The Open Medical Informatics Journal




(Discontinued)

ISSN: 1874-4311 ― Volume 13, 2019

Dynamic Modelling of Heart Rate Response Under Different Exercise Intensity



Steven W Su1, 2, 3, Weidong Chen*, 1, Dongdong Liu1, Yi Fang1, Weijun Kuang1, Xiaoxiang Yu1, Tian Guo1, Branko G Celler3, Hung T Nguyen2
1 Department of Automation, Shanghai Jiao Tong University, Shanghai, China
2 Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia
3 Biomedical Systems Lab, School of EE&T, University of New South Wales, Sydney, Australia

Abstract

Heart rate is one of the major indications of human cardiovascular response to exercises. This study investigates human heart rate response dynamics to moderate exercise. A healthy male subject has been asked to walk on a motorised treadmill under a predefined exercise protocol. ECG, body movements, and oxygen saturation (SpO2) have been reliably monitored and recorded by using non-invasive portable sensors. To reduce heart rate variation caused by the influence of various internal or external factors, the designed step response protocol has been repeated three times. Experimental results show that both steady state gain and time constant of heart rate response are not invariant when walking speed is faster than 3 miles/hour, and time constant of offset exercise is noticeably longer than that of onset exercise.

Keywords: Heart rate, treadmill exercise, modelling, nonlinear behaviour, portable sensor, non-invasive measurement.


Article Information


Identifiers and Pagination:

Year: 2010
Volume: 4
First Page: 81
Last Page: 85
Publisher Id: TOMINFOJ-4-81
DOI: 10.2174/1874431101004020081

Article History:

Received Date: 3/10/2009
Revision Received Date: 5/11/2009
Acceptance Date: 15/11/2009
Electronic publication date: 28/5/2010
Collection year: 2010

© Su et al.; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.


* Address correspondence to this author at the Department of Automation, Shanghai Jiao Tong University, Shanghai, China; Tel:/Fax: 86-21-34204302; E-mail: wdchen@sjtu.edu.cn





1. INTRODUCTION

As heart rate can be easily measured by using wireless portable sensors, it has been extensively used to monitor exercise intensity and estimate exercise response of key cardiovascular variables, such as oxygen consumption [1Su S, Celler B, Savkin A, et al. Transient and steady state estimation of human oxygen uptake based on noninvasive portable sensor measurements Med Biol Eng Comput 2009; 47(10): 1111-7., 2Fairbarn M, Blackie S, McElvaney N, Wiggs B, Pare P, Pardy R. Prediction of heart rate and oxygen uptake during incremental and maximal exercise in healthy adults Chest 1994; 105: 1365-9.], energy expenditure [3Su S, Wang L, Celler B, Ambikairajah E, Savkin A. Estimation of walking energy expenditure by using support vector regression Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Shanghai, China 2005; 3526-9.] and cardiac output [4Astrand P, Cuddy T, Saltin B, Stenberg J. Cardiac output during submaximal and maximal work J Appl Physiol 1964; 9: 268-74., 5Freedman M, Snider G, Brostoff P, Kimelblot S, Katz L. Effects of training on response of cardiac output to muscular exercise in athletes J Appl Physiol 1955; 8: 37-47.].

