Low Efficacy of Hypochlorous Acid Solution Compared to Povidone-iodine in Cataract Surgery Antisepsis

Piotr Kanclerz1*, Andrzej Grzybowski2,3 and Bogdan Olszewski4

1 Private Practice, Gdańsk, Poland
2 Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland
3 Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland
4 Department of Ophthalmology, Elbląg City Hospital, Elbląg, Poland

Abstract:

Background: Hypochlorous Acid Solution (HAS) is a non-irritating, odorless and transparent, pH-neutral substance having antimicrobial activity.

Objective: The study aimed to compare the efficacy of HAS with a 10% povidone-iodine (PVI) solution for antisepsis in Phacoemulsification Cataract Surgery (PCS).

Methods: Consecutive patients undergoing PCS in the Elbląg City Hospital, Poland, were enrolled in this prospective trial. In the morning just before surgery a swab was taken from the inferior conjunctival fornix of the eye that was to be operated. Patients were assigned to receive conjunctival irrigation with PVI or HAS in the operating room. Three minutes after lavage with PVI or HAS, conjunctival swabs were taken. During surgery the cornea and conjunctival sac were irrigated with Ringer’s lactate. The last swab was taken before removing the eye speculum.

Results: Overall, 110 patients completed the study; there were 59 patients in the PVI group and 51 patients in the HAS group. Conjunctival lavage with 10% PVI resulted in a decrease in bacterial load, while HAS application did not. In the HAS group a reduction in bacterial load was found after surgery. Patients after HAS irrigation reported significantly less discomfort associated with conjunctival lavage than with PVI. None of the patients developed postoperative endophthalmitis or any type of eye inflammation within the follow-up period.

Conclusions: This study confirms the excellent antibacterial activity of a 10% povidone-iodine solution used for three minutes before cataract surgery. Conjunctival irrigation with Ringer lactate during PCS decreased the bacterial load of the conjunctival sac.

Keywords: Antisepsis, Cataract surgery, Conjunctival swabs, Endophthalmitis, Hypochlorous acid solution, Povidone-iodine.

1. INTRODUCTION

Hypochlorous Acid Solution (HAS) is a non-irritating, odorless and transparent, pH-neutral substance having antimicrobial activity due to oxidizing properties. It is used as a disinfectant in ulcers, wounds and burns, in periodontal care [1], peritoneal dialysis [2], and for breast implant pocket irrigation [3]. It has a broad spectrum antimicrobial efficacy against bacteria, viruses, spores, fungi. The aim of this study was to compare the efficacy of prepared diluted HAS (Microdacyn®, Sonoma Pharmaceuticals, Petaluma, CA) with a 10% povidone-iodine (PVI) solution for antisepsis in Phacoemulsification Cataract Surgery (PCS).
2. MATERIAL AND METHODS

Consecutive patients undergoing (PCS at the Elblag City Hospital, Poland from April to May 2016 were enrolled in this prospective trial. The study adhered to the tenets of the Declaration Of Helsinki and written consent was obtained from all patients before enrollment in the study. The protocol was approved by the hospital’s ethical board.

In the evening, a day before the surgery, the patients received topical tobramycin 0.3% with dexamethasone 0.1% and diclofenac sodium 0.1% in the eye that was to be operated, as per the standards of the hospital. In the morning before the surgery, a swab was taken from the inferior conjunctival fornix of the eye with a wet sterile cotton tipped applicator. A standardised swabbing technique was used for all study patients [4]. The swab was then inoculated in a bottle containing Stuart Transport Medium. Subsequently, microbes were cultured in blood, chocolate, Sabouraud glucose, Columbia-CNA, MacConkey, and Thioglycollate Agar. Each patient before surgery received topical tobramycin 0.3% with dexamethasone 0.1% and diclofenac sodium 0.1%. Three applications of lidocaine 2%, tropicamide 1% and phenylephrine 10% within 15 minute-breaks were applied to the operative eye 1 hour before surgery.

