshold Min_prev set from 0.5 to 0.2. From the figure, one 

can see that iCPI-tree method is scalable even when there are 

many table instances. Fig. (11) presents the distribution of 

the plant data in the real dataset. 

 

 

 

 

 

 

 

 

 

Fig. (9). A comparison using a plant distribution dataset. 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Comparison of the CPI-tree and the iCPI-tree with the 
Min_prev on the synthetic dataset. 
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Fig. (10). A comparison of iCPI-tree and CPI-tree algorithm using a 
plant distribution dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). An example of the distribution of plant data. 

 

5.5. Effect of Data Density 

 To test the performance of the iCPI-tree algorithm 

against the data density, the synthetic datasets are used with 

the Min-Prev is set to 0.3, the neighbor distance threshold d 

is 20, and the number of instances ranges from 3K to 20K. 

The result is shown in Fig. (12), which shows that the iCPI-

tree algorithm has better performance to large dense datasets. 

 

 

 

 

 

 

 

Fig. (12). Effect of data density. 

 

6. CONCLUSION AND FUTURE WORK 

 In this paper, a new join-less co-location mining algo-

rithm, which can rapidly generate spatial co-location table 

instances based on the iCPI-Tree construction materialized 

neighborhood relationship between spatial instances, was 

proposed. The algorithm is efficient since it does not require 

expensive spatial joins or instance join for identifying co-

location table instances. The experimental results show the 

new method outperforms the join-based method, the join-less 

method and the CPI-tree method in the synthetic and the real 

datasets. As future work, the applications studying of co-

location patterns mining is an important work. And treat with 

the redundant co-location rules and maximal co-location 

patterns mining will be significant works in the future work 

as well. 
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