The heart rate is a non-stationary signal, and its variation includes indicators of current disease or warnings about impending cardiac diseases [6Acharya R, Kumar A, Bhat IP, et al. Classification of cardiac abnormalities using heart rate signals Med Biol Eng Comput 2004; 42(3): 288-93.]. Recently, heart rate has been applied for the assessment of cardiovascular fitness and monitoring of rehabilitation exercise with a focus on cardiovascular abnormality detection [6Acharya R, Kumar A, Bhat IP, et al. Classification of cardiac abnormalities using heart rate signals Med Biol Eng Comput 2004; 42(3): 288-93., 7Wang L, Su S, Celler B. Time constant of heart rate recovery after low level exercise as a useful measure of cardiovascular fitness Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), New York, USA, September 2006.]. To effectively detect cardiac abnormalities and monitor rehabilitation exercise, an efficient way is to set up models for normal heart rate responses. Then, abnormal response detection can be treated as a fault detection problem. The most commonly used method of fault detection is model based residual analysis [8Blanke M, Kinnaert M, Lunze J, Staroswiecki M. Diagnosis and Fault-Tolerant Control. Berlin: Springer 2003.]. Based on the established models, abnormal responses can be detected by calculating the residual of heart rate response, which can be acquired by comparing the signals, measured by using sensor and estimated by using the model. There are plenty of papers [9Seliger V, Wagner J. Evaluation of heart rate during exercise on a bicycle ergometer Physiol Boheraoslov 1969; 18: 41., 10Chen Y, Lee Y. Effect of combined dynamic and static workload on heart rate recovery cost Ergonomics 1998; 41(1): 29-38.] about the analysis of steady state characteristics of heart rate response. Some papers investigate its dynamic characteristics by using linear or nonlinear models [11Hajek M, Potucek J, Brodan V. Mathematical model of heart rate regulation during exercise Automatica 1980; 16: 191-5., 12Cheng T, Savkin A, Celler B, Su S, Wang L. Nonlinear modelling and control of human heart rate response during exercise with various work load intensities IEEE Trans Biomed Eng 2008; 55(11): 2499-508.]. However, few papers investigate the variation of dynamic characteristic (such as time constant) of onsite and offsite walking exercises. For moderate exercise, literatures often assume heart rate dynamics can be described by linear time invariant models. However, in our previous studies, it was observed time constant of heart response to exercise depends on exercise intensity. It is also reported [13Su S, Wang L, Celler B, Savkin A, Guo Y. Identification and control for heart rate regulation during treadmill exercise IEEE Trans Biomed Eng 2007; 54(7): 1238-46.-15Eston R, Rowlands A, Ingledew D. Validity of heart rate, pedometry, accelerometry for predicting the energy cost of children's activities J Appl Physiol 1998; 84: 362-71.] that exercise effects can be optimised by regulating heart rate following a predefined exercise protocol. Therefore, it is worthwhile to establish a more accurate dynamical model to enhance the controller design of heart rate regulation. For this purpose, this study investigated the variations of time constant and steady state gain under different exercise intensity. More attention was paid on the difference of transient response of onsite and offset exercises. We designed a treadmill walking exercise protocol to analyse step response of heart rate. During experiments, ECG, body movement, and oxygen saturation were recorded by using portable non-invasive sensors: Alive ECG monitor, Micro Inertial Measurement Unit (IMU), and Alive Pulse Oximeter. It was confirmed that time constant are not invariant, especially when walking speed is faster than 3 miles/hour. Furthermore, time constant for offsite exercise is normally bigger than that of onset exercises. Steady state gain variation under different exercise intensity has also been visibly observed.

This paper is organised as follows. Section 2 describes the experimental equipments and exercise protocol. Data analysis and modelling results are given in Section 3. Finally, Section 4 gives conclusions.

2. EXPERIMENTAL EQUIPMENTS AND EXERCISE PROTOCOL

2.1. Subject

A healthy male joined the study. Physical characteristics of the subject are shown in Table 1.

Table 1

Subject Characteristics




2.2. Experimental Procedure

Experiments were performed in the afternoon, and the subject was allowed to have a light meal one hour before the measurements. After walked for about 10 minutes on the treadmill to get acquainted with this kind of exercise, the subject walked at six sets of exercise protocol (see Fig. 1) to test step response. The values of walking speed Va and Vb were designed to vary exercise intensity and are listed in Table 2. To properly identify time constants for onset and offset exercises, the recorded data should be precisely synchronised. Therefore, time instants t1, t2, t3, and t4 should be identified and marked accurately. In this study, we applied a Micro Inertial Measurement Unit (Xsens MTi-G IMU) to fulfil this requirement. We compared both attitudes information (roll, pitch, and yaw angles) and acceleration information provided by the Micro IMU. It was observed that acceleration information alone is sufficient to identify these time instants (see Figs, 2, 3).