Patients were assigned to receive antisepsis with PVI or HAS, based on the time of surgery (odd weeks PVI, even weeks HAS). After topical application of sterile 2% lidocaine solution, subjects in the PVI group underwent periorbital disinfection using a gauze soaked with 10% PVI on the eyelids and surrounding skin. Periorbital disinfection was repeated after a few seconds and, subsequently, the skin was dried by wiping with sterile gauze. After application of sterile 2% lidocaine solution on the cornea, the conjunctival sac was vigorously irrigated with 10 mL of 10% povidone iodine solution. Subjects in the HAS group underwent periorbital skin disinfection, as well as conjunctival lavage using HAS. The patients were asked to rate their discomfort associated with conjunctival sac irrigation, particularly the perception of itching, stinging or burning. Three minutes after conjunctival sac lavage with PVI or HAS conjunctival swabs were taken from the previous time point.

Abbreviations: CI - Confidence Interval; CNS - Coagulase-Negative Staphylococci, HAS - Hypochlorous Acid Solution, PVI - Povidone Iodine, * - a significant change from the previous time point.

Table 1. Bacterial distribution in the hypochlorous acid group (n=51) and povidone-iodine group (n=59) at different time points.

<table>
<thead>
<tr>
<th>Bacterial Distribution</th>
<th>Before Surgery</th>
<th>Before Surgery</th>
<th>After HAS Lavage</th>
<th>After PVI Lavage</th>
<th>At The End of Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HAS group</td>
<td>PVI group</td>
<td></td>
<td></td>
<td>HAS group</td>
</tr>
<tr>
<td>CNS</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>α-Hemolytic Streptococcus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>β-Hemolytic Streptococcus</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leuconostoc mesenteroides cremoris</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Micrococcus spp.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kocuria kristinae</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total positive swabs (confidence intervals)</td>
<td>4 / 7.8% (3.1–18.5%)</td>
<td>9 / 15.2% (8.2–26.5%)</td>
<td>9 / 17.6% (9.6–30.2%)</td>
<td>0 / 0.0% (0.0–6.1%)</td>
<td>3 / 5.9% (2.0–15.9%)</td>
</tr>
</tbody>
</table>

Table: **Statistical significance** | **P = 0.24** | **P = 0.01** | **P < 0.05**

Abbreviations: CI - Confidence Interval; CNS - Coagulase-Negative Staphylococci, HAS - Hypochlorous Acid Solution, PVI - Povidone Iodine, * - a significant change from the previous time point.
Before conjunctival lavage 7.8% (95% confidence interval (CI): 3.1–18.5%) swabs in the HAS group and 15.2% (95% CI: 3.1–18.5%) swabs in the PVI group showed bacterial growth, not statistically different \((P = 0.24)\). The bacterial distribution is presented in Table 1, and coagulase-negative staphylococci were preeminent. Conjunctival lavage with 10% PVI resulted in a decrease in bacterial load \((P < 0.01)\), while HAS application did not decrease the rate of positive conjunctival swabs \((P = 0.07)\). In the HAS group significantly less positive cultures were found at the end of surgery than immediately after HAS lavage \((P = 0.04)\). A statistically significant difference in positive cultures between the PVI and HAS group was noted immediately after lavage \((P < 0.01)\) and towards the end of the surgery \((P < 0.05)\).

Patients undergoing HAS lavage reported significantly less discomfort associated with conjunctival lavage (Table 2). None of the patients developed postoperative endophthalmitis or any type of eye inflammation within the follow-up period.

Table 2. Subjective evaluation of discomfort associated with conjunctival lavage.