Fig. (1)

Experiment protocol.



Fig. (2)

Accelerations of three axes provided by the Micro IMU.



Fig. (3)

Roll, pitch and yaw angles provided by the Micro IMU.



Table 2

The Values of Walking Speed Va and Vb




During experiments, continuous measurements of ECG, body movement, and SpO2 (oxygen saturation) were made by using portable non-invasive sensors. Specifically, ECG was recorded by using Alive ECG Monitor. Body movement was measured by using the Xsens MTi-G IMU. SpO2 was monitored by using Alive Pulse Oximeter to guarantee the safety of the subject. The experimental scenario is shown in Fig. (4).

Fig. (4)

Experimental scenario.



3. DATA ANALYSIS AND DISCUSSIONS

Original signals of IMU, ECG, and SpO2 are shown in Figs. (3, 5, 6), respectively. It is well known that even in the absence of external interference the heart rate can vary substantially over time under the influence of various internal or external factors [13Su S, Wang L, Celler B, Savkin A, Guo Y. Identification and control for heart rate regulation during treadmill exercise IEEE Trans Biomed Eng 2007; 54(7): 1238-46.]. As mentioned before, in order to reduce the variance, designed experimental protocol has been repeated three times. Experimental data of these repeated experiments has been synchronised and averaged.

Fig. (5)

Original ECG signal.



Fig. (6)

The recording of SpO2.



A typical measured heart rate response is shown in Fig. (7). Paper [13Su S, Wang L, Celler B, Savkin A, Guo Y. Identification and control for heart rate regulation during treadmill exercise IEEE Trans Biomed Eng 2007; 54(7): 1238-46.] found that heart rate response to exercise can be approximated as first order process from a control application point of view. Therefore, we established first order model for six averaged step response data by using Matlab System Identification Toolbox [16Ljung L. System Identification Toolbox V40 for Matlab 1em plus 05em minus 04em MA: The MathWorks, Inc, 1995 ]. The identified time constants and steady state gain are shown in Table 3. Curve fitting results of all six cases are shown in Fig. (8).

Fig. (7)

A measured heart rate step response signal.



Fig. (8)

Curve fiting results for onset and offset exercises for all six exercise intensities as listed in Table 3.



Table 3

Summary of the Identified Time Constants and Steady State Gains




Based on the identified steady state gain (k) and time constant (T) as listed in Table 3, we can clearly see that both steady state gain and time constant vary when walking speed Va and Vb change. Furthermore, time constant of offsite exercise are noticeably bigger than those of onsite exercises. However, it should be pointed out that the variant of time constant is not distinctly dependent on walking speed when walking speed is less than 3 miles/hour. Overall, experimental results indicate that heart rate dynamics at onsite and offset exercise exhibited highly nonlinearity when walking speed is higher than 3 miles/hour.

4. CONCLUSION

This study mainly focuses on the analysis of dynamic nonlinear behaviour of heart rate response to treadmill walking exercises. Both steady state gain and time constant under different walking speeds have been identified and analysed by using the data from a healthy middle aged male subject. It was observed that both steady state gain and time constant are not invariant under different walking speeds. Especially, time constant for recovery stage is noticeably longer than that of onsite exercise. In order to verify this conclusion, we are planing to recruit more subjects in the next step of this study. Nonlinear control algorithm will also be developed for the established exercise intensity dependent nonlinear model. We believe that this study has great potential to improve exercise efficiency during treadmill exercises.

ACKNOWLEDGEMENTS

This work is partly supported by the National High-Tech R&D Program of China under grant 2006AA040203.

REFERENCES

[1] Su S, Celler B, Savkin A, et al. Transient and steady state estimation of human oxygen uptake based on noninvasive portable sensor measurements Med Biol Eng Comput 2009; 47(10): 1111-7.
[2] Fairbarn M, Blackie S, McElvaney N, Wiggs B, Pare P, Pardy R. Prediction of heart rate and oxygen uptake during incremental and maximal exercise in healthy adults Chest 1994; 105: 1365-9.
[3] Su S, Wang L, Celler B, Ambikairajah E, Savkin A. Estimation of walking energy expenditure by using support vector regression Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Shanghai, China 2005; 3526-9.
[4] Astrand P, Cuddy T, Saltin B, Stenberg J. Cardiac output during submaximal and maximal work J Appl Physiol 1964; 9: 268-74.
[5] Freedman M, Snider G, Brostoff P, Kimelblot S, Katz L. Effects of training on response of cardiac output to muscular exercise in athletes J Appl Physiol 1955; 8: 37-47.
[6] Acharya R, Kumar A, Bhat IP, et al. Classification of cardiac abnormalities using heart rate signals Med Biol Eng Comput 2004; 42(3): 288-93.
[7] Wang L, Su S, Celler B. Time constant of heart rate recovery after low level exercise as a useful measure of cardiovascular fitness Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), New York, USA, September 2006.
[8] Blanke M, Kinnaert M, Lunze J, Staroswiecki M. Diagnosis and Fault-Tolerant Control. Berlin: Springer 2003.
[9] Seliger V, Wagner J. Evaluation of heart rate during exercise on a bicycle ergometer Physiol Boheraoslov 1969; 18: 41.
[10] Chen Y, Lee Y. Effect of combined dynamic and static workload on heart rate recovery cost Ergonomics 1998; 41(1): 29-38.
[11] Hajek M, Potucek J, Brodan V. Mathematical model of heart rate regulation during exercise Automatica 1980; 16: 191-5.
[12] Cheng T, Savkin A, Celler B, Su S, Wang L. Nonlinear modelling and control of human heart rate response during exercise with various work load intensities IEEE Trans Biomed Eng 2008; 55(11): 2499-508.
[13] Su S, Wang L, Celler B, Savkin A, Guo Y. Identification and control for heart rate regulation during treadmill exercise IEEE Trans Biomed Eng 2007; 54(7): 1238-46.
[14] Cooper R, Fletcher-Shaw T, Robertson R. Model reference adaptive control of heart rate during wheelchair ergometry IEEE Trans Control Syst Technol 1998; 6(4): 507-14.
[15] Eston R, Rowlands A, Ingledew D. Validity of heart rate, pedometry, accelerometry for predicting the energy cost of children's activities J Appl Physiol 1998; 84: 362-71.
[16] Ljung L. System Identification Toolbox V40 for Matlab 1em plus 05em minus 04em MA: The MathWorks, Inc, 1995
Track Your Manuscript:


Endorsements



"Open access will revolutionize 21st century knowledge work and accelerate the diffusion of ideas and evidence that support just in time learning and the evolution of thinking in a number of disciplines."


Daniel Pesut
(Indiana University School of Nursing, USA)

"It is important that students and researchers from all over the world can have easy access to relevant, high-standard and timely scientific information. This is exactly what Open Access Journals provide and this is the reason why I support this endeavor."


Jacques Descotes
(Centre Antipoison-Centre de Pharmacovigilance, France)

"Publishing research articles is the key for future scientific progress. Open Access publishing is therefore of utmost importance for wider dissemination of information, and will help serving the best interest of the scientific community."


Patrice Talaga
(UCB S.A., Belgium)

"Open access journals are a novel concept in the medical literature. They offer accessible information to a wide variety of individuals, including physicians, medical students, clinical investigators, and the general public. They are an outstanding source of medical and scientific information."