<table>
<thead>
<tr>
<th>Discomfort</th>
<th>HAS</th>
<th>PVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>No discomfort</td>
<td>37</td>
<td>5</td>
</tr>
<tr>
<td>Low intensity</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Medium intensity</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Severe intensity</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>

Abbreviations: HAS - hypochlorous acid solution, PVI - povidone iodine

\(p<0.01, \chi^2=62.81, df=3\)

4. DISCUSSION

The European Society of Cataract and Refractive Surgery recommends the use of 5–10% PVI to the cornea, conjunctival sac and periorcular skin for a minimum three minutes prior to PCS [8]. The use of PVI in ophthalmic surgery has disadvantages, including conjunctival irritation [9], toxicity to the corneal epithelium [10, 11], as well as to the corneal endothelial cells in animal studies [12, 13]. With that, self-reported allergies to PVI or iodine were reported. True “iodine allergy” shows that it lacks a scientific basis [14], however, in these situations 0.05% aqueous chlorhexidine might be used [8]. The increase in the rate of positive cultures after HAS lavage, which was not statistically significant, could be attributed to uncertainty of microbiological testing [15]. A less probable explanation is contamination of the HAS solution. Contamination of hospital disinfectants was reported, particularly if they were used in low concentrations [16]. As our study presented significantly lower antimicrobial activity of HAS compared to PVI, it should not be taken into consideration for perioperative antisepsis.

Interestingly, the rate of positive cultures at the conclusion of surgery in the HAS group was significantly lower than after conjunctival lavage with HAS. This finding is particularly important, as it is believed that even after proper antisepsis, bacteria move onto the operative field during surgery, enter the eye and might cause infection [17]. We believe that the reduction in bacterial load during surgery might be attributed to repeated flushing of the cornea and conjunctiva with Ringer lactate.

A significant limitation of the current study is the use of 10% PVI. Currently, most commonly a 5% solution is applied for conjunctival sac irrigation [18 - 20]. Thus, our work has a more theoretical than practical value. To date, no study has reported a complete bactericidal effect of the PVI application on the ocular surface. [17, 21]. The lowest rate of culture positive swabs found after 5% PVI for three minutes was three percent [18]. Our study reported complete sterilization of the ocular surface after PVI application, which might be attributed to use of a 10% PVI solution, low group size and uncertainty of testing.

Our work revealed that patients undergoing PVI irrigation reported lower comfort compared to those receiving HAS lavage. Similarly, Ridder et al. noted that a single topical application of 60 μl PVI 5% results in an increased subjective discomfort and dry eye symptoms in healthy eyes for up to four hours, as well as in a decrease in visual acuity, contrast sensitivity and corneal staining [11]. A limitation of our study is the use of topical lidocaine 2%, as the use proxymetacaine was shown to provide better comfort to the patient particularly in application tonometry [22]. Another option is performing an additional regional block, however, PCS with topical anesthesia is usually well tolerated [23]. Finally, some recommend topical application of PVI in a lower concentrations. Nevertheless, according to the ESCRS guidelines a minimum 5% solution is recommended, unless repetitious PVI irrigation is performed during surgery [19].

CONCLUSION

This study confirms the excellent antibacterial activity of a 10% povidone-iodine solution used for three minutes before cataract surgery. Due to significantly lower antimicrobial activity of HAS compared to PVI, the commercially available HAS solution should not be taken into consideration for perioperative antisepsis in PCS. Conjunctival lavage with Ringer lactate during cataract surgery decreased the bacterial load of the conjunctival sac.

LIST OF ABBREVIATIONS

- **HAS** = Hypochlorous Acid Solution
- **PCS** = Phacoemulsification Cataract Surgery
- **PVI** = Povidone-iodine

ETHICS APPROVAL AND CONSENT TO PARTICIPATE. HUMAN RIGHTS

The study was approved by the hospital’s IRB on Mar 1, 2016.

HUMAN AND ANIMAL RIGHTS

No Animals were used in this research. All human research procedures followed were in accordance with the ethical standards of the committee responsible for human experimentation (institutional and national), and with the Helsinki Declaration of 1975, as revised in 2013.

CONSENT FOR PUBLICATION

Each participant signed an informed consent to participate in the study.
FUNDING

None.

CONFLICTS OF INTEREST

Dr. Kanclerz, Dr. Grzybowski and Dr. Olszewski report no conflict of interest.

ACKNOWLEDGEMENTS

The authors would like to thank dr Maciej Grzybek from the Department of Tropical Parasitology, Medical University of Gdańsk, Poland, for the critical discussion of the work.

REFERENCES