Jeffrey M. Weinberg
(St. Luke's-Roosevelt Hospital Center, USA)

"Open access journals are extremely useful for graduate students, investigators and all other interested persons to read important scientific articles and subscribe scientific journals. Indeed, the research articles span a wide range of area and of high quality. This is specially a must for researchers belonging to institutions with limited library facility and funding to subscribe scientific journals."


Debomoy K. Lahiri
(Indiana University School of Medicine, USA)

"Open access journals represent a major break-through in publishing. They provide easy access to the latest research on a wide variety of issues. Relevant and timely articles are made available in a fraction of the time taken by more conventional publishers. Articles are of uniformly high quality and written by the world's leading authorities."


Robert Looney
(Naval Postgraduate School, USA)

"Open access journals have transformed the way scientific data is published and disseminated: particularly, whilst ensuring a high quality standard and transparency in the editorial process, they have increased the access to the scientific literature by those researchers that have limited library support or that are working on small budgets."


Richard Reithinger
(Westat, USA)

"Not only do open access journals greatly improve the access to high quality information for scientists in the developing world, it also provides extra exposure for our papers."


J. Ferwerda
(University of Oxford, UK)

"Open Access 'Chemistry' Journals allow the dissemination of knowledge at your finger tips without paying for the scientific content."


Sean L. Kitson
(Almac Sciences, Northern Ireland)

"In principle, all scientific journals should have open access, as should be science itself. Open access journals are very helpful for students, researchers and the general public including people from institutions which do not have library or cannot afford to subscribe scientific journals. The articles are high standard and cover a wide area."


Hubert Wolterbeek
(Delft University of Technology, The Netherlands)

"The widest possible diffusion of information is critical for the advancement of science. In this perspective, open access journals are instrumental in fostering researches and achievements."


Alessandro Laviano
(Sapienza - University of Rome, Italy)

"Open access journals are very useful for all scientists as they can have quick information in the different fields of science."


Philippe Hernigou
(Paris University, France)

"There are many scientists who can not afford the rather expensive subscriptions to scientific journals. Open access journals offer a good alternative for free access to good quality scientific information."


Fidel Toldrá
(Instituto de Agroquimica y Tecnologia de Alimentos, Spain)

"Open access journals have become a fundamental tool for students, researchers, patients and the general public. Many people from institutions which do not have library or cannot afford to subscribe scientific journals benefit of them on a daily basis. The articles are among the best and cover most scientific areas."


M. Bendandi
(University Clinic of Navarre, Spain)

"These journals provide researchers with a platform for rapid, open access scientific communication. The articles are of high quality and broad scope."


Peter Chiba
(University of Vienna, Austria)

"Open access journals are probably one of the most important contributions to promote and diffuse science worldwide."


Jaime Sampaio
(University of Trás-os-Montes e Alto Douro, Portugal)

"Open access journals make up a new and rather revolutionary way to scientific publication. This option opens several quite interesting possibilities to disseminate openly and freely new knowledge and even to facilitate interpersonal communication among scientists."


Eduardo A. Castro
(INIFTA, Argentina)

"Open access journals are freely available online throughout the world, for you to read, download, copy, distribute, and use. The articles published in the open access journals are high quality and cover a wide range of fields."


Kenji Hashimoto
(Chiba University, Japan)

"Open Access journals offer an innovative and efficient way of publication for academics and professionals in a wide range of disciplines. The papers published are of high quality after rigorous peer review and they are Indexed in: major international databases. I read Open Access journals to keep abreast of the recent development in my field of study."


Daniel Shek
(Chinese University of Hong Kong, Hong Kong)

"It is a modern trend for publishers to establish open access journals. Researchers, faculty members, and students will be greatly benefited by the new journals of Bentham Science Publishers Ltd. in this category."


Jih Ru Hwu
(National Central University, Taiwan)


Browse Contents




Webmaster Contact: info@benthamopen.net
Copyright © 2023 Bentham Open